
Closing the Efficiency Gap between Synchronous and
Network-Agnostic Consensus

Giovanni Deligios Mose Mizrahi Erbes

ETH Zurich

Consensus (Byzantine Agreement)

Parties 𝑃1, 𝑃2, … , 𝑃𝑛 with ℓ-bit inputs.

Up to 𝑡 of the parties are byzantine.

Consistency
The parties agree on an output.

Validity
common input 𝒎 ⟹ output 𝒎

Intrusion Tolerance
The common output is either an honest input, or a special value ⊥.

1

Consensus (Byzantine Agreement)

Parties 𝑃1, 𝑃2, … , 𝑃𝑛 with ℓ-bit inputs.

Up to 𝑡 of the parties are byzantine.

Consistency
The parties agree on an output.

Validity
common input 𝒎 ⟹ output 𝒎

Intrusion Tolerance
The common output is either an honest input, or a special value ⊥.

1

Network-Agnostic Setting

Synchronous Setting: Messages arrive after Δ time, clocks
synchronized. Security possible with setup when 𝑡 < 𝑛

2
[8].

Asynchronous Setting: Messages arrive after arbitrary delays,
clocks not synchronized. Security requires 𝑡 < 𝑛

3
[15].

Network-Agnostic Setting (Blum, Katz, Loss [2])
Network synchronous (≤ 𝑡𝑠 corruptions), or asynchronous (≤ 𝑡𝑎 corruptions).
The parties don’t know if the network is synchronous or not.

Consensus when 𝑡𝑎 ≤ 𝑡𝑠 is possible iff 2𝑡𝑠 + 𝑡𝑎 < 𝑛 [2].

2

Network-Agnostic Setting

Synchronous Setting: Messages arrive after Δ time, clocks
synchronized. Security possible with setup when 𝑡 < 𝑛

2
[8].

Asynchronous Setting: Messages arrive after arbitrary delays,
clocks not synchronized. Security requires 𝑡 < 𝑛

3
[15].

Network-Agnostic Setting (Blum, Katz, Loss [2])
Network synchronous (≤ 𝑡𝑠 corruptions), or asynchronous (≤ 𝑡𝑎 corruptions).
The parties don’t know if the network is synchronous or not.

Consensus when 𝑡𝑎 ≤ 𝑡𝑠 is possible iff 2𝑡𝑠 + 𝑡𝑎 < 𝑛 [2].

2

Fallback Compilation

[2] Blum, Katz and Loss compile a synchronous consensus protocol SBA∗ and an
asynchronous consensus protocol ABA∗.

Beginning

End of SBA∗

Final Outputs

SBA∗
(Fixed Duration)

ABA∗

★ SBA∗ achieves validity against 𝑡𝑎
corruptions, even if the network is
asynchronous.

★ ABA∗ achieves validity against 𝑡𝑠
corruptions when the network is
synchronous.

3

Fallback Compilation

[2] Blum, Katz and Loss compile a synchronous consensus protocol SBA∗ and an
asynchronous consensus protocol ABA∗.

Beginning

End of SBA∗

Final Outputs

SBA∗
(Fixed Duration)

ABA∗

★ SBA∗ achieves validity against 𝑡𝑎
corruptions, even if the network is
asynchronous.

★ ABA∗ achieves validity against 𝑡𝑠
corruptions when the network is
synchronous.

3

Previous Works

2019: Blum, Katz and Loss introduced the setting. Their ABA∗ required unique
threshold signatures for a common coin [2].

• Round complexity: Ω(𝑛)

2021: Deligios, Hirt and Liu-Zhang designed a more round-efficient SBA∗ [7].

• Round complexity: 𝒪(𝜆) for the statistical error probability 2−𝜆.

2023: Bacho, Collins, Liu-Zhang and Loss designed a new ABA∗ which works with a
bulletin-PKI setup, supports ℓ-bit inputs, and has intrusion tolerance [1].

• Communication complexity: 𝒪(𝑛3𝜅 + ℓ𝑛3).

4

Previous Works

2019: Blum, Katz and Loss introduced the setting. Their ABA∗ required unique
threshold signatures for a common coin [2].

• Round complexity: Ω(𝑛)

2021: Deligios, Hirt and Liu-Zhang designed a more round-efficient SBA∗ [7].

• Round complexity: 𝒪(𝜆) for the statistical error probability 2−𝜆.

2023: Bacho, Collins, Liu-Zhang and Loss designed a new ABA∗ which works with a
bulletin-PKI setup, supports ℓ-bit inputs, and has intrusion tolerance [1].

• Communication complexity: 𝒪(𝑛3𝜅 + ℓ𝑛3).

4

Previous Works

2019: Blum, Katz and Loss introduced the setting. Their ABA∗ required unique
threshold signatures for a common coin [2].

• Round complexity: Ω(𝑛)

2021: Deligios, Hirt and Liu-Zhang designed a more round-efficient SBA∗ [7].

• Round complexity: 𝒪(𝜆) for the statistical error probability 2−𝜆.

2023: Bacho, Collins, Liu-Zhang and Loss designed a new ABA∗ which works with a
bulletin-PKI setup, supports ℓ-bit inputs, and has intrusion tolerance [1].

• Communication complexity: 𝒪(𝑛3𝜅 + ℓ𝑛3).

4

The Generic Approach

2022: Ghinea, Goyal and Liu-Zhang designed a 𝜆-round SBA with a statistical error
probability 𝜆−Ω(𝜆) when 2𝑡𝑠 ≤ (1 − 𝜀)𝑛 [12]. How do we get this for SBA∗?

SProp SWC

SGC1 SGC2 SBA

SBA∗

ABA AGC2 AGC1

AWC AProp

ABA∗

HBA

We can compile any fixed-duration SBA and any ABA.

Overhead: 13 or 16 rounds when the network is synchronous.

5

The Generic Approach

2022: Ghinea, Goyal and Liu-Zhang designed a 𝜆-round SBA with a statistical error
probability 𝜆−Ω(𝜆) when 2𝑡𝑠 ≤ (1 − 𝜀)𝑛 [12]. How do we get this for SBA∗?

SProp SWC

SGC1 SGC2 SBA

SBA∗

ABA AGC2 AGC1

AWC AProp

ABA∗

HBA

We can compile any fixed-duration SBA and any ABA.

Overhead: 13 or 16 rounds when the network is synchronous.
5

Example – Asynchronous 2-Graded Consensus

Assume 𝑡𝑎 ≤ 𝑡𝑠 and 2𝑡𝑠 + 𝑡𝑎 < 𝑛.

Asynchronous 2-Graded Consensus
Inputs: 𝑚𝑖 ∈ {0, 1}ℓ Outputs: (𝑦𝑖, 𝑔𝑖) ∈ ({0, 1}ℓ ∪ {⊥}) × {0, 1, 2}

• 𝒕𝒔-intrusion tolerance: If no party has an input 𝑚, then no party 𝑃𝑖 obtains 𝑦𝑖 = 𝑚.

• 𝟔-round 𝒕𝒔-validity with liveness: If the parties run forever with a common input 𝑚,
then they output (𝑚, 2), and do so within 6Δ time if the network is synchronous.

• 𝒕𝒂-consistency: For all 𝑃𝑖 and 𝑃𝑗, it holds that |𝑔𝑖 − 𝑔𝑗| ≤ 1 and 𝑔𝑖 ≥ 1 ⟹ 𝑦𝑖 = 𝑦𝑗.

• 𝒕𝒂-liveness: If the parties all acquire inputs and run forever, then they all output.

Complexity: 𝒪(𝑛2) messages, 𝒪(ℓ𝑛2) bits

6

Example – Asynchronous 2-Graded Consensus

Assume 𝑡𝑎 ≤ 𝑡𝑠 and 2𝑡𝑠 + 𝑡𝑎 < 𝑛.

Asynchronous 2-Graded Consensus
Inputs: 𝑚𝑖 ∈ {0, 1}ℓ Outputs: (𝑦𝑖, 𝑔𝑖) ∈ ({0, 1}ℓ ∪ {⊥}) × {0, 1, 2}

• 𝒕𝒔-intrusion tolerance: If no party has an input 𝑚, then no party 𝑃𝑖 obtains 𝑦𝑖 = 𝑚.

• 𝟔-round 𝒕𝒔-validity with liveness: If the parties run forever with a common input 𝑚,
then they output (𝑚, 2), and do so within 6Δ time if the network is synchronous.

• 𝒕𝒂-consistency: For all 𝑃𝑖 and 𝑃𝑗, it holds that |𝑔𝑖 − 𝑔𝑗| ≤ 1 and 𝑔𝑖 ≥ 1 ⟹ 𝑦𝑖 = 𝑦𝑗.

• 𝒕𝒂-liveness: If the parties all acquire inputs and run forever, then they all output.

Complexity: 𝒪(𝑛2) messages, 𝒪(ℓ𝑛2) bits

6

Example – Asynchronous 2-Graded Consensus

Assume 𝑡𝑎 ≤ 𝑡𝑠 and 2𝑡𝑠 + 𝑡𝑎 < 𝑛.

Asynchronous 2-Graded Consensus
Inputs: 𝑚𝑖 ∈ {0, 1}ℓ Outputs: (𝑦𝑖, 𝑔𝑖) ∈ ({0, 1}ℓ ∪ {⊥}) × {0, 1, 2}

• 𝒕𝒔-intrusion tolerance: If no party has an input 𝑚, then no party 𝑃𝑖 obtains 𝑦𝑖 = 𝑚.

• 𝟔-round 𝒕𝒔-validity with liveness: If the parties run forever with a common input 𝑚,
then they output (𝑚, 2), and do so within 6Δ time if the network is synchronous.

• 𝒕𝒂-consistency: For all 𝑃𝑖 and 𝑃𝑗, it holds that |𝑔𝑖 − 𝑔𝑗| ≤ 1 and 𝑔𝑖 ≥ 1 ⟹ 𝑦𝑖 = 𝑦𝑗.

• 𝒕𝒂-liveness: If the parties all acquire inputs and run forever, then they all output.

Complexity: 𝒪(𝑛2) messages, 𝒪(ℓ𝑛2) bits

6

Asynchronous Consensus – Termination

Old Way [2, 7, 1]
Sign your ABA∗ output and multicast it.

A (𝑡𝑠 + 1)-certificate on 𝑦 proves 𝑦 is
the correct output. Upon having one,
multicast it, output 𝑦 and terminate.

Termination against 𝑡𝑠 corruptions.

New Way – Bracha’s Broadcast Style [3]
Multicast your ABA∗ output, unsigned.

Upon receiving 𝑦 from 𝑡𝑠 + 1 parties, multicast 𝑦.

Upon receiving 𝑦 from 𝑛 − 𝑡𝑠 parties, output 𝑦
and terminate.

Termination against 𝑡𝑎 corruptions.

Problem: We need termination against 𝑡𝑠 corruptions in synchronous networks.

Solution: In synchrony, everyone outputs by some time 𝑇. Don’t terminate earlier.

Bonus Efficiency: Don’t send ABA messages before the time 𝑇 + Δ.

7

Asynchronous Consensus – Termination

Old Way [2, 7, 1]
Sign your ABA∗ output and multicast it.

A (𝑡𝑠 + 1)-certificate on 𝑦 proves 𝑦 is
the correct output. Upon having one,
multicast it, output 𝑦 and terminate.

Termination against 𝑡𝑠 corruptions.

New Way – Bracha’s Broadcast Style [3]
Multicast your ABA∗ output, unsigned.

Upon receiving 𝑦 from 𝑡𝑠 + 1 parties, multicast 𝑦.

Upon receiving 𝑦 from 𝑛 − 𝑡𝑠 parties, output 𝑦
and terminate.

Termination against 𝑡𝑎 corruptions.

Problem: We need termination against 𝑡𝑠 corruptions in synchronous networks.

Solution: In synchrony, everyone outputs by some time 𝑇. Don’t terminate earlier.

Bonus Efficiency: Don’t send ABA messages before the time 𝑇 + Δ.

7

Asynchronous Consensus – Termination

Old Way [2, 7, 1]
Sign your ABA∗ output and multicast it.

A (𝑡𝑠 + 1)-certificate on 𝑦 proves 𝑦 is
the correct output. Upon having one,
multicast it, output 𝑦 and terminate.

Termination against 𝑡𝑠 corruptions.

New Way – Bracha’s Broadcast Style [3]
Multicast your ABA∗ output, unsigned.

Upon receiving 𝑦 from 𝑡𝑠 + 1 parties, multicast 𝑦.

Upon receiving 𝑦 from 𝑛 − 𝑡𝑠 parties, output 𝑦
and terminate.

Termination against 𝑡𝑎 corruptions.

Problem: We need termination against 𝑡𝑠 corruptions in synchronous networks.

Solution: In synchrony, everyone outputs by some time 𝑇. Don’t terminate earlier.

Bonus Efficiency: Don’t send ABA messages before the time 𝑇 + Δ.

7

Complexity Summary

Adapting techniques by Momose and Ren [13] and using their SBA to obtain SBA∗,
we achieve (with no CCABA in synchrony):

Resilience Setup Communication Complexity
2𝑡𝑠 + 𝑡𝑎 < 𝑛 Bulletin-PKI 𝒪(CCABA + 𝑛3𝜅 + ℓ𝑛2)
2𝑡𝑠 + 𝑡𝑎 < 𝑛 Threshold Signatures 𝒪(CCABA + 𝑛2𝜅 + ℓ𝑛2)
2𝑡𝑠 + 𝑡𝑎 < 𝑛,

2𝑡𝑠 ≤ (1 − 𝜀)𝑛
Bulletin-PKI 𝒪(CCABA + 𝑛2𝜅 + ℓ𝑛2)

Unique threshold signatures: CCABA = 𝒪(𝑛2𝜅) [4].

Bulletin-PKI and CRS, or no setup but static security: CCABA = 𝒪(𝑛3𝜅) [11, 6].

Adaptive security without setup: CCABA = 𝒪(𝑛3𝜅log𝑛) [10].

8

Complexity Summary

Adapting techniques by Momose and Ren [13] and using their SBA to obtain SBA∗,
we achieve (with no CCABA in synchrony):

Resilience Setup Communication Complexity
2𝑡𝑠 + 𝑡𝑎 < 𝑛 Bulletin-PKI 𝒪(CCABA + 𝑛3𝜅 + ℓ𝑛2)
2𝑡𝑠 + 𝑡𝑎 < 𝑛 Threshold Signatures 𝒪(CCABA + 𝑛2𝜅 + ℓ𝑛2)
2𝑡𝑠 + 𝑡𝑎 < 𝑛,

2𝑡𝑠 ≤ (1 − 𝜀)𝑛
Bulletin-PKI 𝒪(CCABA + 𝑛2𝜅 + ℓ𝑛2)

Unique threshold signatures: CCABA = 𝒪(𝑛2𝜅) [4].

Bulletin-PKI and CRS, or no setup but static security: CCABA = 𝒪(𝑛3𝜅) [11, 6].

Adaptive security without setup: CCABA = 𝒪(𝑛3𝜅log𝑛) [10].

8

Complexity Summary – Extended

We can reduce the 𝒪(ℓ𝑛2) term to 𝒪(ℓ𝑛) with extension protocols.

Thanks to intrusion tolerance, a few rounds suffice after consensus on 𝜅-bit inputs.
No need for 2 consensus instances as in [14] by Nayak, Ren, Shi, Vaidya and Xiang.

Resilience Setup Complexity Overhead
2𝑡𝑠 + 𝑡𝑎 < 𝑛 Trusted 𝒪(𝑛2𝜅 + ℓ𝑛)
2𝑡𝑠 + 𝑡𝑎 < 𝑛 None 𝒪(𝑛2𝜅log𝑛 + ℓ𝑛)

2𝑡𝑠 + 𝑡𝑎 ≤ (1 − 𝛿)𝑛 None 𝒪(𝑛2𝜅 + ℓ𝑛)

When 2𝑡𝑠 + 𝑡𝑎 ≤ (1 − 𝛿)𝑛 and the network is synchronous, bulletin-PKI suffices for
the complexity 𝒪(𝑛2𝜅 + ℓ𝑛) thanks to (𝑡𝑠, 𝛿𝑛)-intrusion tolerance.

With trusted setup, one can let CCSBA = CCABA = 𝒪(𝑛2𝜅) to achieve
network-agnostic consensus with 𝒪(𝑛2𝜅 + ℓ𝑛) bits of communication.

9

Complexity Summary – Extended

We can reduce the 𝒪(ℓ𝑛2) term to 𝒪(ℓ𝑛) with extension protocols.

Thanks to intrusion tolerance, a few rounds suffice after consensus on 𝜅-bit inputs.
No need for 2 consensus instances as in [14] by Nayak, Ren, Shi, Vaidya and Xiang.

Resilience Setup Complexity Overhead
2𝑡𝑠 + 𝑡𝑎 < 𝑛 Trusted 𝒪(𝑛2𝜅 + ℓ𝑛)
2𝑡𝑠 + 𝑡𝑎 < 𝑛 None 𝒪(𝑛2𝜅log𝑛 + ℓ𝑛)

2𝑡𝑠 + 𝑡𝑎 ≤ (1 − 𝛿)𝑛 None 𝒪(𝑛2𝜅 + ℓ𝑛)

When 2𝑡𝑠 + 𝑡𝑎 ≤ (1 − 𝛿)𝑛 and the network is synchronous, bulletin-PKI suffices for
the complexity 𝒪(𝑛2𝜅 + ℓ𝑛) thanks to (𝑡𝑠, 𝛿𝑛)-intrusion tolerance.

With trusted setup, one can let CCSBA = CCABA = 𝒪(𝑛2𝜅) to achieve
network-agnostic consensus with 𝒪(𝑛2𝜅 + ℓ𝑛) bits of communication.

9

References i

[1] Bacho, R., Collins, D., Liu-Zhang, C.D., Loss, J.: Network-agnostic security comes (almost) for free in DKG and
MPC. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology – CRYPTO 2023, Part I. Lecture Notes in
Computer Science, vol. 14081, pp. 71–106. Springer, Heidelberg (Aug 2023).
https://doi.org/10.1007/978-3-031-38557-5_3

[2] Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous fallback guarantees. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019: 17th Theory of Cryptography Conference, Part I. Lecture Notes in
Computer Science, vol. 11891, pp. 131–150. Springer, Heidelberg (Dec 2019).
https://doi.org/10.1007/978-3-030-36030-6_6

[3] Bracha, G.: Asynchronous byzantine agreement protocols. Information and Computation 75(2), 130–143
(1987). https://doi.org/https://doi.org/10.1016/0890-5401(87)90054-X

[4] Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asynchronous byzantine
agreement using cryptography. Journal of Cryptology 18(3), 219–246 (Jul 2005).
https://doi.org/10.1007/s00145-005-0318-0

10

References ii

[5] Clipart Library: Daily envelopes cliparts #3025804: bird with letter clipart,
https://clipart-library.com/clipart/n967385.htm

[6] Das, S., Duan, S., Liu, S., Momose, A., Ren, L., Shoup, V.: Asynchronous consensus without trusted setup or
public-key cryptography. Cryptology ePrint Archive, Paper 2024/677 (2024),
https://eprint.iacr.org/2024/677

[7] Deligios, G., Hirt, M., Liu Zhang, C.: Round-efficient byzantine agreement and multi-party computation with
asynchronous fallback. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography — TCC 2021. LNCS, vol. 13042,
pp. 623–653. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_21

[8] Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM Journal on Computing 12(4),
656–666 (1983). https://doi.org/10.1137/0212045

[9] Flaticon: devil free icon, https://www.flaticon.com/free-icon/devil_725040

11

https://clipart-library.com/clipart/n967385.htm
https://eprint.iacr.org/2024/677
https://www.flaticon.com/free-icon/devil_725040

References iii

[10] Freitas, L., Kuznetsov, P., Tonkikh, A.: Distributed Randomness from Approximate Agreement. In: Scheideler,
C. (ed.) 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 246, pp. 24:1–24:21. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.DISC.2022.24

[11] Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Efficient asynchronous byzantine agreement without private
setups. In: 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). pp. 246–257
(2022). https://doi.org/10.1109/ICDCS54860.2022.00032

[12] Ghinea, D., Goyal, V., Liu-Zhang, C.D.: Round-optimal byzantine agreement. In: Dunkelman, O., Dziembowski,
S. (eds.) Advances in Cryptology – EUROCRYPT 2022, Part I. Lecture Notes in Computer Science, vol. 13275, pp.
96–119. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-06944-4_4

[13] Momose, A., Ren, L.: Optimal communication complexity of authenticated byzantine agreement. In: Gilbert,
S. (ed.) 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 209, pp. 32:1–32:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.DISC.2021.32

12

References iv

[14] Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols for byzantine broadcast and
agreement. In: Attiya, H. (ed.) 34th International Symposium on Distributed Computing (DISC 2020). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 179, pp. 28:1–28:17. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.DISC.2020.28

[15] Toueg, S.: Randomized byzantine agreements. In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.) 3rd ACM
Symposium Annual on Principles of Distributed Computing. pp. 163–178. Association for Computing
Machinery (Aug 1984). https://doi.org/10.1145/800222.806744

13

