
Closing the Efficiency Gap between Synchronous and
Network-Agnostic Consensus

Giovanni Deligios Mose Mizrahi Erbes

ETH Zurich



Consensus (Byzantine Agreement)

Parties 𝑃1, 𝑃2, … , 𝑃𝑛 with ℓ-bit inputs.

Up to 𝑡 of the parties are byzantine.

Consistency
The parties agree on an output.

Validity
common input 𝒎 ⟹ output 𝒎

Intrusion Tolerance
The common output is either an honest input, or a special value ⊥.
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Network-Agnostic Setting

Synchronous Setting: Messages arrive after Δ time, clocks
synchronized. Security possible with setup when 𝑡 < 𝑛

2
[8].

Asynchronous Setting: Messages arrive after arbitrary delays,
clocks not synchronized. Security requires 𝑡 < 𝑛

3
[15].

Network-Agnostic Setting (Blum, Katz, Loss [2])
Network synchronous (≤ 𝑡𝑠 corruptions), or asynchronous (≤ 𝑡𝑎 corruptions).
The parties don’t know if the network is synchronous or not.

Consensus when 𝑡𝑎 ≤ 𝑡𝑠 is possible iff 2𝑡𝑠 + 𝑡𝑎 < 𝑛 [2].
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Fallback Compilation

[2] Blum, Katz and Loss compile a synchronous consensus protocol SBA∗ and an
asynchronous consensus protocol ABA∗.

Beginning

End of SBA∗

Final Outputs

SBA∗
(Fixed Duration)

ABA∗

★ SBA∗ achieves validity against 𝑡𝑎
corruptions, even if the network is
asynchronous.

★ ABA∗ achieves validity against 𝑡𝑠
corruptions when the network is
synchronous.
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Previous Works

2019: Blum, Katz and Loss introduced the setting. Their ABA∗ required unique
threshold signatures for a common coin [2].

• Round complexity: Ω(𝑛)

2021: Deligios, Hirt and Liu-Zhang designed a more round-efficient SBA∗ [7].

• Round complexity: 𝒪(𝜆) for the statistical error probability 2−𝜆.

2023: Bacho, Collins, Liu-Zhang and Loss designed a new ABA∗ which works with a
bulletin-PKI setup, supports ℓ-bit inputs, and has intrusion tolerance [1].

• Communication complexity: 𝒪(𝑛3𝜅 + ℓ𝑛3).
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The Generic Approach

2022: Ghinea, Goyal and Liu-Zhang designed a 𝜆-round SBA with a statistical error
probability 𝜆−Ω(𝜆) when 2𝑡𝑠 ≤ (1 − 𝜀)𝑛 [12]. How do we get this for SBA∗?

SProp SWC

SGC1 SGC2 SBA

SBA∗

ABA AGC2 AGC1

AWC AProp

ABA∗

HBA

We can compile any fixed-duration SBA and any ABA.

Overhead: 13 or 16 rounds when the network is synchronous.
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Example – Asynchronous 2-Graded Consensus

Assume 𝑡𝑎 ≤ 𝑡𝑠 and 2𝑡𝑠 + 𝑡𝑎 < 𝑛.

Asynchronous 2-Graded Consensus
Inputs: 𝑚𝑖 ∈ {0, 1}ℓ Outputs: (𝑦𝑖, 𝑔𝑖) ∈ ({0, 1}ℓ ∪ {⊥}) × {0, 1, 2}

• 𝒕𝒔-intrusion tolerance: If no party has an input 𝑚, then no party 𝑃𝑖 obtains 𝑦𝑖 = 𝑚.

• 𝟔-round 𝒕𝒔-validity with liveness: If the parties run forever with a common input 𝑚,
then they output (𝑚, 2), and do so within 6Δ time if the network is synchronous.

• 𝒕𝒂-consistency: For all 𝑃𝑖 and 𝑃𝑗, it holds that |𝑔𝑖 − 𝑔𝑗| ≤ 1 and 𝑔𝑖 ≥ 1 ⟹ 𝑦𝑖 = 𝑦𝑗.

• 𝒕𝒂-liveness: If the parties all acquire inputs and run forever, then they all output.

Complexity: 𝒪(𝑛2) messages, 𝒪(ℓ𝑛2) bits
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Asynchronous Consensus – Termination

Old Way [2, 7, 1]
Sign your ABA∗ output and multicast it.

A (𝑡𝑠 + 1)-certificate on 𝑦 proves 𝑦 is
the correct output. Upon having one,
multicast it, output 𝑦 and terminate.

Termination against 𝑡𝑠 corruptions.

New Way – Bracha’s Broadcast Style [3]
Multicast your ABA∗ output, unsigned.

Upon receiving 𝑦 from 𝑡𝑠 + 1 parties, multicast 𝑦.

Upon receiving 𝑦 from 𝑛 − 𝑡𝑠 parties, output 𝑦
and terminate.

Termination against 𝑡𝑎 corruptions.

Problem: We need termination against 𝑡𝑠 corruptions in synchronous networks.

Solution: In synchrony, everyone outputs by some time 𝑇. Don’t terminate earlier.

Bonus Efficiency: Don’t send ABA messages before the time 𝑇 + Δ.
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Complexity Summary

Adapting techniques by Momose and Ren [13] and using their SBA to obtain SBA∗,
we achieve (with no CCABA in synchrony):

Resilience Setup Communication Complexity
2𝑡𝑠 + 𝑡𝑎 < 𝑛 Bulletin-PKI 𝒪(CCABA + 𝑛3𝜅 + ℓ𝑛2)
2𝑡𝑠 + 𝑡𝑎 < 𝑛 Threshold Signatures 𝒪(CCABA + 𝑛2𝜅 + ℓ𝑛2)
2𝑡𝑠 + 𝑡𝑎 < 𝑛,

2𝑡𝑠 ≤ (1 − 𝜀)𝑛
Bulletin-PKI 𝒪(CCABA + 𝑛2𝜅 + ℓ𝑛2)

Unique threshold signatures: CCABA = 𝒪(𝑛2𝜅) [4].

Bulletin-PKI and CRS, or no setup but static security: CCABA = 𝒪(𝑛3𝜅) [11, 6].

Adaptive security without setup: CCABA = 𝒪(𝑛3𝜅log𝑛) [10].
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Complexity Summary – Extended

We can reduce the 𝒪(ℓ𝑛2) term to 𝒪(ℓ𝑛) with extension protocols.

Thanks to intrusion tolerance, a few rounds suffice after consensus on 𝜅-bit inputs.
No need for 2 consensus instances as in [14] by Nayak, Ren, Shi, Vaidya and Xiang.

Resilience Setup Complexity Overhead
2𝑡𝑠 + 𝑡𝑎 < 𝑛 Trusted 𝒪(𝑛2𝜅 + ℓ𝑛)
2𝑡𝑠 + 𝑡𝑎 < 𝑛 None 𝒪(𝑛2𝜅log𝑛 + ℓ𝑛)

2𝑡𝑠 + 𝑡𝑎 ≤ (1 − 𝛿)𝑛 None 𝒪(𝑛2𝜅 + ℓ𝑛)

When 2𝑡𝑠 + 𝑡𝑎 ≤ (1 − 𝛿)𝑛 and the network is synchronous, bulletin-PKI suffices for
the complexity 𝒪(𝑛2𝜅 + ℓ𝑛) thanks to (𝑡𝑠, 𝛿𝑛)-intrusion tolerance.

With trusted setup, one can let CCSBA = CCABA = 𝒪(𝑛2𝜅) to achieve
network-agnostic consensus with 𝒪(𝑛2𝜅 + ℓ𝑛) bits of communication.
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