Fast batched asynchronous distributed key generation

Jens Groth (Nexus Labs) Victor Shoup (Offchain Labs)

Asynchronous communication model

Asynchronous communication model Optimal resilience

Parties P_1, \ldots, P_n , at most $t < n/3$ may be corrupt

Asynchronous communication model Optimal resilience

Parties P_1, \ldots, P_n , at most $t < n/3$ may be corrupt

Robust (guaranteed output delivery)

- Asynchronous communication model Optimal resilience
	- Parties P_1, \ldots, P_n , at most $t < n/3$ may be corrupt
- Robust (guaranteed output delivery)
- Offline/online paradigm
	- high throughput in both offline and online phases
	- low latency in online phase

-
- -
	-

- Asynchronous communication model Optimal resilience
	- Parties P_1, \ldots, P_n , at most $t < n/3$ may be corrupt
- Robust (guaranteed output delivery)
- Offline/online paradigm
	- high throughput in both offline and online phases
	- low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity (in both phases)

- -

- Asynchronous communication model Optimal resilience
	- Parties P_1, \ldots, P_n , at most $t < n/3$ may be corrupt
- Robust (guaranteed output delivery)
- Offline/online paradigm
	- high throughput in both offline and online phases
	- low latency in online phase

New protocol

- **Linear** amortized (optimistic) communication complexity (in both phases)
- Amortized computational complexity: $O(n + \lambda/n)$ group additions
	- $\lambda =$ bit length of group order

$n = 49 = 3 \cdot 16 + 1, \lambda = 256$ [secp256k1] $3t+1$

$n = 49 = 3 \cdot 16 + 1, \lambda = 256$ [secp256k1] $3t+1$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs **other overheads (erasure coding / hashing / scalar-ops):** 5μs

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs other overheads (erasure coding / hashing / scalar-ops): 5μs

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs other overheads (erasure coding / hashing / scalar-ops): 5μs comms per party (both phases): 24 scalars, 9 grp elts independent of n

-
- -
	-

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs other overheads (erasure coding / hashing / scalar-ops): 5μs comms per party (both phases): 24 scalars, 9 grp elts independent of n

=⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs other overheads (erasure coding / hashing / scalar-ops): 5μs comms per party (both phases): 24 scalars, 9 grp elts

independent of n

=⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs other overheads (erasure coding / hashing / scalar-ops): 5μs comms per party (both phases): 24 scalars, 9 grp elts independent of n

=⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs other overheads (erasure coding / hashing / scalar-ops): 5μs comms per party (both phases): 24 scalars, 9 grp elts independent of n

=⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation **=⇒** better CPU utilization **+** faster algorithms **=⇒**

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs other overheads (erasure coding / hashing / scalar-ops): 5μs comms per party (both phases): 24 scalars, 9 grp elts independent of n

=⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation **=⇒** better CPU utilization **+** faster algorithms **=⇒ better overall throughput** . . . even when demand never lets up

$$
n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad \text{[seep256k1]}
$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): 23 **=⇒** 5μs other overheads (erasure coding / hashing / scalar-ops): 5μs comms per party (both phases): 24 scalars, 9 grp elts independent of n

=⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation **=⇒** better CPU utilization **+** faster algorithms **=⇒** better overall throughput . . . even when demand never lets up

-
- -

Main Result 1: a better batch GoAVSS protocol AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

GoAVSS: Group-oriented AVSS (over a group $E = \langle G \rangle$)

Dealer shares a polynomial f — each P_i gets $f(i)$ and $f(0)G \in E$

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

GoAVSS: Group-oriented AVSS (over a group $E = \langle G \rangle$)

Dealer shares a polynomial f — each P_i gets $f(i)$ and $f(0)G \in E$

Allows a dealer to "publish a PK" and "share a SK"

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

GoAVSS: Group-oriented AVSS (over a group $E = \langle G \rangle$)

Dealer shares a polynomial f — each P_i gets $f(i)$ and $f(0)G \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

GoAVSS: Group-oriented AVSS (over a group $E = \langle G \rangle$)

Dealer shares a polynomial f — each P_i gets $f(i)$ and $f(0)G \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

GoAVSS: Group-oriented AVSS (over a group $E = \langle G \rangle$)

Dealer shares a polynomial f — each P_i gets $f(i)$ and $f(0)G \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

GoAVSS: Group-oriented AVSS (over a group $E = \langle G \rangle$)

Dealer shares a polynomial f — each P_i gets $f(i)$ and $f(0)G \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

GoAVSS: Group-oriented AVSS (over a group $E = \langle G \rangle$)

Dealer shares a polynomial f — each P_i gets $f(i)$ and $f(0)G \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger (up to a point: O**(**λ/n**)** grp ops **+**O**(**n**)** scalar ops)

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

GoAVSS: Group-oriented AVSS (over a group $E = \langle G \rangle$)

Dealer shares a polynomial f — each P_i gets $f(i)$ and $f(0)G \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger (up to a point: O**(**λ/n**)** grp ops **+**O**(**n**)** scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets $f(i)$

GoAVSS: Group-oriented AVSS (over a group $E = \langle G \rangle$)

Dealer shares a polynomial f — each P_i gets $f(i)$ and $f(0)G \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger (up to a point: O**(**λ/n**)** grp ops **+**O**(**n**)** scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Basic idea: generate a batch of "published PKs" and "shared SKs" Each party runs GoAVSS as dealer

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto - SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto - SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto - SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto - SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: O**(**λn**)**

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto - SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: O**(**λn**)**

FFT: O**(**λ log n**)**

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto - SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O**(**λn**)**

FFT: O**(**λ log n**)**

Horner's rule: O**(**n log n**)** [better than FFT when ⁿ **[≪]** ^λ]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}$ n random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto - SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O**(**λn**)**

FFT: O**(**λ log n**)**

Horner's rule: O**(**n log n**)** [better than FFT when ⁿ **[≪]** ^λ]

Our observation — Pascal matrix: $n/2$ (and sometimes $n/3$) [for $\lambda = 256$, should be much better than FFT for *n* up to at least $n \approx 1000$]