The Exact Multi-User Security of (Tweakable) Key Alternating Ciphers with a Single Permutation

Yusuke Naito (Mitsubishi Electric Corporation)

Yu Sasaki (NTT Social Informatics Laboratories) Takeshi Sugawara (The University of Electro-Communications)

> EUROCRYPT2024 May 27, 2024

Summary

- Target scheme: r-round key alternating cipher (KAC) where r is any
	- Construct a block cipher,
	- Iterate a permutation and an XOR with a subkey,
	- Have r permutation calls and r+1 subkey XOR operations.
- Existing works for KAC:
	- Tight single-user security for KAC with a single random permutation.
	- Tight multi-user security for KAC with r random permutations and r+1 independent subkeys.
- ⚫ We prove the tight multi-user security of the (tweakable) KAC
	- With a single permutation,
	- With r-wise independent subkeys (the number of independent values is r).

Key Alternating Cipher (KAC)

- \bullet r-round KAC
	- n-bit block cipher,
	- with r n-bit permutations $\pi_1, ..., \pi_r$
	- with $r + 1$ n-bit subkeys $K_0, ..., K_r$.
- The single-round KAC is known as the Even-Mansour (EM) cipher, and the r-round KAC is referred to as the r-round iterated EM cipher.
- KAC describes the computational structure of block ciphers commonly used in the real world, such as AES and many other block ciphers.
- ⚫ The provable security of KAC is their theoretical foundation.
- Proving a tight security of KAC has been an important challenge in symmetric key cryptography research.

Research Topics for KAC

- 1. Proving the tight bound.
	- Attack bound: $rn/(r+1)$ bits (the attack complexity is $2^{rn/(r+1)}$), i.e., $r=3$: $3n/4$: $r=1.4n/5$:
- 2. Proving the security of any-round KAC, i.e., r is any.
- 3. Reducing the number of independent permutations (ideally, a single permutation, i.e., $\pi_1^{} = ... = \pi_r^{}$).
- 4. Reducing the number of independent subkeys.
- 5. Proving the multi-user (mu) security.

Strong Pseudo-Random Permutation (SPRP) Security

- The security of KAC was initially evaluated in the single-user (su) setting.
- Su-SPRP security (right figure):
	- Indistinguishability between a single instantiation of KAC and a random permutation Π .
	- An adversary has access to KAC and Π by construction queries.
	- An adversary has access to the underlying random permutations $\pi_1,$..., π_r by primitive queries (KAC with a single permutation: $\pi_1 = ... = \pi_r$).

Existing Works for Su-SPRP Security of KAC

● Since Even-Mansour's work, several works proved the tight su-security bounds of KACs.

Multi-User (Mu) SPRP Security of KAC

- ⚫ Compared with the works for the su security, there are not so many results for the mu security of KAC.
- In the mu setting, an adversary wins by breaking any of the keys, which better represents the real-world attacks targeting a particular service rather than a particular user.
- The mu security considers u KAC's instantiations where the user's keys are independent.
- Mu-SPRP security: Indistinguishability between
	- u instantiations of KAC and
	- \bullet u random permutations $\Pi_{1},...,\Pi_{u}$.
- The mu adversary can obtain more information than the su adversary.
- The mu security proof is more complex than the su-security proof.

Existing Works for Mu Security of KAC

- There are two works for the tight mu security of KACs.
- Mouha and Luykx (CRYPTO 2015).
	- Tight mu-bound: n/2 bits.
	- Single-round KAC with a single subkey: *K*
- Hoang and Tessaro (CRYPTO 2016)
	- Tight mu-bound: $rn/(r+1)$ bits for any r.
	- r independent permutations.
	- $r+1$ independent subkeys.
- ⚫ Open problem:
	- Tight mu-bound: $rn/(r+1)$.
	- any round KAC with a single permutation.
	- \bullet # of independent values in the subkeys is

Our Result

- ⚫ (Tweakable) KAC
	- any r,
	- a single random permutation,
	- a r-wise independent subkeys, (r+1 subkeys from r random values).
- \bullet Tight mu-bound: $rn/(r+1)$ bits.
- ⚫ Proof Methods
	- Patarin's coefficient-H technique.
	- New technique: Updated resampling method.

Coefficient-H Technique

- Consider a transcript τ : information that an adversary obtains by queries such as $(M^{(\nu)},\,C^{(\nu)}),\,(X^{(i)},\,Y^{(i)}),$ etc.
- Derive a security bound by the following steps.
	- 1. Bad events on transcripts τ .
	- 2. Split all possible transcripts τ into bad transcripts τ_{bad} and good transcripts τ_{good} from the bad events. $M^{(\nu)}$
	- 3. Security bound $=$ sum of the following bounds.
		- Upper-bound of Pr[one of the bad events occur in the ideal world].
		- Lower-bound of the ratio for good transcripts: Pr[Real-world sampling $=\tau_{\text{good}}$]/Pr[Ideal-world sampling $=\tau_{\text{good}}$] for any τ_{good} .
- Difficult step: evaluating the real-world probability for good transcript tightly.
	- Count the number of solutions of the internal pairs $(V_1, W_1), ..., (V_r, W_r)$ for each $(M^{(\nu)}, C^{(\nu)}).$
	- The number of the solutions drastically increases according to r.
	- The evaluation is quite complex for large r.
- ⚫ Following the approach for good transcript is not reasonable.

 π .

 V_1

 $\overline{W_1}$ $\frac{V_2}{2}$

 π_{\circ}

 $\bigoplus W_2$

 $\frac{1}{\pi}$

Vr

Wr

 $C^{(\nu)}$

 $K_0^{(\nu)}$ \qquad

 $K_1^{(\nu)}$ \qquad

 $K_2^{(\nu)}$ $\quad \bigoplus$

 $K_{r-1}^{(\nu)}$ \qquad \qquad

 $K_r^{(\nu)}$ \bigoplus

 (v)

- \bullet We fix the game so that the internal pairs are introduced in τ .
- \bullet The internal pairs for each $(M^{(\nu)},C^{(\nu)})$ are uniquely fixed.
- \bullet We don't need to count the number of solutions of $(V_1, W_1), ..., (V_r, W_r)$.
- The evaluation for good transcripts becomes simpler.

- We fix the game so that the internal pairs are introduced in τ .
- \bullet The internal pairs for each $(M^{(\nu)},C^{(\nu)})$ are uniquely fixed.
- \bullet We don't need to count the number of solutions of $(V_1, W_1), ..., (V_r, W_r)$.
- ⚫ The evaluation for good transcripts becomes simpler.
- Since random permutations Π_{ν} are monolithic in the ideal world, in order to introduce the internal pairs in the transcript τ ,
	- Define dummy keys $K_0^{(\nu)}...,K_r^{(\nu)}$ and internal pairs $(V_1,W_1),...,(V_r,W_r)$ according to the structure of KAC with a single permutation π .
	- Reveal the (dummy) keys and internal pairs to an adversary, i.e., the keys and internal pairs are introduced in the transcript τ .

- We fix the game so that the internal pairs are introduced in τ .
- \bullet The internal pairs for each $(M^{(\nu)},\,C^{(\nu)})$ are uniquely fixed.
- \bullet We don't need to count the number of solutions of $(V_1, W_1), ..., (V_r, W_r)$.
- ⚫ The evaluation for good transcripts becomes simpler.
- Since random permutations Π_{ν} are monolithic in the ideal world, in order to introduce the internal pairs in the transcript τ ,
	- Define dummy keys $K_0^{(\nu)}...,K_r^{(\nu)}$ and internal pairs $(V_1,W_1),...,(V_r,W_r)$ according to the structure of KAC with a single permutation π .
	- Reveal the (dummy) keys and internal pairs to an adversary, i.e., the keys and internal pairs are introduced in the transcript τ .

- We fix the game so that the internal pairs are introduced in τ .
- \bullet The internal pairs for each $(M^{(\nu)},C^{(\nu)})$ are uniquely fixed.
- \bullet We don't need to count the number of solutions of $(V_1, W_1), ..., (V_r, W_r)$.
- ⚫ The evaluation for good transcripts becomes simpler.
- Since random permutations Π_{ν} are monolithic in the ideal world, in order to introduce the internal pairs in the transcript τ ,
	- Define dummy keys $K_0^{(\nu)}...,K_r^{(\nu)}$ and internal pairs $(V_1,W_1),...,(V_r,W_r)$ according to the structure of KAC with a single permutation π .
	- Reveal the (dummy) keys and internal pairs to an adversary, i.e., the keys and internal pairs are introduced in the transcript τ .
- ⚫ The remaining step is defining a sampling method of the dummy keys and dummy internal pairs in the ideal world.

- ⚫ Naive sampling method (forward sampling).
	- Define the internal pairs from the first round to the last round.
	- The sampling successes if all the pairs are consistent with respect to random permutation, i.e., for each input (resp. output), there is no distinct outputs (resp. inputs).
	- The failure event is the inconsistent event: a collision occurs at the last round, i.e., the last-round input collides with the other pair.
	- The failure probability is the birthday bound $n/2$ bits, i.e., security up to $n/2$ bits (not tight).

- ⚫ Resampling method (Naito et al. CCS 2022).
	- Sampling method for Triple encryption.
	- Inverse sampling is introduced: If the forward sampling fails (the pairs up to $r-2$ round are defined), the last-round pair is re-defined by the inverse sampling.

- ⚫ Resampling method (Naito et al. CCS 2022).
	- Sampling method for Triple encryption.
	- Inverse sampling is introduced: If the forward sampling fails (the pairs up to $r-2$ round are defined), the last-round pair is re-defined by the inverse sampling.
	- If no collision occurs in the inverse sampling, then all the internal pairs can be consistently defined.

- ⚫ Resampling method (Naito et al. CCS 2022).
	- Sampling method for Triple encryption.
	- Inverse sampling is introduced: If the forward sampling fails (the pairs up to $r-2$ round are defined), the last-round pair is re-defined by the inverse sampling.
	- If no collision occurs in the inverse sampling, then all the internal pairs can be consistently defined.
	- The failure event of the resampling method is that collisions occur in both the forward and inverse samplings.
	- The security from the two collisions is $2n/3$ bits (not tight).

Our Resampling Method

- Update the resampling method to achieve the tight mu-bound $rn/(r+1)$ bits.
- We update the inverse sampling as follows.
	- If a collision occurs in the inverse sampling, then the rounds defined by the forward sampling are updated.
	- The inverse sampling is restarted from the updated round.
	- The updates are allowed up to the first round.
- ⚫ The updated resampling method tolerates the collisions multiple times.
- The probability of the multiple collisions is $rn/(r+1)$ bits.
- The updated resampling method can consistently define the internal pairs up to the tight mu-bound $rn/(r+1)$ bits.

Our Resampling Method

- Update the resampling method to achieve the tight mu-bound $rn/(r+1)$ bits.
- We update the inverse sampling as follows.
	- If a collision occurs in the inverse sampling, then the rounds defined by the forward sampling are updated.
	- The inverse sampling is restarted from the updated round.
	- The updates are allowed up to the first round.
- ⚫ The updated resampling method allows the multiple collisions.
- The probability of the multiple collisions is $rn/(r+1)$ bits.
- The updated resampling method can consistently define the internal pairs up to the tight mu-bound $rn/(r+1)$ bits.

Conclusion

- We consider the security of r-round key alternating cipher (KAC).
- Existing works for r-round KAC
	- Tight single-user security for KAC with a single random permutation.
	- Tight multi-user security for KAC
		- with r random permutations,
		- with $r+1$ independent subkeys.
- We prove the tight muti-user security of any round KAC
	- with a single random permutation,
	- with r-wise independent subkeys.
- We present the updated resampling method.
- ⚫ Our result offers the tight multi-user security of tweakable KACs.

