Fast batched asynchronous distributed key generation

Jens Groth (Nexus Labs) Victor Shoup (Offchain Labs)

Asynchronous communication model Optimal resilience Parties P_1, \ldots, P_n , at most t < n/3 may be corr Robust (guaranteed output delivery)

Offline/online paradigm high throughput in both offline and online pha low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity (in both phases)

Asynchronous communication model

Optimal resilience

Parties P₁,..., P_n, at most t < n/3 may be corrupt Robust (guaranteed output delivery) Offline/online paradigm high throughput in both offline and online phases low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity (in both phases)

Asynchronous communication model Optimal resilience

Parties P₁,..., P_n, at most t < n/3 may be corrupt Robust (guaranteed output delivery) Offline/online paradigm high throughput in both offline and online phases low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity (in both phases)

Asynchronous communication model

Optimal resilience

Parties P_1, \ldots, P_n , at most t < n/3 may be corrupt

Robust (guaranteed output delivery)

Offline/online paradigm high throughput in both offline and online phases low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity (in both phases)

Amortized computational complexity: $O(n + \lambda/n)$ group additions

- Asynchronous communication model
- **Optimal** resilience
 - Parties P_1, \ldots, P_n , at most t < n/3 may be corrupt
- Robust (guaranteed output delivery)
- Offline/online paradigm
 - high throughput in both offline and online phases
 - low latency in online phase
- New protocol
 - Linear amortized (optimistic) communication complexity (in both phases)
 - Amortized computational complexity: $O(n + \lambda/n)$ group additions
 - $\lambda =$ bit length of group order

Asynchronous communication model

Optimal resilience

Parties P_1, \ldots, P_n , at most t < n/3 may be corrupt

Robust (guaranteed output delivery)

Offline/online paradigm

high throughput in both offline and online phases

low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity (in both phases)

- Asynchronous communication model
- Optimal resilience
 - Parties P_1, \ldots, P_n , at most t < n/3 may be corrupt
- Robust (guaranteed output delivery)
- Offline/online paradigm
 - high throughput in both offline and online phases
 - low latency in online phase

New protocol

- Linear amortized (optimistic) communication complexity (in both phases)
- Amortized computational complexity: $O(n + \lambda/n)$ group *additions*
 - $\lambda = \text{bit length of group order}$

$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): $23 \implies 5\mu$ s other overheads (erasure coding / hashing / scalar-ops): 5μ s comms per party (both phases): 24 scalars, 9 grp elts independent of *n*

⇒ throughput 100K sig/sec (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

- # of group additions/sig (both phases): $23 \implies 5\mu s$ other overheads (erasure coding / hashing / scalar-ops): $5\mu s$ comms per party (both phases): 24 scalars, 9 grp elts independent of *n*
- ⇒ throughput 100K sig/sec (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 \implies 5 μ s

other overheads (erasure coding / hashing / scalar-ops): 5μs comms per party (both phases): 24 scalars, 9 grp elts independent of *n*

⇒ throughput 100K sig/sec (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 \implies 5 μ s

other overheads (erasure coding / hashing / scalar-ops): 5µs
comms per party (both phases): 24 scalars, 9 grp elts
independent of n

⇒ throughput 100K sig/sec (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): $23 \implies 5\mu s$ other overheads (erasure coding / hashing / scalar-ops): $5\mu s$ comms per party (both phases): 24 scalars, 9 grp elts

independent of n

⇒ throughput 100K sig/sec (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): $23 \implies 5\mu$ s other overheads (erasure coding / hashing / scalar-ops): 5μ s comms per party (both phases): 24 scalars, 9 grp elts independent of n

⇒ throughput 100K sig/sec (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread # of group additions/sig (both phases): $23 \implies 5\mu$ s other overheads (erasure coding / hashing / scalar-ops): 5μ s comms per party (both phases): 24 scalars, 9 grp elts independent of *n*

- ⇒ throughput 100K sig/sec (both phases) assumes 1Gb/s network bandwidth
- Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): $23 \implies 5\mu s$ other overheads (erasure coding / hashing / scalar-ops): $5\mu s$ comms per party (both phases): 24 scalars, 9 grp elts independent of *n*

⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): $23 \implies 5\mu s$ other overheads (erasure coding / hashing / scalar-ops): $5\mu s$ comms per party (both phases): 24 scalars, 9 grp elts independent of *n*

⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): $23 \implies 5\mu s$ other overheads (erasure coding / hashing / scalar-ops): $5\mu s$ comms per party (both phases): 24 scalars, 9 grp elts independent of *n*

⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): $23 \implies 5\mu s$ other overheads (erasure coding / hashing / scalar-ops): $5\mu s$ comms per party (both phases): 24 scalars, 9 grp elts independent of *n*

⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): $23 \implies 5\mu s$ other overheads (erasure coding / hashing / scalar-ops): $5\mu s$ comms per party (both phases): 24 scalars, 9 grp elts independent of *n*

⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

$$n = 49 = \underbrace{3 \cdot 16 + 1}_{3t+1}, \quad \lambda = 256 \quad [secp256k1]$$

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): $23 \implies 5\mu s$ other overheads (erasure coding / hashing / scalar-ops): $5\mu s$ comms per party (both phases): 24 scalars, 9 grp elts independent of *n*

⇒ throughput **100K sig/sec** (both phases) assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

AVSS: asynchronous verifiable secret sharing

(with completeness)

- Dealer shares a polynomial f each P_i (eventually) gets f(i)
- **GoAVSS:** Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)
 - Dealer shares a polynomial f each P_l gets f(l) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Main Result 1: a better batch GoAVSS protocol AVSS: asynchronous verifiable secret sharing (with completeness) Dealer shares a polynomial f — each P_i (eventually) gets f(i)

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets f(i)

GoAVSS: Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)

Dealer shares a polynomial f — each P_i gets f(i) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK'

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets f(i)

GoAVSS: Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)

Dealer shares a polynomial f — each P_i gets f(i) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets f(i)

GoAVSS: Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)

Dealer shares a polynomial f — each P_i gets f(i) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets f(i)

GoAVSS: Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)

Dealer shares a polynomial f — each P_i gets f(i) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets f(i)

GoAVSS: Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)

Dealer shares a polynomial f — each P_i gets f(i) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets f(i)

GoAVSS: Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)

Dealer shares a polynomial f — each P_i gets f(i) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets f(i)

GoAVSS: Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)

Dealer shares a polynomial f — each P_i gets f(i) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets f(i)

GoAVSS: Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)

Dealer shares a polynomial f — each P_i gets f(i) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial f — each P_i (eventually) gets f(i)

GoAVSS: Group-oriented AVSS (over a group $E = \langle \mathcal{G} \rangle$)

Dealer shares a polynomial f — each P_i gets f(i) and $f(0)\mathcal{G} \in E$

Allows a dealer to "publish a PK" and "share a SK"

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a *simple statistical test* — more efficient as *n* gets larger (up to a point: $O(\lambda/n)$ grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: $O(\lambda n)$

FFT: $O(\lambda \log n)$

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs" Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: $O(\lambda n)$

FFT: $O(\lambda \log n)$

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a **super invertible matrix**

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: O(λn)

FFT: *O*(λ log *n*)

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: O(λn)

FFT: $O(\lambda \log n)$

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: O(λn)

FFT: *O*(λ log *n*)

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: O(λn)

FFT: $O(\lambda \log n)$

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: *O*(λ*n*)

FFT: *O*(λ log *n*)

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: *O*(λ*n*)

FFT: *O*(λ log *n*)

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: $O(\lambda n)$

FFT: *O*(λ log *n*)

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: $O(\lambda n)$ FFT: $O(\lambda \log n)$ Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$] Our observation — Pascal matrix: n/2 (and sometimes n/3) [for $\lambda = 256$, should be much better than FFT for n up to at least $n \approx 1000$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: $O(\lambda n)$

FFT: *O*(λ log *n*)

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: $O(\lambda n)$

FFT: $O(\lambda \log n)$

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: $O(\lambda n)$

FFT: $O(\lambda \log n)$

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]

Basic idea: generate a batch of "published PKs" and "shared SKs"

Each party runs GoAVSS as dealer

Agree on a set of $\frac{2}{3}n$ dealings

Extract $\frac{1}{3}n$ random(ish) dealings by linearly combining dealings with a super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector multiplication

of grp ops for randomness extraction (amortized per grp elt output) Naive: $O(\lambda n)$

FFT: $O(\lambda \log n)$

Horner's rule: $O(n \log n)$ [better than FFT when $n \ll \lambda$]