
Fast batched asynchronous
distributed key generation

Jens Groth (Nexus Labs)
Victor Shoup (Offchain Labs)

Motivation: threshold Schnorr Signatures

Asynchronous communication model

Optimal resilience
Parties P1, . . . , Pn, at most t < n/3 may be corrupt

Robust (guaranteed output delivery)

Offline/online paradigm
high throughput in both offline and online phases

low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity
(in both phases)

Amortized computational complexity:
O(n + λ/n) group additions
λ = bit length of group order

Motivation: threshold Schnorr Signatures

Asynchronous communication model

Optimal resilience
Parties P1, . . . , Pn, at most t < n/3 may be corrupt

Robust (guaranteed output delivery)

Offline/online paradigm
high throughput in both offline and online phases

low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity
(in both phases)

Amortized computational complexity:
O(n + λ/n) group additions
λ = bit length of group order

Motivation: threshold Schnorr Signatures

Asynchronous communication model

Optimal resilience
Parties P1, . . . , Pn, at most t < n/3 may be corrupt

Robust (guaranteed output delivery)

Offline/online paradigm
high throughput in both offline and online phases

low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity
(in both phases)

Amortized computational complexity:
O(n + λ/n) group additions
λ = bit length of group order

Motivation: threshold Schnorr Signatures

Asynchronous communication model

Optimal resilience
Parties P1, . . . , Pn, at most t < n/3 may be corrupt

Robust (guaranteed output delivery)

Offline/online paradigm
high throughput in both offline and online phases

low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity
(in both phases)

Amortized computational complexity:
O(n + λ/n) group additions
λ = bit length of group order

Motivation: threshold Schnorr Signatures

Asynchronous communication model

Optimal resilience
Parties P1, . . . , Pn, at most t < n/3 may be corrupt

Robust (guaranteed output delivery)

Offline/online paradigm
high throughput in both offline and online phases

low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity
(in both phases)

Amortized computational complexity:
O(n + λ/n) group additions
λ = bit length of group order

Motivation: threshold Schnorr Signatures

Asynchronous communication model

Optimal resilience
Parties P1, . . . , Pn, at most t < n/3 may be corrupt

Robust (guaranteed output delivery)

Offline/online paradigm
high throughput in both offline and online phases

low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity
(in both phases)

Amortized computational complexity:
O(n + λ/n) group additions
λ = bit length of group order

Motivation: threshold Schnorr Signatures

Asynchronous communication model

Optimal resilience
Parties P1, . . . , Pn, at most t < n/3 may be corrupt

Robust (guaranteed output delivery)

Offline/online paradigm
high throughput in both offline and online phases

low latency in online phase

New protocol

Linear amortized (optimistic) communication complexity
(in both phases)

Amortized computational complexity:
O(n + λ/n) group additions
λ = bit length of group order

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Example

n = 49 = 3 · 16 + 1
︸ ︷︷ ︸

3t+1

, λ = 256 [secp256k1]

micro-benchmarks: Macbook Pro / Apple M1 Max / single thread

of group additions/sig (both phases): 23 =⇒ 5μs

other overheads (erasure coding / hashing / scalar-ops): 5μs

comms per party (both phases): 24 scalars, 9 grp elts
independent of n

=⇒ throughput 100K sig/sec (both phases)
assumes 1Gb/s network bandwidth

Key advantages of offline/online paradigm

Lower latency in the online phase

Batch computation =⇒ better CPU utilization + faster algorithms =⇒
better overall throughput . . . even when demand never lets up

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 1: a better batch GoAVSS protocol

AVSS: asynchronous verifiable secret sharing

(with completeness)

Dealer shares a polynomial ƒ — each P (eventually) gets ƒ ()

GoAVSS: Group-oriented AVSS (over a group E = 〈G〉)
Dealer shares a polynomial ƒ — each P gets ƒ () and ƒ (0)G ∈ E

Allows a dealer to “publish a PK” and “share a SK”

Batch (Go)AVSS: dealer shares many polys (at the same time)

A new Batch GoAVSS Protocol:

Reduction from batch GoAVSS to batch AVSS

No poly commitments

Based on a simple statistical test — more efficient as n gets larger
(up to a point: O(λ/n) grp ops +O(n) scalar ops)

Plug in batch AVSS of [Shoup & Smart 2023]:

Linear amortized (optimistic) comms complexity / lightweight crypto

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

Main Result 2: a better batch randomness extractor
Basic idea: generate a batch of “published PKs” and “shared SKs”

Each party runs GoAVSS as dealer

Agree on a set of 2
3n dealings

Extract 1
3n random(ish) dealings by linearly combining dealings with a

super invertible matrix

A brief history of super invertible matrices

Ancient history: coding theory — generator matrix for MDS code

MPC — [Hirt & Nielsen 2006]

Threshold PK crypto — SPRINT [Benhamouda, Halevi, Krawczyk, Ma, Rabin 2023]

Additive complexity of super-invertible matrix / vector
multiplication

of grp ops for randomness extraction (amortized per grp elt output)

Naive: O(λn)

FFT: O(λ logn)

Horner’s rule: O(n logn) [better than FFT when n≪ λ]

Our observation — Pascal matrix: n/2 (and sometimes n/3)
[for λ = 256, should be much better than FFT for n up to at least n ≈ 1000]

