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Summary

⚫ Target scheme: r-round key alternating cipher (KAC) where r is any

• Construct a block cipher, 

• Iterate a permutation and an XOR with a subkey, 

• Have r permutation calls and r+1 subkey XOR operations.  

⚫ Existing works for KAC:

• Tight single-user security for KAC with a single random permutation.

• Tight multi-user security for KAC with r random permutations and r+1 independent 
subkeys.

⚫ We prove the tight multi-user security of the (tweakable) KAC

• With a single permutation, 

• With r-wise independent subkeys (the number of independent values is r).



Key Alternating Cipher (KAC)

⚫ r-round KAC 

• n-bit block cipher, 
• with r n-bit permutations 1, ..., r,

• with r + 1 n-bit subkeys K0, ..., Kr. 

⚫ The single-round KAC is known as the Even-Mansour (EM) cipher, 
and the r-round KAC is referred to as the r-round iterated EM cipher.

⚫ KAC describes the computational structure of block ciphers commonly 
used in the real world, such as AES and many other block ciphers. 

⚫ The provable security of KAC is their theoretical foundation. 

⚫ Proving a tight security of KAC has been an important challenge in 
symmetric key cryptography research.
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Research Topics for KAC

1. Proving the tight bound. 

• Attack bound: rn/(r+1) bits (the attack complexity is 2rn/(r+1)), 
i.e., r=3: 3n/4; r=: 4n/5; ....

2. Proving the security of any-round KAC, i.e., r is any. 

3. Reducing the number of independent permutations 
(ideally, a single permutation, i.e., 1 = ... = r).

4. Reducing the number of independent subkeys.

5. Proving the multi-user (mu) security.
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Strong Pseudo-Random Permutation (SPRP) Security

⚫ The security of KAC was initially evaluated in the single-user (su) setting.

⚫ Su-SPRP security (right figure):

• Indistinguishability between 
a single instantiation of KAC and 
a random permutation .

• An adversary has access to KAC and 
by construction queries.

• An adversary has access to 
the underlying random permutations 1,..., r

by primitive queries
(KAC with a single permutation: 1 = ... = r).
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Existing Works for Su-SPRP Security of KAC

Increasing the number of rounds r.

Reducing the number of independent 
permutations, 
i.e., considering KAC with a single permutation.

Reducing the number of independent subkeys.

⚫ Since Even-Mansour's work, several works proved the tight su-security bounds of KACs.



Multi-User (Mu) SPRP Security of KAC

⚫ Compared with the works for the su security, there are not so many results for the mu 
security of KAC. 

⚫ In the mu setting, an adversary wins by breaking any of the keys, which better represents 
the real-world attacks targeting a particular service rather than a particular user. 

⚫ The mu security considers u KAC's instantiations where the user's keys are independent. 

⚫ Mu-SPRP security: 
Indistinguishability between 

• u instantiations of KAC and 
• u random permutations 1,...,u.

⚫ The mu adversary can obtain more 
information than the su adversary.

⚫ The mu security proof is more 
complex than the su-security proof.
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Existing Works for Mu Security of KAC

⚫ There are two works 
for the tight mu security of KACs.

⚫ Mouha and Luykx (CRYPTO 2015).

• Tight mu-bound: n/2 bits.
• Single-round KAC with a single subkey: K0=K1.

⚫ Hoang and Tessaro (CRYPTO 2016)

• Tight mu-bound: rn/(r+1) bits for any r. 

• r independent permutations. 

• r+1 independent subkeys.

⚫ Open problem: 

• Tight mu-bound: rn/(r+1). 

• any round KAC with a single permutation. 

• # of independent values in the subkeys is less than r+1.
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Our Result

⚫ (Tweakable) KAC 

• any r,

• a single random permutation,

• a r-wise independent subkeys, 
(r+1 subkeys from r random values). 

⚫ Tight mu-bound: rn/(r+1) bits.

⚫ Proof Methods

• Patarin's coefficient-H technique.

• New technique:
Updated resampling method. 



⚫ Consider a transcript  : 
information that an adversary obtains by
queries such as (M(), C()), (X(i), Y(i)), etc.

⚫ Derive a security bound by the following steps.

1. Bad events on transcripts .

2. Split all possible transcripts  into bad transcripts bad and good transcripts good from the bad events. 

3. Security bound = sum of the following bounds. 

• Upper-bound of Pr[one of the bad events occur in the ideal world].

• Lower-bound of the ratio for good transcripts: 
Pr[Real-world sampling = good]/Pr[Ideal-world sampling = good] for any good.

⚫ Difficult step: evaluating the real-world probability for good transcript tightly. 

• Count the number of solutions of the internal pairs (V1,W1),...,(Vr,Wr) for each (M(), C()).

• The number of the solutions drastically increases according to r. 

• The evaluation is quite complex for large r.

⚫ Following the approach for good transcript is not reasonable. 

Coefficient-H Technique
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Our Approach
⚫ We fix the game so that the internal pairs are introduced in .

⚫ The internal pairs for each (M(), C()) are uniquely fixed.

⚫ We don't need to count the number of solutions of (V1,W1),...,(Vr,Wr).

⚫ The evaluation for good transcripts becomes simpler.
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Our Approach
⚫ We fix the game so that the internal pairs are introduced in .

⚫ The internal pairs for each (M(), C()) are uniquely fixed.

⚫ We don't need to count the number of solutions of (V1,W1),...,(Vr,Wr).

⚫ The evaluation for good transcripts becomes simpler.

⚫ Since random permutations  are monolithic in the ideal world, 
in order to introduce the internal pairs in the transcript , 

• Define dummy keys K0, ..., Kr and internal pairs (V1,W1),...,(Vr,Wr)
according to the structure of KAC with a single permutation ,.

• Reveal the (dummy) keys and internal pairs to an adversary, 
i.e., the keys and internal pairs are introduced in the transcript . 
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Our Approach
⚫ We fix the game so that the internal pairs are introduced in .

⚫ The internal pairs for each (M(), C()) are uniquely fixed.

⚫ We don't need to count the number of solutions of (V1,W1),...,(Vr,Wr).

⚫ The evaluation for good transcripts becomes simpler.

⚫ Since random permutations  are monolithic in the ideal world, 
in order to introduce the internal pairs in the transcript , 

• Define dummy keys K0, ..., Kr and internal pairs (V1,W1),...,(Vr,Wr)
according to the structure of KAC with a single permutation ,.

• Reveal the (dummy) keys and internal pairs to an adversary, 
i.e., the keys and internal pairs are introduced in the transcript . 
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Our Approach
⚫ We fix the game so that the internal pairs are introduced in .

⚫ The internal pairs for each (M(), C()) are uniquely fixed.

⚫ We don't need to count the number of solutions of (V1,W1),...,(Vr,Wr)..

⚫ The evaluation for good transcripts becomes simpler.

⚫ Since random permutations  are monolithic in the ideal world, 
in order to introduce the internal pairs in the transcript , 

• Define dummy keys K0, ..., Kr and internal pairs (V1,W1),...,(Vr,Wr)
according to the structure of KAC with a single permutation ,.

• Reveal the (dummy) keys and internal pairs to an adversary, 
i.e., the keys and internal pairs are introduced in the transcript .

⚫ The remaining step is defining a sampling method of 
the dummy keys and dummy internal pairs in the ideal world.
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Sampling Method
⚫ Naive sampling method (forward sampling).  

• Define the internal pairs from the first round to the last round. 

• The sampling successes if all the pairs are consistent with respect 
to random permutation, i.e., for each input (resp. output), there is no 
distinct outputs (resp. inputs).

• The failure event is the inconsistent event: a collision occurs at the 
last round, i.e., the last-round input collides with the other pair.

• The failure probability is the birthday bound n/2 bits, 
i.e., security up to n/2 bits (not tight).
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Sampling Method
⚫ Resampling method (Naito et al. CCS 2022).

• Sampling method for Triple encryption.

• Inverse sampling is introduced:
If the forward sampling fails (the pairs up to r-2 round are defined),
the last-round pair is re-defined by the inverse sampling.

Inverse sampling

defined by 
forward operation
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Sampling Method
⚫ Resampling method (Naito et al. CCS 2022).

• Sampling method for Triple encryption.

• Inverse sampling is introduced:
If the forward sampling fails (the pairs up to r-2 round are defined),
the last-round pair is re-defined by the inverse sampling.

• If no collision occurs in the inverse sampling, then
all the internal pairs can be consistently defined. 

Inverse sampling

defined by 
forward operation
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Sampling Method
⚫ Resampling method (Naito et al. CCS 2022).

• Sampling method for Triple encryption.

• Inverse sampling is introduced:
If the forward sampling fails (the pairs up to r-2 round are defined),
the last-round pair is re-defined by the inverse sampling.

• If no collision occurs in the inverse sampling, then
all the internal pairs can be consistently defined. 

• The failure event of the resampling method is that collisions occur
in both the forward and inverse samplings.   

• The security from the two collisions is 2n/3 bits (not tight).  

Inverse sampling

defined by 
forward operation
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Our Resampling Method
⚫ Update the resampling method to achieve the tight mu-bound rn/(r+1) bits.

⚫ We update the inverse sampling as follows. 

• If a collision occurs in the inverse sampling, then
the rounds defined by the forward sampling are updated. 

• The inverse sampling is restarted from the updated round. 

• The updates are allowed up to the first round.  

⚫ The updated resampling method tolerates the collisions multiple times. 

⚫ The probability of the multiple collisions is rn/(r+1) bits.

⚫ The updated resampling method can consistently define 
the internal pairs up to the tight mu-bound rn/(r+1) bits.

Inverse sampling

defined by 
forward operation
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Our Resampling Method
⚫ Update the resampling method to achieve the tight mu-bound rn/(r+1) bits.

⚫ We update the inverse sampling as follows. 

• If a collision occurs in the inverse sampling, then
the rounds defined by the forward sampling are updated. 

• The inverse sampling is restarted from the updated round. 

• The updates are allowed up to the first round. 

⚫ The updated resampling method allows the multiple collisions. 

⚫ The probability of the multiple collisions is rn/(r+1) bits.

⚫ The updated resampling method can consistently define 
the internal pairs up to the tight mu-bound rn/(r+1) bits. 

Inverse sampling

defined by 
forward operation
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Conclusion
⚫ We consider the security of r-round key 

alternating cipher (KAC).

⚫ Existing works for r-round KAC

• Tight single-user security for KAC with a single 
random permutation.

• Tight multi-user security for KAC 

• with r random permutations,

• with r+1 independent subkeys.

⚫ We prove the tight muti-user security of 
any round KAC 

• with a single random permutation,

• with r-wise independent subkeys.

⚫ We present the updated resampling method.

⚫ Our result offers the tight multi-user security of 
tweakable KACs.  
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