Closing the Efficiency Gap between Synchronous and
Network-Agnostic Consensus

Giovanni Deligios Mose Mizrahi Erbes

ETH Zurich

Consensus (Byzantine Agreement)

Parties P,, P,, ..., P, with £-bit inputs.

Up to t of the parties are byzantine.

Consistency Validity
The parties agree on an output. common input m => outputm

Consensus (Byzantine Agreement)

Parties P,, P,, ..., P, with £-bit inputs.

Up to t of the parties are byzantine.

Consistency Validity
The parties agree on an output. common input m => outputm

Intrusion Tolerance
The common output is either an honest input, or a special value L.

Network-Agnostic Setting

Synchronous Setting: Messages arrive after A time, clocks
synchronized. Security possible with setup when t < % [8].

5]
\~

Asynchronous Setting: Messages arrive after arbitrary delays,
clocks not synchronized. Security requires t < g [15].

Network-Agnostic Setting

Synchronous Setting: Messages arrive after A time, clocks
synchronized. Security possible with setup when t < g [8].

Asynchronous Setting: Messages arrive after arbitrary delays,
clocks not synchronized. Security requires t < g [15].

Network-Agnostic Setting (Blum, Katz, Loss [2])

Network synchronous (< ¢, corruptions), or asynchronous (< ¢, corruptions).
The parties don’t know if the network is synchronous or not.

Consensus when t, < t, is possible iff 2¢, +t, < n [2].

Fallback Compilation

[2] Blum, Katz and Loss compile a synchronous consensus protocol SBA* and an
asynchronous consensus protocol ABA*.

(Beginning)

SBA*

(Fixed Duration)

Y

(End of SBA*)

ABA*

Y

(Final Outputs)

Fallback Compilation

[2] Blum, Katz and Loss compile a synchronous consensus protocol SBA* and an
asynchronous consensus protocol ABA*.

(Beginning)

* SBA* achieves validity against ¢,
SBA* . . .
(Fixed Duration) corruptions, even if the network is

Y asynchronous.

(End of SBA*)
* ABA* achieves validity against ¢,

ABA* corruptions when the network is
A synchronous.

(Final Outputs)

Previous Works

2019: Blum, Katz and Loss introduced the setting. Their ABA* required unique
threshold signatures for a common coin [2].

- Round complexity: Q(n)

Previous Works

2019: Blum, Katz and Loss introduced the setting. Their ABA* required unique
threshold signatures for a common coin [2].

- Round complexity: Q(n)
2021: Deligios, Hirt and Liu-Zhang designed a more round-efficient SBA* [7].

- Round complexity: O()) for the statistical error probability 2.

Previous Works

2019: Blum, Katz and Loss introduced the setting. Their ABA* required unique
threshold signatures for a common coin [2].

- Round complexity: Q(n)
2021: Deligios, Hirt and Liu-Zhang designed a more round-efficient SBA* [7].
- Round complexity: O()) for the statistical error probability 2.

2023: Bacho, Collins, Liu-Zhang and Loss designed a new ABA* which works with a
bulletin-PKI setup, supports £-bit inputs, and has intrusion tolerance [1].

- Communication complexity: O(n3k + ¢n®).

The Generic Approach

2022: Ghinea, Goyal and Liu-Zhang designed a A-round SBA with a statistical error
probability A?*) when 2t < (1 — ¢)n [12]. How do we get this for SBA*?

The Generic Approach

2022: Ghinea, Goyal and Liu-Zhang designed a A-round SBA with a statistical error
probability A?*) when 2t < (1 — ¢)n [12]. How do we get this for SBA*?

e
v v
SGC? acc? < acc!)

We can compile any fixed-duration SBA and any ABA.

Overhead: 13 or 16 rounds when the network is synchronous.

Example - Asynchronous 2-Graded Consensus

Assumet, <t ,and 2t,+t, <n.
Asynchronous 2-Graded Consensus
Inputs: m; € {0,1}* Outputs: (y;,9;) € ({0,1}* U {L}) x {0,1,2}
- t_-intrusion tolerance: If no party has an input m, then no party P, obtains y; = m.

+ 6-round t_-validity with liveness: If the parties run forever with a common input m,
then they output (m,2), and do so within 6A time if the network is synchronous.

Example - Asynchronous 2-Graded Consensus

Assumet, <t ,and 2t,+t, <n.
Asynchronous 2-Graded Consensus
Inputs: m; € {0,1}* Outputs: (y;,9;) € ({0,1}* U {L}) x {0,1,2}
- t_-intrusion tolerance: If no party has an input m, then no party P, obtains y; = m.

+ 6-round t_-validity with liveness: If the parties run forever with a common input m,
then they output (m,2), and do so within 6A time if the network is synchronous.

* t,-consistency: For all P, and P, it holds that |g; —g;| <land g; > 1 = y; =y,

- t,-liveness: If the parties all acquire inputs and run forever, then they all output.

Example - Asynchronous 2-Graded Consensus

Assumet, <t ,and 2t,+t, <n.
Asynchronous 2-Graded Consensus
Inputs: m; € {0,1}* Outputs: (y;,9;) € ({0,1}* U {L}) x {0,1,2}
- t_-intrusion tolerance: If no party has an input m, then no party P, obtains y; = m.

+ 6-round t_-validity with liveness: If the parties run forever with a common input m,
then they output (m,2), and do so within 6A time if the network is synchronous.

* t,-consistency: For all P, and P, it holds that |g; —g;| <land g; > 1 = y; =y,

- t,-liveness: If the parties all acquire inputs and run forever, then they all output.

Complexity: @(n?) messages, O(¢n?) bits

Asynchronous Consensus - Termination

Oold Way [2,7,1]
Sign your ABA* output and multicast it.

A (t, + 1)-certificate on y proves y is
the correct output. Upon having one,
multicast it, output y and terminate.

Termination against ¢, corruptions.

Asynchronous Consensus - Termination

old way [2,7, 1] New Way - Bracha’s Broadcast Style [3]
Sign your ABA* output and multicast it. Multicast your ABA* output, unsigned.

A (t, + 1)-certificate on y proves y is Upon receiving y from ¢, + 1 parties, multicast y.
thecorrect output, Upanifiaving one, Upon receiving y from n — ¢, parties, output y

multicast it, output y and terminate. and terminate.

Termination against , corruptions. Termination against ¢, corruptions.

Problem: We need termination against ¢, corruptions in synchronous networks.

Asynchronous Consensus - Termination

old way [2,7, 1] New Way - Bracha’s Broadcast Style [3]
Sign your ABA* output and multicast it. Multicast your ABA* output, unsigned.

A (t, + 1)-certificate on y proves y is Upon receiving y from ¢, + 1 parties, multicast y.
thecorrect output, Upanifiaving one, Upon receiving y from n — ¢, parties, output y

multicast it, output y and terminate. and terminate.

Termination against , corruptions. Termination against ¢, corruptions.

Problem: We need termination against ¢, corruptions in synchronous networks.
Solution: In synchrony, everyone outputs by some time 7. Don’t terminate earlier.

Bonus Efficiency: Don’t send ABA messages before the time T + A.

Complexity Summary

Adapting techniques by Momose and Ren [13] and using their SBA to obtain SBA*,

we achieve (with no CCyg, in synchrony):

Resilience Setup Communication Complexity
Bulletin-PKI O(CCppp + 3k + £n?)

2t,+t,<n
2t, +t, <n | Threshold Signatures O(CCpgp + N2k + £n?)
2t +1t .

sTla<m, Bulletin-PKI O(CCppp + 1k + £n?)

26, < (1—¢e)n

Complexity Summary

Adapting techniques by Momose and Ren [13] and using their SBA to obtain SBA*,
we achieve (with no CCyg, in synchrony):

Resilience Setup Communication Complexity
2t, +t, <n Bulletin-PKI O(CCppp + 3k + £n?)
2t, +t, <n | Threshold Signatures O(CCpgp + N2k + £n?)
2t,+t, <n .
st e Bulletin-PKI O(CCpga + 0’k + £n®
2%, < (1—e)n (CCrga + 1"k + £n”)

Unique threshold signatures: CCppy = O(n’k) [4].
Bulletin-PKI and CRS, or no setup but static security: CCygp = O(n3k) [11, 6].
Adaptive security without setup: CCpgy = O(n®klogn) [10].

Complexity Summary - Extended

We can reduce the O(¢n?) term to @(¢n) with extension protocols.

Thanks to intrusion tolerance, a few rounds suffice after consensus on &-bit inputs.
No need for 2 consensus instances as in [14] by Nayak, Ren, Shi, Vaidya and Xiang.

Resilience Setup | Complexity Overhead
2, +t, <n Trusted O(n®k + £n)
2, +t, <m None O(n’klogn + £n)
2t,+t,<(1—8&n | None O(n’k + fn)

Complexity Summary - Extended

We can reduce the O(¢n?) term to @(¢n) with extension protocols.

Thanks to intrusion tolerance, a few rounds suffice after consensus on &-bit inputs.
No need for 2 consensus instances as in [14] by Nayak, Ren, Shi, Vaidya and Xiang.

Resilience Setup | Complexity Overhead
2, +t, <n Trusted O(n®k + £n)
2, +t, <m None O(n’klogn + £n)
2t,+t,<(1—8&n | None O(n’k + fn)

When 2¢, +t, < (1 — §)n and the network is synchronous, bulletin-PKI suffices for
the complexity O(n?k + £n) thanks to (t,,dn)-intrusion tolerance.

With trusted setup, one can let CCsgy = CCppp = O(n?k) to achieve
network-agnostic consensus with @(n%k + £n) bits of communication.

References i

(]

[2]

(4]

Bacho, R, Collins, D., Liu-Zhang, C.D., Loss, J.: Network-agnostic security comes (almost) for free in DKG and
MPC. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023, Part I. Lecture Notes in
Computer Science, vol. 14081, pp. 71-106. Springer, Heidelberg (Aug 2023).
https://doi.org/10.1007/978-3-031-38557-5_3

Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous fallback guarantees. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019: 17th Theory of Cryptography Conference, Part I. Lecture Notes in
Computer Science, vol. 11891, pp. 131-150. Springer, Heidelberg (Dec 2019).
https://doi.org/10.1007/978-3-030-36030-6_6

Bracha, G.: Asynchronous byzantine agreement protocols. Information and Computation 75(2), 130-143
(1987). https://doi.org/https://doi.org/101016/0890-5401(87)90054-X

Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asynchronous byzantine
agreement using cryptography. Journal of Cryptology 18(3), 219-246 (Jul 2005).
https://doi.org/10.1007/s00145-005-0318-0

10

References ii

[s]

(6]

[7]

(8]

[9]

Clipart Library: Daily envelopes cliparts #3025804: bird with letter clipart,
https://clipart-library.com/clipart/n967385.htm

Das, S., Duan, S,, Liu, S., Momose, A., Ren, L., Shoup, V.: Asynchronous consensus without trusted setup or
public-key cryptography. Cryptology ePrint Archive, Paper 2024/677 (2024),
https://eprint.iacr.org/2024/677

Deligios, G., Hirt, M., Liu Zhang, C.: Round-efficient byzantine agreement and multi-party computation with
asynchronous fallback. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography — TCC 2021. LNCS, vol. 13042,
pp. 623-653. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_21

Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM Journal on Computing 12(4),
656-666 (1983). https://doi.org/101137/0212045

Flaticon: devil free icon, https://www.flaticon.com/free-icon/devil_725040

1

https://clipart-library.com/clipart/n967385.htm
https://eprint.iacr.org/2024/677
https://www.flaticon.com/free-icon/devil_725040

References iii

[10] Freitas, L., Kuznetsov, P, Tonkikh, A.: Distributed Randomness from Approximate Agreement. In: Scheideler,
C. (ed.) 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 246, pp. 24:1-24:21. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.DISC.2022.24

[11] Gao,V, Lu,Y, Lu, Z, Tang, Q. Xu, J., Zhang, Z.: Efficient asynchronous byzantine agreement without private
setups. In: 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). pp. 246-257
(2022). https://doi.org/101109/1CDCS54860.2022.00032

[12] Ghinea, D, Goyal, V., Liu-Zhang, C.D.: Round-optimal byzantine agreement. In: Dunkelman, 0., Dziembowski,
S. (eds.) Advances in Cryptology - EUROCRYPT 2022, Part I. Lecture Notes in Computer Science, vol. 13275, pp.
96-119. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-06944-4_4

[13] Momose, A, Ren, L.: Optimal communication complexity of authenticated byzantine agreement. In: Gilbert,
S. (ed.) 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 209, pp. 32:1-32:16. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.DISC.2021.32

12

References iv

[14]

(5]

Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols for byzantine broadcast and
agreement. In: Attiya, H. (ed.) 34th International Symposium on Distributed Computing (DISC 2020). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 179, pp. 28:1-28:17. Schloss Dagstuhl-Leibniz-Zentrum
fiir Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.DISC.2020.28

Toueg, S.: Randomized byzantine agreements. In: Probert, R.L., Lynch, N.A,, Santoro, N. (eds.) 3rd ACM
Symposium Annual on Principles of Distributed Computing. pp. 163-178. Association for Computing
Machinery (Aug 1984). https://doi.org/10.1145/800222.806744

13

