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Summary

® Target scheme: r-round key alternating cipher (KAC) where r is any
e Construct a block cipher,
 [terate a permutation and an XOR with a subkey,
 Have r permutation calls and r+1 subkey XOR operations.

® Existing works for KAC:
* Tight single—user security for KAC with a single random permutation.

* Tight multi—user security for KAC with r random permutations and r+1 independent
subkeys.

® We prove the tight multi—user security of the (tweakable) KAC
* With a single permutation,
e With r—wise independent subkeys (the number of independent values is r).



Key Alternating Cipher (KAC) Plaintext

n-bits M (n bits)
® r—round KAC subkeys K,—®
* n—bit block cipher, m,
* with r n—bit permutations n,, ..., 7, Ki—®
* with r + 1 n—bit subkeys K, ..., K.. 7]
K2—69

® The single—round KAC is known as the Even—Mansour (EM) cipher,
and the r—round KAC is referred to as the r—round iterated EM cipher.

® KAC describes the computational structure of block ciphers commonly Kii ™9

used in the real world, such as AES and many other block ciphers. < —GT;r
® The provable security of KAC is their theoretical foundation. r c (n bits)
® Proving a tight security of KAC has been an important challenge in Ciphertext

symmetric key cryptography research.



Research Topics for KAC

1.

Proving the tight bound.
e Attack bound: rn/(r+1) bits (the attack complexity is 2m/1),
.e., r=3: 3n/4; r=: 4n/5; ...

Proving the security of any—round KAGC, i.e., r is any.

Reducing the number of independent permutations
(ideally, a single permutation, i.e., T, = .. = 1,).

Reducing the number of independent subkeys.

Proving the multi—user (mu) security.

Subkeys M
Ko —69

Kl —69
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K,—®
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Strong Pseudo—Random Permutation (SPRP) Security

® The security of KAC was initially evaluated in the single—user (su) setting.

® Su-SPRP security (right figure):

* Indistinguishability between
a single instantiation of KAC and
a random permutation I1.

Real world Ideal world

 An adversary has access to KAC and I1 -

by construction queries.

 An adversary has access to
the underlying random permutations m,,..., 7,
by primitive queries Adversary
(KAC with a single permutation: T, = ... = w).




Existing Works for Su—SPRP Security of KAC

® Since Even—Mansour’'s work, several works proved the tight su—security bounds of KACs.

Reference Round w/ Identical Independent Multi-User Tweakable
Tight Bound Permutation Subkeys! Security KAC

Even-Mansour |12| 1 N/A All
Bogdanov ot al. [3] 2 — All — —
Steinberger [24] 3 — All — — - Increasing the number of roundsr.
Lampe et al. [16]  Asymptotic — All — —
Chen-Steinberger [5] Any — All — — )
Chen ct al. [4] 2 v 1 — — | Reducing the number of independent
Wu et al. [27] 3 v All — — = permutations,
Yu et al. [28] Any v All — — . . . . . .
= i.e., considering KAC with a single permutation.
Cogliati et al. [7] 2 2 v
Cogliati et al. [7] Asymptotic r v Reduci h b find d bk
Cogliati-Seurin [3] 4 9 Y educing the number of Independent subkeys.
Dutta [11] 4 1 2 v




Multi-User (Mu) SPRP Security of KAC

® Compared with the works for the su security, there are not so many results for the mu
security of KAC.

® In the mu setting, an adversary wins by breaking any of the keys, which better represents
the real—world attacks targeting a particular service rather than a particular user.

® The mu security considers u KAC's instantiations where the user's keys are independent.

® Mu—-SPRP security: U KACs
Indistinguishability between Real world { * \ Ideal world
* u instantiations of KAC and KO@LE’Q KO«LEQ
* u random permutations I1,...,I1,. KngE KE@E U random permutations

® The mu adversary can obtain more

information than the su adversary.

® The mu security proof is more
complex than the su—security proof.




Existing Works for Mu Security of KAGC

® There are two WorkS Reference Round w/ [dentical  Independent Multi-User Tweakable
ight Bound Permutation Subkeys! security
for the tight mu security of KACs. Uight Bound Permutation Subkeys  Seowrly RAC
Mouha-Luykx [19] 1 N/A 1 v
® Mouha and Luykx (CRYPTO 2015). Hong-Tssaro [14] Any M
e Tight mu—bound: n/2 bits. Subkeys M
* Single—round KAC with a single subkey: K =K. Ko—®
® Hoang and Tessaro (CRYPTO 2016) % —GT;l
e Tight mu—bound: rn/(r+1) bits for any r. ' 5
* r independent permutations. K,—@®

* r+1 independent subkeys.

® Open problem: K., —®
 Tight mu—bound: rn/(r+1). T,
e any round KAC with a single permutation. K, —®

* # of independent values in the subkeys is less than r+1. C



Our Result

Reference Round w/ Identical Independent Multi-User Tweakable
. (Tweakable) K AC Tight Bound Permutation Subkeys! Security KAC
Even-Mansour [12] 1 N/A All
¢ any r, Bogdanov et al. [3] 2 — All — —
R . I d . Steinberger [24] 3 — All — —
a Slng € ranaom permUtatlon7 Lampe et al. [16]  Asymptotic — All — —
. . Chen-Steinberper Any — All - —
 a r—wise independent subkeys, cx-Steinberger B :
Chen et al. [4] 2 v 1 — —
(r+1 subkeys from r random values). W ot al. [27] 3 y Al _ _
. . Yu ct al. [28] Any v All — —
® Tight mu—bound: rn/(r+1) bits. T 7 :
Tessaro-Zhang [25) Any — r—1 — —
® Proof Methods
Mouha-Luykx [19] 1 N/A 1 v
* Patarin's coefficient—H technique. Hoang Tessaro [14]  Any All v
. . Cogliati el al. [7] 2 2 v
¢ NeW teChnlque Cogliati et al. [7] Asymptotic r v
Updated resampling method. Cogliati-Seurin 3 4 2 d
Dutta [11] 4 ! 2 v
This Work Any v r v v




Coefficient—H Technique

Real | Ideal
M@ M®) M@ M)
® Consider a transcript 7: >|<<1) )f(f) | | | | X@) X®
information that an adversary obtains by | 2 — x | KAC|K<1> ---------- KAClK(u) F|11 ---------- HI | ,T:1 o | T:E |
queries such as (M), C(), (X®, YO), etc. Y() YO ) co cw co YO v
\ /
® Derive a security bound by the following steps. &/

1. Bad events on transcripts .
2. Split all possible transcripts 7 into bad transcripts 7,4 and good transcripts 7

good

from the bad events.

(v)
3. Security bound = sum of the following bounds. . M
* Upper-bound of Prlone of the bad events occur in the ideal world]. Ko™ Vi
* Lower—-bound of the ratio for good transcripts: 0 751W
Pr[Real-world sampling = 7, ,1/Pr[ldeal-world sampling = 7, ] for any 7. Ki"—® !
%!
® Difficult step: evaluating the real-world probability for good transcript tightly. KZ(LGBWZ
 Count the number of solutions of the internal pairs (V,W,),...,(V,,W.) for each (M), C"),
* The number of the solutions drastically increases according to r. K \
* The evaluation is quite complex for large r. -1 Vi
Tcl’
(v) q W
® Following the approach for good transcript is not reasonable. K, D




Our Approach

We fix the game so that the internal pairs are introduced in .

The internal pairs for each (M), C") are uniquely fixed.

We don't need to count the number of solutions of (V{,W,),...,(V,,W,).

The evaluation for good transcripts becomes simpler.

K§ @y,
SEE

KW,

KW —®y

KW
c



Our Approach
Random permutation II, \M®™
We fix the game so that the internal pairs are introduced in . e | ~

The internal pairs for each (M), C") are uniquely fixed.
We don't need to count the number of solutions of (V{,W,),...,(V,,W,).

The evaluation for good transcripts becomes simpler.

Since random permutations I1, are monolithic in the ideal world,
in order to introduce the internal pairs in the transcript 7,

e Define dummy keys Ké}”)..., Kr(V) and internal pairs (V{,W)),...,(V,W,)
according to the structure of KAC with a single permutation ..

e Reveal the (dummy) keys and internal pairs to an adversary,
l.e., the keys and internal pairs are introduced in the transcript t. \_ -

cO




Our Approach

Random permutation I, pMO»

® We fix the game so that the internal pairs are introduced in t.
| g | P | | a Kév)—@vl\
® The internal pairs for each (M), C()) are uniquely fixed. -
® We don't need to count the number of solutions of (V,W,),...,(V,,W.). ng)—@\\//vl
2
® The evaluation for good transcripts becomes simpler. T
: : e . (v q
® Since random permutations I1,, are monolithic in the ideal world, K3 o
in order to introduce the internal pairs in the transcript 7,
e Define dummy keys Ké}”)..., Kr(V) and internal pairs (V{,W)),...,(V,W,) K S
according to the structure of KAC with a single permutation .. r-1 : \
e Reveal the (dummy) keys and internal pairs to an adversary, o) nW
l.e., the keys and internal pairs are introduced in the transcript t. \_ Ki—® rJ

cO



Our Approach

Random permutation I, pMO»

® We fix the game so that the internal pairs are introduced in t.
| g | P | | a Kév)—@vl\
® The internal pairs for each (M), C(") are uniquely fixed. -
® We don't need to count the number of solutions of (V,,W,),...,(V,,W.).. ng)—@\\//vl
2
® The evaluation for good transcripts becomes simpler. T
. . e . (W g
® Since random permutations I1,, are monolithic in the ideal world, K3 o
in order to introduce the internal pairs in the transcript 7,
e Define dummy keys Ké}”)..., Kr(V) and internal pairs (V{,W)),...,(V,W,) K S
according to the structure of KAC with a single permutation .. r-1 : \
e Reveal the (dummy) keys and internal pairs to an adversary, o) nW
l.e., the keys and internal pairs are introduced in the transcript t. \_ Ki—® rJ
® The remaining step is defining a sampling method of ct

the dummy keys and dummy internal pairs in the ideal world.



M)

Sampling Method KT G
T
® Naive sampling method (forward sampling). KO
* Define the internal pairs from the first round to the last round. 1
* The sampling successes if all the pairs are consistent with respect ; L
to random permutation, i.e., for each input (resp. output), there is no K"
distinct outputs (resp. inputs). T
* The failure event is the inconsistent event: a collision occurs at the KBV)—@
last round, i.e., the last—round input collides with the other pair. -
e The failure probability is the birthday bound n/2 bits, KM
.e., security up to n/2 bits (not tight). 4
T
Ks—&
T
Kév)—@ collision
* previously
T T :
defined

\K7(V)—69\*>A¢,/4

c) inconsistent



Sampling Method RS
® Resampling method (Naito et al. CCS 2022). K(V)—Gg
 Sampling method for Triple encryption. .
* Inverse sampling is introduced: L
If the forward sampling fails (the pairs up to r—2 round are defined), Kz‘ﬁ_69
the last-round pair is re—defined by the inverse sampling. T ! defined by _
K3V)_69 forward operation
T
Ki%—
o
KsL— |
T
Ks—&
-l |

\K7(v) D /lnverse sampling




Sampling Method

® Resampling method (Naito et al. CCS 2022).
 Sampling method for Triple encryption.

* Inverse sampling is introduced:
If the forward sampling fails (the pairs up to r—2 round are defined),
the last—round pair is re—defined by the inverse sampling.

* [If no collision occurs in the inverse sampling, then
all the internal pairs can be consistently defined.

(K@

defined by
- forward operation

inconsistent
e

| r .
T previously

* defined
collision

Inverse sampling



Sampling Method

® Resampling method (Naito et al. CCS 2022).

Sampling method for Triple encryption.

Inverse sampling is introduced:
If the forward sampling fails (the pairs up to r—2 round are defined),
the last—round pair is re—defined by the inverse sampling.

If no collision occurs in the inverse sampling, then
all the internal pairs can be consistently defined.

The failure event of the resampling method is that collisions occur
in both the forward and inverse samplings.

The security from the two collisions is 2n/3 bits (not tight).

KM@

defined by
- forward operation

inconsistent
e

| r .
T previously

* defined
collision

Inverse sampling



Our Resampling Method

® Update the resampling method to achieve the tight mu—bound rn/(r+1) bits.

® We update the inverse sampling as follows.

* [f a collision occurs in the inverse sampling, then
the rounds defined by the forward sampling are updated.

* The inverse sampling is restarted from the updated round.
* The updates are allowed up to the first round.

® The updated resampling method tolerates the collisions multiple times.
® The probability of the multiple collisions is rn/(r+1) bits.

® The updated resampling method can consistently define
the internal pairs up to the tight mu—bound rn/(r+1) bits.

(K@

defined by
- forward operation

inconsistent
e

| r .
T previously

* defined
collision

Inverse sampling



Our Resampling Method

® Update the resampling method to achieve the tight mu—bound rn/(r+1) bits.

® We update the inverse sampling as follows.

* [f a collision occurs in the inverse sampling, then
the rounds defined by the forward sampling are updated.

* The inverse sampling is restarted from the updated round.
* The updates are allowed up to the first round.

® The updated resampling method allows the multiple collisions.
® The probability of the multiple collisions is rn/(r+1) bits.

® The updated resampling method can consistently define
the internal pairs up to the tight mu—bound rn/(r+1) bits.

(K@

_ defined by
forward operation

T
V! 6
D — update
T
restart

i .
T previously

* defined
collision

Inverse sampling



Conclusion

Reference RHound w/ Identical Independent Multi-User Tweakable

® We COnSIder the Securlty Of r_round key Tight Bound Permutation Subkeys! Security KAC

alternating cipher (KAC).

Even-Mansour [12] 1 N/A All
® Existing works for r-round KAC Bogdanov et al. {3 ’ B Al B B
Steinberger [24] 3 — All — —
* Tight single—user security for KAC with a single Lampe ct al. [16]  Asymptotic — All — —
random permutation. Chen-Steinberger [5] Any — All — —
. . . Chen ct al. [4] 2 v 1 — —
* Tight multi-user security for KAGC W et al. [27] s P Al _ _
* with r random permutations, Yu et al. [28] Any v All — —
. . Dunkelman et al. |10] 1 N/A 1
2 +
with r+1 independent subkeys. Tessaro Zhang (25| Any o’ o B B
® We prove the tight muti—user security of Mouha-Luykx [19] 1 N/A ! v
any roun d KAC Hoang-Tessaro |14] Any All ¥
. . . Cogliali el al. [7] 2 2 v
* with a single random permutation, Coglinti et al, [7]  Asymptotic ) y
* with r—wise independent subkeys. Cogliati-Seurin [8] 4 2 v
Dutta [11] 1 1 2 v
® We present the updated resampling method. This Work Any P ) / ;

® Our result offers the tight multi—user security of
tweakable KACs.
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