The Exact Multi-User Security of (Tweakable) Key Alternating Ciphers with a Single Permutation

Yusuke Naito (Mitsubishi Electric Corporation)

Yu Sasaki (NTT Social Informatics Laboratories)

Takeshi Sugawara (The University of Electro-Communications)

EUROCRYPT2024 May 27, 2024

Summary

- Target scheme: r-round key alternating cipher (KAC) where r is any
 - Construct a block cipher,
 - Iterate a permutation and an XOR with a subkey,
 - Have r permutation calls and r+1 subkey XOR operations.
- Existing works for KAC:
 - Tight single-user security for KAC with a single random permutation.
 - Tight multi-user security for KAC with r random permutations and r+1 independent subkeys.
- We prove the tight multi-user security of the (tweakable) KAC
 - With a single permutation,
 - With r-wise independent subkeys (the number of independent values is r).

Key Alternating Cipher (KAC)

- r-round KAC
 - n-bit block cipher,
 - with r n-bit permutations $\pi_1, ..., \pi_r$,
 - with r + 1 n-bit subkeys $K_0, ..., K_r$.
- The single-round KAC is known as the Even-Mansour (EM) cipher, and the r-round KAC is referred to as the r-round iterated EM cipher.
- KAC describes the computational structure of block ciphers commonly used in the real world, such as AES and many other block ciphers.
- The provable security of KAC is their theoretical foundation.
- Proving a tight security of KAC has been an important challenge in symmetric key cryptography research.

Research Topics for KAC

- 1. Proving the tight bound.
 - Attack bound: rn/(r+1) bits (the attack complexity is 2^{rn/(r+1)}), i.e., r=3: 3n/4; r=: 4n/5;
- 2. Proving the security of any-round KAC, i.e., r is any.
- 3. Reducing the number of independent permutations (ideally, a single permutation, i.e., $\pi_1 = \dots = \pi_r$).
- 4. Reducing the number of independent subkeys.
- 5. Proving the multi-user (mu) security.

Strong Pseudo-Random Permutation (SPRP) Security

- The security of KAC was initially evaluated in the single-user (su) setting.
- Su-SPRP security (right figure):
 - Indistinguishability between a single instantiation of KAC and a random permutation $\Pi.$
 - An adversary has access to KAC and Π by construction queries.
 - An adversary has access to the underlying random permutations $\pi_1, ..., \pi_r$ by primitive queries (KAC with a single permutation: $\pi_1 = ... = \pi_r$).

Existing Works for Su-SPRP Security of KAC

• Since Even-Mansour's work, several works proved the tight su-security bounds of KACs.

Reference	Round w/	Identical	Independent	Multi-User	Tweakable	
	Tight Bound	Permutation	$\mathbf{Subkeys}^{\dagger}$	Security	KAC	
Even-Mansour [12]	1	N/A	All			
Bogdanov et al. [3]	2		All			
Steinberger [24]	3		All			Increasing the number of rounds r.
Lampe et al. [16]	Asymptotic		All			
Chen-Steinberger [5]	Any	_	All	_		
Chen et al. [4]	2	✓	1		_	Reducing the number of independent
Wu et al. [27]	3	✓	All			permutations
Yu et al. [28]	Any	✓	All		—	i a considering KAC with a single permutation
Cogliati et al. [7]	2		2		✓	1.e., considering KAC with a single permutation.
Cogliati et al. [7]	Asymptotic		r		✓	
Cogliati-Seurin [8]	4		2		✓	Reducing the number of independent subkeys.
Dutta [11]	4	‡	2		\checkmark	

Multi-User (Mu) SPRP Security of KAC

- Compared with the works for the su security, there are not so many results for the mu security of KAC.
- In the mu setting, an adversary wins by breaking any of the keys, which better represents the real-world attacks targeting a particular service rather than a particular user.
- The mu security considers u KAC's instantiations where the user's keys are independent.
- Mu-SPRP security: Indistinguishability between
 - u instantiations of KAC and
 - u random permutations $\Pi_1, ..., \Pi_u$.
- The mu adversary can obtain more information than the su adversary.
- The mu security proof is more complex than the su-security proof.

Existing Works for Mu Security of KAC

- There are two works for the tight mu security of KACs.
- Mouha and Luykx (CRYPTO 2015).
 - Tight mu-bound: n/2 bits.
 - Single-round KAC with a single subkey: $K_0 = K_0$
- Hoang and Tessaro (CRYPTO 2016)
 - Tight mu-bound: rn/(r+1) bits for any r.
 - r independent permutations.
 - r+1 independent subkeys.
- Open problem:
 - Tight mu-bound: rn/(r+1).
 - any round KAC with a single permutation.
 - # of independent values in the subkeys is less than r+1

Reference	Round w/	Identical	Independent	Multi-User	Tweakable
	Tight Bound	Permutation	${ m Subkeys}^\dagger$	Security	KAC
Mouha-Luykx [19]	1	N/A	1	✓	
Ioang-Tessaro [14]	Any		All	✓	
	Subke	eys M			
$K_0 = K_1.$		$K_0 \longrightarrow$			
		π_1			
		$K_1 \longrightarrow$			
		π_2			
		$K_2 \longrightarrow$			
	ŀ	$X_{r-1} \longrightarrow$			
		π_r			
		$K_r \longrightarrow$			
less than	r+1.	$\overset{\cdot}{C}$			

Our Result

- (Tweakable) KAC
 - any r,
 - a single random permutation,
 - a r-wise independent subkeys, (r+1 subkeys from r random values).
- Tight mu-bound: rn/(r+1) bits.
- Proof Methods
 - Patarin's coefficient-H technique.
 - New technique: Updated resampling method.

Reference	Round w/	Identical	Independent	Multi-User	Tweakable
	Tight Bound	Permutation	$Subkeys^{\dagger}$	Security	KAC
Even-Mansour [12]	1	N/A	All		
Bogdanov et al. [3]	2		All		_
Steinberger [24]	3		All	_	_
Lampe et al. [16]	Asymptotic		All	_	_
Chen-Steinberger [5]	Any	_	All		_
Chen et al. [4]	2	✓	1	_	_
Wu et al. [27]	3	\checkmark	All	_	_
Yu et al. [28]	Any	✓	All	_	_
Dunkelman et al. [10]	1	N/A	1		
Tessaro-Zhang [25]	Any	—	r-1	_	—
Mouha-Luykx [19]	1	N/A	1	✓	
Hoang-Tessaro [14]	Any		All	✓	
Cogliati et al. [7]	2		2		✓
Cogliati et al. [7]	Asymptotic		r		✓
Cogliati-Seurin [8]	4		2		✓
Dutta [11]	4	‡	2		✓
This Work	Any	√	r	✓	✓

Coefficient-H Technique

- Consider a transcript τ : information that an adversary obtains by queries such as $(M^{(\nu)}, C^{(\nu)})$, $(X^{(i)}, Y^{(i)})$, etc.
- Derive a security bound by the following steps.
 - 1. Bad events on transcripts τ .
 - 2. Split all possible transcripts τ into bad transcripts τ_{bad} and good transcripts τ_{good} from the bad events. $M^{(\nu)}$
 - 3. Security bound = sum of the following bounds.
 - Upper-bound of Pr[one of the bad events occur in the ideal world].
 - Lower-bound of the ratio for good transcripts: $Pr[Real-world \ sampling = \tau_{good}]/Pr[Ideal-world \ sampling = \tau_{good}]$ for any τ_{good} .
- Difficult step: evaluating the real-world probability for good transcript tightly.
 - Count the number of solutions of the internal pairs $(V_1, W_1), \dots, (V_r, W_r)$ for each $(M^{(\nu)}, C^{(\nu)})$.
 - The number of the solutions drastically increases according to r.
 - The evaluation is quite complex for large r.
- Following the approach for good transcript is not reasonable.

 $K_0^{(\nu)}$

 $K_1^{(\underline{\nu})}$

 $K_2^{(\underline{v})}$

 $K_{r-1}^{(v)}$

 π_1

 π_{2}

 \oplus

 π_r

 $\bigoplus W_2$

- We fix the game so that the internal pairs are introduced in τ .
- The internal pairs for each $(M^{(\nu)}, C^{(\nu)})$ are uniquely fixed.
- We don't need to count the number of solutions of $(V_1, W_1), ..., (V_r, W_r)$.
- The evaluation for good transcripts becomes simpler.

- We fix the game so that the internal pairs are introduced in τ .
- The internal pairs for each $(M^{(\nu)}, C^{(\nu)})$ are uniquely fixed.
- We don't need to count the number of solutions of $(V_1, W_1), ..., (V_r, W_r)$.
- The evaluation for good transcripts becomes simpler.
- Since random permutations Π_{ν} are monolithic in the ideal world, in order to introduce the internal pairs in the transcript τ ,
 - Define dummy keys $K_0^{(\nu)}$..., $K_r^{(\nu)}$ and internal pairs (V_1, W_1) ,..., (V_r, W_r) according to the structure of KAC with a single permutation π ,.
 - Reveal the (dummy) keys and internal pairs to an adversary, i.e., the keys and internal pairs are introduced in the transcript τ .

Random permutation $\Pi_{\nu} = M^{(\nu)}$

 $C^{(\nu)}$

- We fix the game so that the internal pairs are introduced in τ .
- The internal pairs for each $(M^{(\nu)}, C^{(\nu)})$ are uniquely fixed.
- We don't need to count the number of solutions of $(V_1, W_1), ..., (V_r, W_r)$.
- The evaluation for good transcripts becomes simpler.
- Since random permutations Π_{ν} are monolithic in the ideal world, in order to introduce the internal pairs in the transcript τ ,
 - Define dummy keys $K_0^{(\nu)}, ..., K_r^{(\nu)}$ and internal pairs $(V_1, W_1), ..., (V_r, W_r)$ according to the structure of KAC with a single permutation π ,.
 - Reveal the (dummy) keys and internal pairs to an adversary, i.e., the keys and internal pairs are introduced in the transcript τ .

- We fix the game so that the internal pairs are introduced in τ .
- The internal pairs for each $(M^{(\nu)}, C^{(\nu)})$ are uniquely fixed.
- We don't need to count the number of solutions of $(V_1, W_1), \dots, (V_r, W_r)$.
- The evaluation for good transcripts becomes simpler.
- Since random permutations Π_{ν} are monolithic in the ideal world, in order to introduce the internal pairs in the transcript τ ,
 - Define dummy keys $K_0^{(\nu)}$..., $K_r^{(\nu)}$ and internal pairs (V_1, W_1) ,..., (V_r, W_r) according to the structure of KAC with a single permutation π ,.
 - Reveal the (dummy) keys and internal pairs to an adversary, i.e., the keys and internal pairs are introduced in the transcript τ .
- The remaining step is defining a sampling method of the dummy keys and dummy internal pairs in the ideal world.

- Naive sampling method (forward sampling).
 - Define the internal pairs from the first round to the last round.
 - The sampling successes if all the pairs are consistent with respect to random permutation, i.e., for each input (resp. output), there is no distinct outputs (resp. inputs).
 - The failure event is the inconsistent event: a collision occurs at the last round, i.e., the last-round input collides with the other pair.
 - The failure probability is the birthday bound n/2 bits, i.e., security up to n/2 bits (not tight).

- Resampling method (Naito et al. CCS 2022).
 - Sampling method for Triple encryption.
 - Inverse sampling is introduced: If the forward sampling fails (the pairs up to r-2 round are defined), the last-round pair is re-defined by the inverse sampling.

- Resampling method (Naito et al. CCS 2022).
 - Sampling method for Triple encryption.
 - Inverse sampling is introduced: If the forward sampling fails (the pairs up to r-2 round are defined), the last-round pair is re-defined by the inverse sampling.
 - If no collision occurs in the inverse sampling, then all the internal pairs can be consistently defined.

- Resampling method (Naito et al. CCS 2022).
 - Sampling method for Triple encryption.
 - Inverse sampling is introduced: If the forward sampling fails (the pairs up to r-2 round are defined), the last-round pair is re-defined by the inverse sampling.
 - If no collision occurs in the inverse sampling, then all the internal pairs can be consistently defined.
 - The failure event of the resampling method is that collisions occur in both the forward and inverse samplings.
 - The security from the two collisions is 2n/3 bits (not tight).

Our Resampling Method

- Update the resampling method to achieve the tight mu-bound rn/(r+1) bits.
- We update the inverse sampling as follows.
 - If a collision occurs in the inverse sampling, then the rounds defined by the forward sampling are updated.
 - The inverse sampling is restarted from the updated round.
 - The updates are allowed up to the first round.
- The updated resampling method tolerates the collisions multiple times.
- The probability of the multiple collisions is rn/(r+1) bits.
- The updated resampling method can consistently define the internal pairs up to the tight mu-bound rn/(r+1) bits.

Our Resampling Method

- Update the resampling method to achieve the tight mu-bound rn/(r+1) bits.
- We update the inverse sampling as follows.
 - If a collision occurs in the inverse sampling, then the rounds defined by the forward sampling are updated.
 - The inverse sampling is restarted from the updated round.
 - The updates are allowed up to the first round.
- The updated resampling method allows the multiple collisions.
- The probability of the multiple collisions is rn/(r+1) bits.
- The updated resampling method can consistently define the internal pairs up to the tight mu-bound rn/(r+1) bits.

Conclusion

- We consider the security of r-round key alternating cipher (KAC).
- Existing works for r-round KAC
 - Tight single-user security for KAC with a single random permutation.
 - Tight multi-user security for KAC
 - with r random permutations,
 - with r+1 independent subkeys.
- We prove the tight muti-user security of any round KAC
 - with a single random permutation,
 - with r-wise independent subkeys.
- We present the updated resampling method.
- Our result offers the tight multi-user security of tweakable KACs.

Reference	Round w/	Identical	Independent	Multi-User	Tweakable
	Tight Bound	Permutation	$\mathbf{Subkeys}^{\dagger}$	Security	KAC
Even-Mansour [12]	1	N/A	All		_
Bogdanov et al. [3]	2		All		
Steinberger [24]	3		All		
Lampe et al. [16]	Asymptotic		All		
Chen-Steinberger [5]	Any		All		_
Chen et al. [4]	2	✓	1	_	_
Wu et al. [27]	3	\checkmark	All	_	
Yu et al. [28]	Any	✓	All	_	—
Dunkelman et al. [10]	1	N/A	1		_
Tessaro-Zhang [25]	Any		r-1	_	—
Mouha-Luykx [19]	1	N/A	1	✓	
Hoang-Tessaro [14]	Any		All	✓	
Cogliati et al. [7]	2		2		~
Cogliati et al. [7]	Asymptotic		r		✓
Cogliati-Seurin [8]	4		2		✓
Dutta [11]	4	‡	2	_	\checkmark
This Work	Any	~	r	\checkmark	\checkmark