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Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program 
(e.g. universal)

𝖯𝗋𝖾𝗉

Main Result: We build LFE for RAMs assuming RingLWE 



LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)
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Goal: output RAM computation P(x, y)
 has RAM runtime P(x, y) T

Some fixed RAM program 
(e.g. universal)

𝖯𝗋𝖾𝗉

Main Result: We build LFE for RAMs assuming RingLWE 



LFE for RAMs

x
𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)
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ỹ

𝖼𝗍 ← 𝖦𝖺𝗋𝖻𝗅𝖾𝖯𝗋𝗈𝗀(𝗌𝗄, P)𝖼𝗍

Garbled RAM

RAM-LFE
P, x

𝖽𝗂𝗀 = 𝖧𝖺𝗌𝗁(ỹ)
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ỹ, 𝗌𝗄 ← 𝖮𝖱𝖠𝖬 . 𝖨𝗇𝗂𝗍(y)

ỹ
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ỹ, 𝗌𝗄 ← 𝖮𝖱𝖠𝖬 . 𝖨𝗇𝗂𝗍(y)

ỹ
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ỹ := 𝖣𝖤𝖯𝖨𝖱 . 𝖯𝗋𝖾𝗉(y)
y[i] = 𝖣𝖤𝖯𝖨𝖱 . 𝖣𝖾𝖼(ỹ[I], r)
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For LFE: Crucially 
need UMA version to 
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3. For strong efficiency: Use iO to obfuscate 
the client’s encryption procedure and offload 
to server

Requires careful 
argument and special 
ORAM construction



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

RAM program P



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

RAM program P



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

internal state 𝗌𝗍

RAM program P



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

internal state 𝗌𝗍

RAM program P

𝗌𝗍



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

internal state 𝗌𝗍

RAM program P

𝗌𝗍



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
read location i

internal state 𝗌𝗍

RAM program P
y[i]

𝗌𝗍



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y
y[i]

𝗌𝗍

i

𝗌𝗍



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit

y[i]

𝗌𝗍

i

𝗌𝗍



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit

y[i]

𝗌𝗍

i

𝗌𝗍 Labels for 𝗌𝗍



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit

y[i]

𝗌𝗍

i

𝗌𝗍 Labels for 𝗌𝗍



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍 Labels for 𝗌𝗍



LOT.Send for wire labels 
corresponding to y[i]

UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍 Labels for 𝗌𝗍



LOT.Send for wire labels 
corresponding to y[i]

UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍

LOT ensures that only the 
label for  is revealed 
(and not )

y[i]
1 − y[i]

Labels for 𝗌𝗍



LOT.Send for wire labels 
corresponding to y[i]

UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍

LOT ensures that only the 
label for  is revealed 
(and not )

y[i]
1 − y[i]

Labels for 𝗌𝗍

Client produces  garbled step circuits — 
one for each step of 

T
P



UMA secure RAM-LFE 

CPU 
Step circuit

RAM-NISC from [Cho-Döttling-Garg-Gupta-Miao-Polychroniadou’17] 
Building blocks: Laconic Oblivious Transfer + Garbled circuits

y

Garbled step circuit 
Hardcoded: LOT digest of y

y[i]

𝗌𝗍

i

𝗌𝗍

LOT.Send for wire labels 
corresponding to y[i]

LOT digest can be computed for 
public !y

LOT ensures that only the 
label for  is revealed 
(and not )

y[i]
1 − y[i]



Full security with DEPIR

CPU 
Step circuit

y[i]

𝗌𝗍

i

𝗌𝗍 y

+ ORAM for the client’s database x



Full security with DEPIR

CPU 
Step circuit

Garbled step circuit

y[i]

𝗌𝗍

i

𝗌𝗍 y

+ ORAM for the client’s database x



Full security with DEPIR

CPU 
Step circuit ỹ
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y[i]

𝗌𝗍

i

𝗌𝗍 y
DEPIR 

Preprocessing

+ ORAM for the client’s database x



Full security with DEPIR

CPU 
Step circuit ỹ
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