
Laconic Function Evaluation,
Functional Encryption and Obfuscation
for RAMs with Sublinear Computation

Eurocrypt 2024

Fangqi Dong Ethan MookZihan Hao Daniel Wichs
IIIS, Tsinghua

University
IIIS, Tsinghua

University
Northeastern

University
Northeastern

University
&

NTT Research

Laconic Function Evaluation (LFE)

Laconic Function Evaluation (LFE)

C x

Laconic Function Evaluation (LFE)

C x

Laconic Function Evaluation (LFE)

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

* in CRS model, CRS hidden

Laconic Function Evaluation (LFE)

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

digest very short compared to |C |

* in CRS model, CRS hidden

Laconic Function Evaluation (LFE)

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

digest very short compared to |C |

* in CRS model, CRS hidden

Laconic Function Evaluation (LFE)

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(C, 𝖼𝗍) = C(x)

digest very short compared to |C |

* in CRS model, CRS hidden

Laconic Function Evaluation (LFE)

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(C, 𝖼𝗍) = C(x) Security: Server learns nothing more than C(x)

digest very short compared to |C |

* in CRS model, CRS hidden

Laconic Function Evaluation (LFE)

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

Like FHE: 2-round 2PC where Server does the computational work

𝖣𝖾𝖼(C, 𝖼𝗍) = C(x) Security: Server learns nothing more than C(x)

digest very short compared to |C |

* in CRS model, CRS hidden

Laconic Function Evaluation (LFE)

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

Like FHE: 2-round 2PC where Server does the computational work
But “flipped”: Server learns the output (instead of Client)

𝖣𝖾𝖼(C, 𝖼𝗍) = C(x) Security: Server learns nothing more than C(x)

digest very short compared to |C |

* in CRS model, CRS hidden

Laconic Function Evaluation (LFE)

𝖼𝗍

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)𝖣𝖾𝖼(C, 𝖼𝗍) = C(x)

Laconic Function Evaluation (LFE)

𝖼𝗍

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)𝖣𝖾𝖼(C, 𝖼𝗍) = C(x)

Laconic Function Evaluation (LFE)

𝖼𝗍

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE
- [Döttling-Gajland-Malavolta’23]: LFE for TMs from iO + SSB

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)𝖣𝖾𝖼(C, 𝖼𝗍) = C(x)

Laconic Function Evaluation (LFE)

𝖼𝗍

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE
- [Döttling-Gajland-Malavolta’23]: LFE for TMs from iO + SSB

Problem: Server computation is at least linear in inputs!

C x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(C)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)𝖣𝖾𝖼(C, 𝖼𝗍) = C(x)

LFE for RAMs

x

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x

Goal: output RAM computation P(x, y)

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x

Goal: output RAM computation P(x, y)

Some fixed RAM program
(e.g. universal)

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

xy ỹ

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

𝖯𝗋𝖾𝗉

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)

y ỹ

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

𝖯𝗋𝖾𝗉

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

y ỹ

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

𝖯𝗋𝖾𝗉

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(ỹ, 𝖼𝗍) = P(x, y)

y ỹ

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

𝖯𝗋𝖾𝗉

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(ỹ, 𝖼𝗍) = P(x, y)

y ỹ

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

𝖯𝗋𝖾𝗉

 run time: 𝖣𝖾𝖼 T

*suppressing and
polylog factors

𝗉𝗈𝗅𝗒(λ)

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(ỹ, 𝖼𝗍) = P(x, y)

y ỹ

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

𝖯𝗋𝖾𝗉

 run time: 𝖣𝖾𝖼 T

 run time: 𝖯𝗋𝖾𝗉 |y |1+ε

*suppressing and
polylog factors

𝗉𝗈𝗅𝗒(λ)

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(ỹ, 𝖼𝗍) = P(x, y)

y ỹ

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

𝖯𝗋𝖾𝗉

 run time: 𝖣𝖾𝖼 T

 run time: 𝖯𝗋𝖾𝗉 |y |1+ε

 run time: 𝖤𝗇𝖼 |x | + T

*suppressing and
polylog factors

𝗉𝗈𝗅𝗒(λ)

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(ỹ, 𝖼𝗍) = P(x, y)

Main Result: We build LFE for RAMs assuming RingLWE
Additionally assuming iO, get run time just 𝖤𝗇𝖼 |x |

y ỹ

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

𝖯𝗋𝖾𝗉

 run time: 𝖣𝖾𝖼 T

 run time: 𝖯𝗋𝖾𝗉 |y |1+ε

 run time: 𝖤𝗇𝖼 |x | + T

*suppressing and
polylog factors

𝗉𝗈𝗅𝗒(λ)

LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)

𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(ỹ, 𝖼𝗍) = P(x, y)

Main Result: We build LFE for RAMs assuming RingLWE
Additionally assuming iO, get run time just 𝖤𝗇𝖼 |x |

y ỹ

Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program
(e.g. universal)

𝖯𝗋𝖾𝗉

 run time: 𝖣𝖾𝖼 T

 run time: 𝖯𝗋𝖾𝗉 |y |1+ε

 run time: 𝖤𝗇𝖼 |x | + T

*suppressing and
polylog factors

𝗉𝗈𝗅𝗒(λ)

Main challenge: Privately accessing the public database y

RAM-LFE vs Garbled RAM
P, y

Garbled RAM

RAM-LFE
P, xy

RAM-LFE vs Garbled RAM
P, y

ỹ, 𝗌𝗄 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖣𝖡(y)
ỹ

Garbled RAM

RAM-LFE
P, xy

RAM-LFE vs Garbled RAM
P, y

ỹ, 𝗌𝗄 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖣𝖡(y)
ỹ

Garbled RAM

RAM-LFE
P, xy

 belongs to client and is garbled
with respect to their secret key
y

RAM-LFE vs Garbled RAM
P, y

ỹ, 𝗌𝗄 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖣𝖡(y)
ỹ

𝖼𝗍 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖯𝗋𝗈𝗀(𝗌𝗄, P)𝖼𝗍

Garbled RAM

RAM-LFE
P, xy

 belongs to client and is garbled
with respect to their secret key
y

RAM-LFE vs Garbled RAM
P, y

ỹ, 𝗌𝗄 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖣𝖡(y)
ỹ

𝖼𝗍 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖯𝗋𝗈𝗀(𝗌𝗄, P)𝖼𝗍

Garbled RAM

RAM-LFE
P, x

𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)
y

 belongs to client and is garbled
with respect to their secret key
y

RAM-LFE vs Garbled RAM
P, y

ỹ, 𝗌𝗄 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖣𝖡(y)
ỹ

𝖼𝗍 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖯𝗋𝗈𝗀(𝗌𝗄, P)𝖼𝗍

Garbled RAM

RAM-LFE
P, x

𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)
𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

y

 belongs to client and is garbled
with respect to their secret key
y

RAM-LFE vs Garbled RAM
P, y

ỹ, 𝗌𝗄 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖣𝖡(y)
ỹ

𝖤𝗏𝖺𝗅(ỹ, 𝖼𝗍) = P(y)

𝖼𝗍 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖯𝗋𝗈𝗀(𝗌𝗄, P)𝖼𝗍

Garbled RAM

RAM-LFE
P, x

𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)
𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(ỹ, 𝖼𝗍) = P(x, y)

y

 belongs to client and is garbled
with respect to their secret key
y

RAM-LFE vs Garbled RAM
P, y

ỹ, 𝗌𝗄 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖣𝖡(y)
ỹ

𝖤𝗏𝖺𝗅(ỹ, 𝖼𝗍) = P(y)

𝖼𝗍 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖯𝗋𝗈𝗀(𝗌𝗄, P)𝖼𝗍

Garbled RAM

RAM-LFE
P, x

𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)
𝖼𝗍 ← 𝖤𝗇𝖼(𝖽𝗂𝗀, x)

𝖼𝗍

𝖣𝖾𝖼(ỹ, 𝖼𝗍) = P(x, y)

y

Need to evaluate over public
database y

 belongs to client and is garbled
with respect to their secret key
y

DEPIR vs ORAM

ORAM

DEPIR
iy

y

DEPIR vs ORAM
ỹ, 𝗌𝗄 ← 𝖮𝖱𝖠𝖬 . 𝖨𝗇𝗂𝗍(y)

ỹ

ORAM

DEPIR
i

I, r ← 𝖣𝖤𝖯𝖨𝖱 . 𝖰𝗎𝖾𝗋𝗒(i)

y

y

DEPIR vs ORAM
ỹ, 𝗌𝗄 ← 𝖮𝖱𝖠𝖬 . 𝖨𝗇𝗂𝗍(y)

ỹ

q ← 𝖮𝖱𝖠𝖬 . 𝖱𝖾𝖺𝖽(𝗌𝗄, i)

ORAM

DEPIR
i

I I, r ← 𝖣𝖤𝖯𝖨𝖱 . 𝖰𝗎𝖾𝗋𝗒(i)

y

q

y

DEPIR vs ORAM
ỹ, 𝗌𝗄 ← 𝖮𝖱𝖠𝖬 . 𝖨𝗇𝗂𝗍(y)

ỹ

q ← 𝖮𝖱𝖠𝖬 . 𝖱𝖾𝖺𝖽(𝗌𝗄, i)

ORAM

DEPIR
i

I I, r ← 𝖣𝖤𝖯𝖨𝖱 . 𝖰𝗎𝖾𝗋𝗒(i)
ỹ[I]

ỹ := 𝖣𝖤𝖯𝖨𝖱 . 𝖯𝗋𝖾𝗉(y)
y[i] = 𝖣𝖤𝖯𝖨𝖱 . 𝖣𝖾𝖼(ỹ[I], r)

y

y[i]

q

y

DEPIR vs ORAM
ỹ, 𝗌𝗄 ← 𝖮𝖱𝖠𝖬 . 𝖨𝗇𝗂𝗍(y)

ỹ

q ← 𝖮𝖱𝖠𝖬 . 𝖱𝖾𝖺𝖽(𝗌𝗄, i)

ORAM

DEPIR
i

I I, r ← 𝖣𝖤𝖯𝖨𝖱 . 𝖰𝗎𝖾𝗋𝗒(i)
ỹ[I]

ỹ := 𝖣𝖤𝖯𝖨𝖱 . 𝖯𝗋𝖾𝗉(y)
y[i] = 𝖣𝖤𝖯𝖨𝖱 . 𝖣𝖾𝖼(ỹ[I], r)

y

y[i]

q

y

— Private database, requires client secret key

DEPIR vs ORAM
ỹ, 𝗌𝗄 ← 𝖮𝖱𝖠𝖬 . 𝖨𝗇𝗂𝗍(y)

ỹ

q ← 𝖮𝖱𝖠𝖬 . 𝖱𝖾𝖺𝖽(𝗌𝗄, i)

ORAM

DEPIR
i

I I, r ← 𝖣𝖤𝖯𝖨𝖱 . 𝖰𝗎𝖾𝗋𝗒(i)
ỹ[I]

ỹ := 𝖣𝖤𝖯𝖨𝖱 . 𝖯𝗋𝖾𝗉(y)
y[i] = 𝖣𝖤𝖯𝖨𝖱 . 𝖣𝖾𝖼(ỹ[I], r)

y

y[i]

q

y

— Private database, requires client secret key

— Public database, public deterministic preprocessing

DEPIR vs ORAM
ỹ, 𝗌𝗄 ← 𝖮𝖱𝖠𝖬 . 𝖨𝗇𝗂𝗍(y)

ỹ

q ← 𝖮𝖱𝖠𝖬 . 𝖱𝖾𝖺𝖽(𝗌𝗄, i)

ORAM

DEPIR
i

I I, r ← 𝖣𝖤𝖯𝖨𝖱 . 𝖰𝗎𝖾𝗋𝗒(i)
ỹ[I]

ỹ := 𝖣𝖤𝖯𝖨𝖱 . 𝖯𝗋𝖾𝗉(y)

Prior Work: [Lin-M-Wichs’23] build DEPIR from RingLWE

y[i] = 𝖣𝖤𝖯𝖨𝖱 . 𝖣𝖾𝖼(ỹ[I], r)

y

y[i]

q

y

— Private database, requires client secret key

— Public database, public deterministic preprocessing

Construction template
We follow the general template for constructing Garbled RAM

Construction template
We follow the general template for constructing Garbled RAM

1. Construct “UMA” secure version
- Security only protects internal state not the

memory access pattern

Construction template
We follow the general template for constructing Garbled RAM

1. Construct “UMA” secure version
- Security only protects internal state not the

memory access pattern

For LFE: Crucially
need UMA version to
allow public database

Construction template
We follow the general template for constructing Garbled RAM

1. Construct “UMA” secure version
- Security only protects internal state not the

memory access pattern

2. Upgrade to full security
- Protect access pattern with ORAM + DEPIR

For LFE: Crucially
need UMA version to
allow public database

Construction template
We follow the general template for constructing Garbled RAM

1. Construct “UMA” secure version
- Security only protects internal state not the

memory access pattern

2. Upgrade to full security
- Protect access pattern with ORAM + DEPIR

For LFE: Crucially
need UMA version to
allow public database

3. For strong efficiency: Use iO to obfuscate
the client’s encryption procedure and offload
to server

Construction template
We follow the general template for constructing Garbled RAM

1. Construct “UMA” secure version
- Security only protects internal state not the

memory access pattern

2. Upgrade to full security
- Protect access pattern with ORAM + DEPIR

For LFE: Crucially
need UMA version to
allow public database

3. For strong efficiency: Use iO to obfuscate
the client’s encryption procedure and offload
to server

Requires careful
argument and special
ORAM construction

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

RAM program P

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

RAM program P

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

internal state 𝗌𝗍

RAM program P

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

internal state 𝗌𝗍

RAM program P

𝗌𝗍

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

internal state 𝗌𝗍

RAM program P

𝗌𝗍

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

internal state 𝗌𝗍

RAM program P
y[i]

𝗌𝗍

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
y[i]

𝗌𝗍

i

𝗌𝗍

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit

y[i]

𝗌𝗍

i

𝗌𝗍

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit

y[i]

𝗌𝗍

i

𝗌𝗍 Labels for 𝗌𝗍

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit

y[i]

𝗌𝗍

i

𝗌𝗍 Labels for 𝗌𝗍

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍 Labels for 𝗌𝗍

LOT.Send for wire labels
corresponding to y[i]

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍 Labels for 𝗌𝗍

LOT.Send for wire labels
corresponding to y[i]

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍

LOT ensures that only the
label for is revealed
(and not)

y[i]
1 − y[i]

Labels for 𝗌𝗍

LOT.Send for wire labels
corresponding to y[i]

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍

LOT ensures that only the
label for is revealed
(and not)

y[i]
1 − y[i]

Labels for 𝗌𝗍

Client produces garbled step circuits —
one for each step of

T
P

UMA secure RAM-LFE

CPU
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍

LOT.Send for wire labels
corresponding to y[i]

LOT digest can be computed for
public !y

LOT ensures that only the
label for is revealed
(and not)

y[i]
1 − y[i]

Full security with DEPIR

CPU
Step circuit

y[i]

𝗌𝗍

i

𝗌𝗍 y

+ ORAM for the client’s database x

Full security with DEPIR

CPU
Step circuit

Garbled step circuit

y[i]

𝗌𝗍

i

𝗌𝗍 y

+ ORAM for the client’s database x

Full security with DEPIR

CPU
Step circuit ỹ

Garbled step circuit

y[i]

𝗌𝗍

i

𝗌𝗍 y
DEPIR

Preprocessing

+ ORAM for the client’s database x

Full security with DEPIR

CPU
Step circuit ỹ

Garbled step circuit
Hardcoded: LOT digest of ỹ

y[i]

𝗌𝗍

i

𝗌𝗍 y
DEPIR

Preprocessing

+ ORAM for the client’s database x

Full security with DEPIR

CPU
Step circuit ỹ

Garbled step circuit
Hardcoded: LOT digest of ỹ

y[i]

𝗌𝗍

i

𝗌𝗍 y
DEPIR

Preprocessing

+ ORAM for the client’s database x

Full security with DEPIR

CPU
Step circuit ỹ

Garbled step circuit
Hardcoded: LOT digest of ỹ

y[i]

𝗌𝗍

i

𝗌𝗍 y
DEPIR

Preprocessing

1. Sample DEPIR
query to y[i]

+ ORAM for the client’s database x

Full security with DEPIR

CPU
Step circuit ỹ

Garbled step circuit
Hardcoded: LOT digest of ỹ

y[i]

𝗌𝗍

i

𝗌𝗍 y
DEPIR

Preprocessing

1. Sample DEPIR
query to y[i]

2. LOT.Send wire
labels for query
locations

+ ORAM for the client’s database x

Full security with DEPIR

CPU
Step circuit ỹ

Garbled step circuit
Hardcoded: LOT digest of ỹ

y[i]

𝗌𝗍

i

𝗌𝗍 y
DEPIR

Preprocessing

1. Sample DEPIR
query to y[i]

2. LOT.Send wire
labels for query
locations

3. Recover
with DEPIR.Dec
under garbling

y[i]

+ ORAM for the client’s database x

Strong Efficiency with iO

ỹ y
DEPIR

Preprocessing

Strong Efficiency with iO

ỹ y
DEPIR

Preprocessing

𝖦𝖢𝖦𝖾𝗇𝖽𝗂𝗀ỹ
(t)

Strong Efficiency with iO

ỹ y
DEPIR

Preprocessing

𝖦𝖢𝖦𝖾𝗇𝖽𝗂𝗀ỹ
(t)

Strong Efficiency with iO

ỹ y
DEPIR

PreprocessingCPU
Step circuit

-th Garbled step circuit
Hardcoded: LOT digest of
t

ỹ

y[i]

𝗌𝗍

i

𝗌𝗍

1. Sample DEPIR
query to

2. LOT.Send wire
labels for query
locations

3. Recover
with DEPIR.Dec
under garbling

y[i]

y[i]

𝖦𝖢𝖦𝖾𝗇𝖽𝗂𝗀ỹ
(t)

Strong Efficiency with iO

ỹ y
DEPIR

PreprocessingCPU
Step circuit

-th Garbled step circuit
Hardcoded: LOT digest of
t

ỹ

y[i]

𝗌𝗍

i

𝗌𝗍

1. Sample DEPIR
query to

2. LOT.Send wire
labels for query
locations

3. Recover
with DEPIR.Dec
under garbling

y[i]

y[i]

iO()𝖦𝖢𝖦𝖾𝗇𝖽𝗂𝗀ỹ
(t)

Additional Results

Additional Results
Result: We build (multi-key) functional encryption for RAMs

Additional Results
Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

Additional Results
Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y
- Decryption recovers in sublinear time in P(x, y) |x | , |y |

Additional Results
Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y
- Decryption recovers in sublinear time in P(x, y) |x | , |y |
Assumptions: FE for circuits + RingLWE

Additional Results
Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y
- Decryption recovers in sublinear time in P(x, y) |x | , |y |
Assumptions: FE for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Additional Results
Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y
- Decryption recovers in sublinear time in P(x, y) |x | , |y |
Assumptions: FE for circuits + RingLWE

Result: We build iO for RAMs

Prior work: [ACFQ’22] only allows short secret keys

Additional Results
Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y
- Decryption recovers in sublinear time in P(x, y) |x | , |y |
Assumptions: FE for circuits + RingLWE

Result: We build iO for RAMs
- Given , obfuscate the program (P, y) P(⋅ , y)

Prior work: [ACFQ’22] only allows short secret keys

Additional Results
Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y
- Decryption recovers in sublinear time in P(x, y) |x | , |y |
Assumptions: FE for circuits + RingLWE

Result: We build iO for RAMs
- Given , obfuscate the program (P, y) P(⋅ , y)
- Evaluation can be sublinear in |y |

Prior work: [ACFQ’22] only allows short secret keys

Additional Results
Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y
- Decryption recovers in sublinear time in P(x, y) |x | , |y |
Assumptions: FE for circuits + RingLWE

Result: We build iO for RAMs
- Given , obfuscate the program (P, y) P(⋅ , y)
- Evaluation can be sublinear in |y |
Assumptions: iO for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Additional Results
Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y
- Decryption recovers in sublinear time in P(x, y) |x | , |y |
Assumptions: FE for circuits + RingLWE

Result: We build iO for RAMs
- Given , obfuscate the program (P, y) P(⋅ , y)
- Evaluation can be sublinear in |y |
Assumptions: iO for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Prior work: [BCGHJLPTV’18] doesn’t allow sublinear runtime

Thank you!

eprint: 2024/068

