
The Exact Multi-User Security of (Tweakable) Key
Alternating Ciphers with a Single Permutation

Yusuke Naito (Mitsubishi Electric Corporation)

Yu Sasaki (NTT Social Informatics Laboratories)

Takeshi Sugawara (The University of Electro-Communications)

EUROCRYPT2024
May 27, 2024

Summary

⚫ Target scheme: r-round key alternating cipher (KAC) where r is any

• Construct a block cipher,

• Iterate a permutation and an XOR with a subkey,

• Have r permutation calls and r+1 subkey XOR operations.

⚫ Existing works for KAC:

• Tight single-user security for KAC with a single random permutation.

• Tight multi-user security for KAC with r random permutations and r+1 independent
subkeys.

⚫ We prove the tight multi-user security of the (tweakable) KAC

• With a single permutation,

• With r-wise independent subkeys (the number of independent values is r).

Key Alternating Cipher (KAC)

⚫ r-round KAC

• n-bit block cipher,
• with r n-bit permutations 1, ..., r,

• with r + 1 n-bit subkeys K0, ..., Kr.

⚫ The single-round KAC is known as the Even-Mansour (EM) cipher,
and the r-round KAC is referred to as the r-round iterated EM cipher.

⚫ KAC describes the computational structure of block ciphers commonly
used in the real world, such as AES and many other block ciphers.

⚫ The provable security of KAC is their theoretical foundation.

⚫ Proving a tight security of KAC has been an important challenge in
symmetric key cryptography research.

1

⊕K0

⊕K1

2

⊕K2

r

⊕Kr-1

⊕Kr

M

C

Plaintext

Ciphertext

n-bits
subkeys

(n bits)

(n bits)

Research Topics for KAC

1. Proving the tight bound.

• Attack bound: rn/(r+1) bits (the attack complexity is 2rn/(r+1)),
i.e., r=3: 3n/4; r=: 4n/5;

2. Proving the security of any-round KAC, i.e., r is any.

3. Reducing the number of independent permutations
(ideally, a single permutation, i.e., 1 = ... = r).

4. Reducing the number of independent subkeys.

5. Proving the multi-user (mu) security.

1

⊕K0

⊕K1

2

⊕K2

r

⊕Kr-1

⊕Kr

M

C

Subkeys

Strong Pseudo-Random Permutation (SPRP) Security

⚫ The security of KAC was initially evaluated in the single-user (su) setting.

⚫ Su-SPRP security (right figure):

• Indistinguishability between
a single instantiation of KAC and
a random permutation .

• An adversary has access to KAC and
by construction queries.

• An adversary has access to
the underlying random permutations 1,..., r

by primitive queries
(KAC with a single permutation: 1 = ... = r).

Adversary

Real world Ideal world

1

⊕K0

M

⊕K1

r

⊕Kr-1

⊕Kr

C

1 r 1 r

M

C

Existing Works for Su-SPRP Security of KAC

Increasing the number of rounds r.

Reducing the number of independent
permutations,
i.e., considering KAC with a single permutation.

Reducing the number of independent subkeys.

⚫ Since Even-Mansour's work, several works proved the tight su-security bounds of KACs.

Multi-User (Mu) SPRP Security of KAC

⚫ Compared with the works for the su security, there are not so many results for the mu
security of KAC.

⚫ In the mu setting, an adversary wins by breaking any of the keys, which better represents
the real-world attacks targeting a particular service rather than a particular user.

⚫ The mu security considers u KAC's instantiations where the user's keys are independent.

⚫ Mu-SPRP security:
Indistinguishability between

• u instantiations of KAC and
• u random permutations 1,...,u.

⚫ The mu adversary can obtain more
information than the su adversary.

⚫ The mu security proof is more
complex than the su-security proof.

Adversary

Real world Ideal world

1

⊕K0

M

⊕K1

r

⊕Kr-1

⊕Kr

C

1 r 1 r
1

M

C

(1)

(1)

(1)

(1)

1

⊕K0

M

⊕K1

r

⊕Kr-1

⊕Kr

C

(u)

(u)

(u)

(u)
u

M

C

u KACs

u random permutations

Existing Works for Mu Security of KAC

⚫ There are two works
for the tight mu security of KACs.

⚫ Mouha and Luykx (CRYPTO 2015).

• Tight mu-bound: n/2 bits.
• Single-round KAC with a single subkey: K0=K1.

⚫ Hoang and Tessaro (CRYPTO 2016)

• Tight mu-bound: rn/(r+1) bits for any r.

• r independent permutations.

• r+1 independent subkeys.

⚫ Open problem:

• Tight mu-bound: rn/(r+1).

• any round KAC with a single permutation.

• # of independent values in the subkeys is less than r+1.

1

⊕K0

⊕K1

2

⊕K2

r

⊕Kr-1

⊕Kr

M

C

Subkeys

Our Result

⚫ (Tweakable) KAC

• any r,

• a single random permutation,

• a r-wise independent subkeys,
(r+1 subkeys from r random values).

⚫ Tight mu-bound: rn/(r+1) bits.

⚫ Proof Methods

• Patarin's coefficient-H technique.

• New technique:
Updated resampling method.

⚫ Consider a transcript :
information that an adversary obtains by
queries such as (M(), C()), (X(i), Y(i)), etc.

⚫ Derive a security bound by the following steps.

1. Bad events on transcripts .

2. Split all possible transcripts into bad transcripts bad and good transcripts good from the bad events.

3. Security bound = sum of the following bounds.

• Upper-bound of Pr[one of the bad events occur in the ideal world].

• Lower-bound of the ratio for good transcripts:
Pr[Real-world sampling = good]/Pr[Ideal-world sampling = good] for any good.

⚫ Difficult step: evaluating the real-world probability for good transcript tightly.

• Count the number of solutions of the internal pairs (V1,W1),...,(Vr,Wr) for each (M(), C()).

• The number of the solutions drastically increases according to r.

• The evaluation is quite complex for large r.

⚫ Following the approach for good transcript is not reasonable.

Coefficient-H Technique

1

⊕K0

⊕K1

2

⊕K2

r

⊕Kr-1

⊕Kr

M()

C()

Ideal

C(1)

1 r 1 r
1 uKACK (1) KACK (u)

M(1)

C(r)

M(r)

X(1)

Y(1)

X(r)

Y(r)
C(1)

M(1)

C(r)

M(r)

X(1)

Y(1)

X(r)

Y(r)

Real

V1

W1
V2

W2

Vr

Wr

()

()

()

()

()

Our Approach
⚫ We fix the game so that the internal pairs are introduced in .

⚫ The internal pairs for each (M(), C()) are uniquely fixed.

⚫ We don't need to count the number of solutions of (V1,W1),...,(Vr,Wr).

⚫ The evaluation for good transcripts becomes simpler.

⊕K0

⊕K1

⊕K2

⊕Kr-1

⊕Kr

M()

C()

()

()

()

()

()

V1

W1
V2

W2

Vr

Wr

KAC

Our Approach
⚫ We fix the game so that the internal pairs are introduced in .

⚫ The internal pairs for each (M(), C()) are uniquely fixed.

⚫ We don't need to count the number of solutions of (V1,W1),...,(Vr,Wr).

⚫ The evaluation for good transcripts becomes simpler.

⚫ Since random permutations are monolithic in the ideal world,
in order to introduce the internal pairs in the transcript ,

• Define dummy keys K0, ..., Kr and internal pairs (V1,W1),...,(Vr,Wr)
according to the structure of KAC with a single permutation ,.

• Reveal the (dummy) keys and internal pairs to an adversary,
i.e., the keys and internal pairs are introduced in the transcript .

⊕K0

⊕K1

⊕K2

⊕Kr-1

⊕Kr

M()

C()

Random permutation

()

()

()

()

()

() ()

V1

W1
V2

W2

Vr

Wr

Our Approach
⚫ We fix the game so that the internal pairs are introduced in .

⚫ The internal pairs for each (M(), C()) are uniquely fixed.

⚫ We don't need to count the number of solutions of (V1,W1),...,(Vr,Wr).

⚫ The evaluation for good transcripts becomes simpler.

⚫ Since random permutations are monolithic in the ideal world,
in order to introduce the internal pairs in the transcript ,

• Define dummy keys K0, ..., Kr and internal pairs (V1,W1),...,(Vr,Wr)
according to the structure of KAC with a single permutation ,.

• Reveal the (dummy) keys and internal pairs to an adversary,
i.e., the keys and internal pairs are introduced in the transcript .

⊕K0

⊕K1

⊕K2

⊕Kr-1

⊕Kr

M()

C()

Random permutation

()

()

()

()

()

() ()

V1

W1
V2

W2

Vr

Wr

Our Approach
⚫ We fix the game so that the internal pairs are introduced in .

⚫ The internal pairs for each (M(), C()) are uniquely fixed.

⚫ We don't need to count the number of solutions of (V1,W1),...,(Vr,Wr)..

⚫ The evaluation for good transcripts becomes simpler.

⚫ Since random permutations are monolithic in the ideal world,
in order to introduce the internal pairs in the transcript ,

• Define dummy keys K0, ..., Kr and internal pairs (V1,W1),...,(Vr,Wr)
according to the structure of KAC with a single permutation ,.

• Reveal the (dummy) keys and internal pairs to an adversary,
i.e., the keys and internal pairs are introduced in the transcript .

⚫ The remaining step is defining a sampling method of
the dummy keys and dummy internal pairs in the ideal world.

⊕K0

⊕K1

⊕K2

⊕Kr-1

⊕Kr

M()

C()

Random permutation

()

()

()

()

()

V1

W1
V2

W2

Vr

Wr

() ()

Sampling Method
⚫ Naive sampling method (forward sampling).

• Define the internal pairs from the first round to the last round.

• The sampling successes if all the pairs are consistent with respect
to random permutation, i.e., for each input (resp. output), there is no
distinct outputs (resp. inputs).

• The failure event is the inconsistent event: a collision occurs at the
last round, i.e., the last-round input collides with the other pair.

• The failure probability is the birthday bound n/2 bits,
i.e., security up to n/2 bits (not tight).

⊕K0

⊕K1

⊕K2

M()

C()

()

()

()

⊕K3
()

⊕K4
()

⊕K5
()

⊕K6
()

⊕K7
()

previously
defined

inconsistent

collision

≠

Sampling Method
⚫ Resampling method (Naito et al. CCS 2022).

• Sampling method for Triple encryption.

• Inverse sampling is introduced:
If the forward sampling fails (the pairs up to r-2 round are defined),
the last-round pair is re-defined by the inverse sampling.

Inverse sampling

defined by
forward operation

⊕K0

⊕K1

⊕K2

M()

C()

()

()

()

⊕K3
()

⊕K4
()

⊕K5
()

⊕K6
()

⊕K7
()

Sampling Method
⚫ Resampling method (Naito et al. CCS 2022).

• Sampling method for Triple encryption.

• Inverse sampling is introduced:
If the forward sampling fails (the pairs up to r-2 round are defined),
the last-round pair is re-defined by the inverse sampling.

• If no collision occurs in the inverse sampling, then
all the internal pairs can be consistently defined.

Inverse sampling

defined by
forward operation

⊕K0

⊕K1

⊕K2

M()

C()

()

()

()

⊕K3
()

⊕K4
()

⊕K5
()

⊕K6
()

⊕K7
()

 previously
defined

collision

inconsistent
≠

Sampling Method
⚫ Resampling method (Naito et al. CCS 2022).

• Sampling method for Triple encryption.

• Inverse sampling is introduced:
If the forward sampling fails (the pairs up to r-2 round are defined),
the last-round pair is re-defined by the inverse sampling.

• If no collision occurs in the inverse sampling, then
all the internal pairs can be consistently defined.

• The failure event of the resampling method is that collisions occur
in both the forward and inverse samplings.

• The security from the two collisions is 2n/3 bits (not tight).

Inverse sampling

defined by
forward operation

⊕K0

⊕K1

⊕K2

M()

C()

()

()

()

⊕K3
()

⊕K4
()

⊕K5
()

⊕K6
()

⊕K7
()

 previously
defined

collision

inconsistent
≠

Our Resampling Method
⚫ Update the resampling method to achieve the tight mu-bound rn/(r+1) bits.

⚫ We update the inverse sampling as follows.

• If a collision occurs in the inverse sampling, then
the rounds defined by the forward sampling are updated.

• The inverse sampling is restarted from the updated round.

• The updates are allowed up to the first round.

⚫ The updated resampling method tolerates the collisions multiple times.

⚫ The probability of the multiple collisions is rn/(r+1) bits.

⚫ The updated resampling method can consistently define
the internal pairs up to the tight mu-bound rn/(r+1) bits.

Inverse sampling

defined by
forward operation

⊕K0

⊕K1

⊕K2

M()

C()

()

()

()

⊕K3
()

⊕K4
()

⊕K5
()

⊕K6
()

⊕K7
()

 previously
defined

collision

inconsistent
≠

Our Resampling Method
⚫ Update the resampling method to achieve the tight mu-bound rn/(r+1) bits.

⚫ We update the inverse sampling as follows.

• If a collision occurs in the inverse sampling, then
the rounds defined by the forward sampling are updated.

• The inverse sampling is restarted from the updated round.

• The updates are allowed up to the first round.

⚫ The updated resampling method allows the multiple collisions.

⚫ The probability of the multiple collisions is rn/(r+1) bits.

⚫ The updated resampling method can consistently define
the internal pairs up to the tight mu-bound rn/(r+1) bits.

Inverse sampling

defined by
forward operation

⊕K0

⊕K1

⊕K2

M()

C()

()

()

()

⊕K3
()

⊕K4
()

⊕K5
()

⊕K6
()

⊕K7
()

 previously
defined

collision

update

restart

Conclusion
⚫ We consider the security of r-round key

alternating cipher (KAC).

⚫ Existing works for r-round KAC

• Tight single-user security for KAC with a single
random permutation.

• Tight multi-user security for KAC

• with r random permutations,

• with r+1 independent subkeys.

⚫ We prove the tight muti-user security of
any round KAC

• with a single random permutation,

• with r-wise independent subkeys.

⚫ We present the updated resampling method.

⚫ Our result offers the tight multi-user security of
tweakable KACs.

	スライド 1: The Exact Multi-User Security of (Tweakable) Key Alternating Ciphers with a Single Permutation
	スライド 2: Summary
	スライド 3: Key Alternating Cipher (KAC)
	スライド 4: Research Topics for KAC
	スライド 5: Strong Pseudo-Random Permutation (SPRP) Security
	スライド 6: Existing Works for Su-SPRP Security of KAC
	スライド 7: Multi-User (Mu) SPRP Security of KAC
	スライド 8: Existing Works for Mu Security of KAC
	スライド 9: Our Result
	スライド 10: Coefficient-H Technique
	スライド 11: Our Approach
	スライド 12: Our Approach
	スライド 13: Our Approach
	スライド 14: Our Approach
	スライド 15: Sampling Method
	スライド 16: Sampling Method
	スライド 17: Sampling Method
	スライド 18: Sampling Method
	スライド 19: Our Resampling Method
	スライド 20: Our Resampling Method
	スライド 21: Conclusion

