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Proofs of program execution
Prover’s claim: Running program  on input  gives output .  
Verifier could re-execute the claim to check. 

𝒫 x y

SNARKs convince the verifier far more efficiently. 



Proofs of program execution
Prover’s claim: Running program  on input  gives output .  
Verifier could re-execute the claim to check. 

𝒫 x y

Succinct = short, easy to check; verification often takes seconds or minutes

Non-interactive = just one proof that can be shared with anyone

Argument = computationally-sound


(Optional): Zero-knowledge = the verifier learns nothing about the advice  w

Prove𝒫 Verify𝒫

x

y
x
y

π 0/1
π

w

SNARKs convince the verifier far more efficiently. 



Building SNARKs: frontends and backends

Frontend 
Converts program to a 

mathematical IR

Proof π

Eg: C program Think of this as an arithmetic 
circuit with wires and  gates 

over a finite field . 
+, ×

𝔽

Think of this as a 
Circuit-SAT proof 
on the given I/O.

Intermediate  
Representation

Backend 
Proves that the IR is satisfied 

on the given I/O. 
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Frontend 
Converts program to a 

mathematical IR

Proof π

Eg: C program Think of this as an arithmetic 
circuit with wires and  gates 

over a finite field . 
+, ×

𝔽

Think of this as a 
Circuit-SAT proof 
on the given I/O.

Intermediate  
Representation

Eg: R1CS, Plonkish, AIR, CCS Eg: GKR, GGPR, Groth16, 
Polynomial IOPs like Spartan, 
Plonk.

Backend 
Proves that the IR is satisfied 

on the given I/O. 



A primer on prover costs
Suppose the circuit has  gates and  wires .g w
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Backend

Generally, a two-step process: 

Steps Type Factor

1. Commit to wires (using a 
polynomial commitment scheme) Group operations

2. Run a probabilistic proof 
algorithm. Field operations

O(w)

O(g + w)



A primer on prover costs
Suppose the circuit has  gates and  wires .g w

Proof πArithmetic 
Circuit

Backend

Generally, a two-step process: 

The larger the circuit (especially the wires) the higher the prover cost. 

Steps Type Factor

1. Commit to wires (using a 
polynomial commitment scheme) Group operations

2. Run a probabilistic proof 
algorithm. Field operations

O(w)

O(g + w)



Two frontend approaches

Per-program approach: 
compiles each program into 
a new circuit. 

Program 
Circuit
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Two frontend approaches

Per-program approach: 
compiles each program into 
a new circuit. 

Universal 
Circuit

Program 
Circuit

x y

x y

Per-processor approach:  
a universal circuit that can 
take a class of programs as 
input. 

Eg: C program

Eg: x86, RISC-V, Ethereum VM

Eg: RISC-V assembly program Popularly referred to as “zkVMs” 



Advantages of the CPU approach

1. Avoids per-program processing and storage 
2. Programmability: re-use existing languages, compilers and tooling. 
3. Focus auditing and formal verification efforts into one circuit. 

Vital for developing and deploying SNARKs. 

Universal 
Circuit



Advantages of the CPU approach

However… universal circuits are notoriously large, incurring proving time overheads 
compared to a circuit optimized for a given program.  

1. Avoids per-program processing and storage 
2. Programmability: re-use existing languages, compilers and tooling. 
3. Focus auditing and formal verification efforts into one circuit. 

Vital for developing and deploying SNARKs. 

Universal 
Circuit



Why are CPU circuits large? 

1. The cost of generality: To handle arbitrary programs, 
CPU circuits must be able to execute any operation at a 
given step. This leads to a blowup in the gate/wire count. 

switch (instr) {  
case ADD: {..}  
case XOR: {..}  
...

  (50 more)
  ...  
case SHIFT: {..}  

}
RISC-V  50 operations. 

Ethereum VM  140 operations.

≈
≈

A switch-case over the instruction set is 
emulated in the CPU circuit.



Why are CPU circuits large? 

1. The cost of generality: To handle arbitrary programs, 
CPU circuits must be able to execute any operation at a 
given step. This leads to a blowup in the gate/wire count. 

switch (instr) {  
case ADD: {..}  
case XOR: {..}  
...

  (50 more)
  ...  
case SHIFT: {..}  

}
RISC-V  50 operations. 

Ethereum VM  140 operations.

≈
≈

2. Instruction sets are designed to work with bitwise 
operations, which are costly to perform with field elements. 

Require bit decompositions: 1 wire per bit of input. 

XOR of two 32-bit values takes  100 gates and wires!≈ v ∈ 𝔽

1 0 11 …

A switch-case over the instruction set is 
emulated in the CPU circuit.

Decomposition of a field element.
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This work: Jolt

We design a new paradigm to efficiently proof program executions.

Pay for only the instruction that is executed! 

Minimal circuit: just about 60 gates and 100 wires per step of RISC-V

CPU Circuit
Just 
One 
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How? Offload work outside of the circuit to more efficient arguments. 


Primitive assembly instructions have interesting mathematical structure (namely, 
efficient polynomial representations).

We use this to design efficient “lookup arguments” for CPU instructions— namely, 
structured Lasso.
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How? Offload work outside of the circuit to more efficient arguments. 


Primitive assembly instructions have interesting mathematical structure (namely, 
efficient polynomial representations).

We use this to design efficient “lookup arguments” for CPU instructions— namely, 
structured Lasso.

This work: Jolt

We design a new paradigm to efficiently proof program executions.

Pay for only the instruction that is executed! 

Minimal circuit: just about 60 gates and 100 wires per step of RISC-V

Implemented this on the RISC-V processor. 

Achieve proving speeds of about 100 kHz instrs/second on a MacBook. 

CPU Circuit
Just 
One 

Lookup  
Table

Companion work: STW23 - ia.cr/2023/1216
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1. Fetch instr. 
2. Decode opcode, operands.
3. Execute instruction. 
4. Update registers

Machine State (Deterministic) Transition function
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Program Code

PC Registers

Instr1, Instr2, …
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Machine state and Transitions 

1. Fetch instr. 
2. Decode opcode, operands.
3. Execute instruction. 
4. Update registers

Machine 
State

Transition Machine 
State …Transition Machine 

State
Machine 

State
Transition

 total stepsn

Machine State (Deterministic) Transition function

Transition

Each transition step consists of memory accesses and instruction executions. 

RAM
Program Code

PC Registers

Instr1, Instr2, …



Obtaining the execution trace

Each step consists of 
memory operations and 
instruction logic: 

memory accesses 
instruction exec. 

: a vector of (R/W, address, value)
: (operation, operands, output)

Machine 
State …Transition Machine 
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Machine 

State
Transition TransitionProver executes the 

program and records 
the execution trace 
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Obtaining the execution trace

After executing the whole 
program:

Each step consists of 
memory operations and 
instruction logic: 

memory accesses 
instruction exec. 

Trace of memory accesses.

Trace of instruction execs. 

Concatenate

: a vector of (R/W, address, value)
: (operation, operands, output)

Machine 
State …Transition Machine 

State
Machine 

State
Transition TransitionProver executes the 

program and records 
the execution trace 
trace.



The Jolt proof modules

Prove consistency of 
memory accesses.

Trace of memory accesses Trace of instruction execs 

Proof correctness of instruction 
execs.
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Memory-checking frontend
Online memory-checking: Design a circuit that maintains a commitment to the memory 
(e.g. Merkle tree) in a circuit. Verify reads and verifiably update after writes.  
Produce a SNARK proof for this circuit and the given memory access trace. 



Memory-checking frontend

Expensive! Each cryptographic hash costs 100s of wires and gates.

Online memory-checking: Design a circuit that maintains a commitment to the memory 
(e.g. Merkle tree) in a circuit. Verify reads and verifiably update after writes.  
Produce a SNARK proof for this circuit and the given memory access trace. 



Memory-checking frontend

Expensive! Each cryptographic hash costs 100s of wires and gates.

Offline memory checking [BEGKN91]. Adapted to SNARKs in Spice [SAGL18].  

Multiset hash algorithm:  
1. Convert each memory access to a scalar with a  

Reed-Solomon fingerprint 
2. Product of these scalars produces the multiset hash 

[SAGL18] - Spice: Proving the correct 
execution of concurrent services in zero-
knowledge - Setty et al., 2018

[BEGKN91] - Checking the correctness of 
memories - Blum et al., 1991

Online memory-checking: Design a circuit that maintains a commitment to the memory 
(e.g. Merkle tree) in a circuit. Verify reads and verifiably update after writes.  
Produce a SNARK proof for this circuit and the given memory access trace. 

With this method, each multiset 
hash costs only 3 gates per 

memory access!

Consistency of a 
sequence of 

memory accesses

Multiset equality 
check

reduces to



Memory-checking backend

GKR-style 
Grand Product 

Argument

performed usingConsistency of a 
sequence of 

memory accesses

Multiset equality 
check

reduces to

First used in 
Spartan - Setty19



Memory-checking backend

GKR-style 
Grand Product 

Argument

performed using

Prover complexity: 
 field operations  Õ(m + M)

Consistency of a 
sequence of 

memory accesses

Multiset equality 
check

reduces to

Trace of memory accesses

• vector of (R/W, address, 
value) tuples

Offline Memory Checking π𝗆𝖾𝗆

Prover commits to the trace.

First used in 
Spartan - Setty19

 accesses with memory size :   m M



Up next: instruction execution

Trace of memory accesses Trace of instruction execs. 

Proof correctness of  
instruction execs.

Prove consistency 
of traces.

π𝗂𝗇𝗌𝗍𝗋π𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝗒

Machine 
State

Transition Machine 
State …Transition Machine 

State
Machine 

State
Transition Transition

π𝗆𝖾𝗆

Offline Memory Checking
(Spice + GKR)



Instruction execution without circuits?
What if we had a pre-processed table with a list of all valid (operation, operands, 
output) combinations?

T𝖷𝖮𝖱

T𝖫𝖳

T𝖲𝖫𝖫

…

T𝖢𝖯𝖴
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Instruction execution without circuits?
What if we had a pre-processed table with a list of all valid (operation, operands, 
output) combinations?

Lookup arguments are a class of protocols that do this.  

Pre-processing + prover costs: usually between linear/quadratic in #ops, . |T |

T𝖷𝖮𝖱

T𝖫𝖳

T𝖲𝖫𝖫

…

Trace of instruction execs Prove that each exec. is in 
this pre-processed table 

T𝖢𝖯𝖴

T𝖢𝖯𝖴

• Vector of (operation, 
operands, output) tuples

π𝗂𝗇𝗌𝗍𝗋

But this table is HUGE, making these protocols infeasible.  

Two -bit operands   =  (32-bit) entries per instruction! W ⟹ 22W 264



But these tables are highly structured. 
We never have to materialize these tables because they each have some succinct 
representation. 

Each operation’s output is an efficient-
to-evaluate* multilinear polynomial 

over the bits of its input. 

** can be evaluated at a random point  in r ∈ 𝔽 O( |𝚟𝚊𝚛𝚜 | )



But these tables are highly structured. 
We never have to materialize these tables because they each have some succinct 
representation. 

Each operation’s output is an efficient-
to-evaluate* multilinear polynomial 

over the bits of its input. 

Let the operands be .  
Some example tables are: 

x, y ∈ {0,1}W

T𝖷𝖮𝖱(x, y) =
W

∑
i=0

2i(xi ⋅ yi + (1 − xi) ⋅ (1 − yi))

T𝖫𝖳(x, y) =
W

∑
i=0

(1 − xi) ⋅ yi ⋅ �̃�𝖰(x>i, y>i)

T𝖲𝖫𝖫(x, y) =
W

∑
k=0

�̃�𝖰(y, k) ⋅
W

∑
j=k

2jxj−kShift Left Logical:

Less Than:

** can be evaluated at a random point  in r ∈ 𝔽 O( |𝚟𝚊𝚛𝚜 | )



But these tables are highly structured. 
We never have to materialize these tables because they each have some succinct 
representation. 

Each operation’s output is an efficient-
to-evaluate* multilinear polynomial 

over the bits of its input. 

Why is this interesting? 

Because polynomials 
are the language of 
SNARK backends!

Let the operands be .  
Some example tables are: 

x, y ∈ {0,1}W

T𝖷𝖮𝖱(x, y) =
W

∑
i=0

2i(xi ⋅ yi + (1 − xi) ⋅ (1 − yi))

T𝖫𝖳(x, y) =
W

∑
i=0

(1 − xi) ⋅ yi ⋅ �̃�𝖰(x>i, y>i)

T𝖲𝖫𝖫(x, y) =
W

∑
k=0

�̃�𝖰(y, k) ⋅
W

∑
j=k

2jxj−kShift Left Logical:

Less Than:

** can be evaluated at a random point  in r ∈ 𝔽 O( |𝚟𝚊𝚛𝚜 | )



The tables can be “decomposed” further
Each table’s output is a simple collation of smaller subtable MLEs, each over a chunk of 

the original inputs.

x

y

x63 x0

y63 y0  chunks, sayc = 8

= g( ), ,…T(x, y) gc( ) g1( )g2( ),
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The tables can be “decomposed” further
Each table’s output is a simple collation of smaller subtable MLEs, each over a chunk of 

the original inputs.

x

y

x63 x0

y63 y0  chunks, sayc = 8

We only need 23 unique subtable MLEs to represent all the base RISC-V 

instructions. 

AND, EQ, GT, LTU, OR, SIGN-EXTEND, SLL, SRL, TRUNCATE, ZERO-LSB, …

= g( ), ,…T(x, y) gc( ) g1( )g2( ),

…



Lasso efficiently looks up decomposed tables

Core tools: sumchecks, offline memory-checking. Built on Spark from Spartan.

• Operand chunks, subtable outputs.  
• Memory-checking advice. 
• Flags indicating the subtables 

used.

π𝗂𝗇𝗌𝗍𝗋

[STW23] - Lasso: ia.cr/2023/1216

Trace of instruction executions

Setty19: ia.cr/2019/550

Lasso Lookup 
Argument

 lookups,  decomposed chunks  Prover cost is  m c ⟹ 3c ⋅ (m + |T |1/c )

,    second term is |T | = 2128 c = 8 ⟹ 216



Proving consistency of traces

Consistency checks:   
Values read from memory = 
operands looked up.  
PC = address of instruction 
fetched in memory 
Check lookup query format 
(we have four types)  
…

Circuit to prove 
consistency of 

traces

Trace of memory accesses Trace of instruction logic 

Only about 60 gates, 100 wires 
for RISC-V!
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Proving consistency of traces

Consistency checks:   
Values read from memory = 
operands looked up.  
PC = address of instruction 
fetched in memory 
Check lookup query format 
(we have four types)  
…

Circuit to prove 
consistency of 

traces

Trace of memory accesses Trace of instruction logic 

π𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝗒

SNARK  
backend

Highly uniform computation: 
repeated copies of the same 
circuit. Significantly improves 
proving and verification times.


We use R1CS and Spartan
Setty19: ia.cr/2019/550

Only about 60 gates, 100 wires 
for RISC-V!



The final Jolt prover

Trace of memory accesses Trace of instruction logic 

π𝗂𝗇𝗌𝗍𝗋π𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝗒π𝗆𝖾𝗆

Consistency 
Checks  

(Spartan)

Lookup Argument
(Lasso)

Offline Memory 
Checking

(Spice + GKR)

1. Commit to the 
traces.  

We use the 
Hyrax scheme. 

2. Prover backend:  
Linear in the 
number of steps. 
Entirely sumcheck 
+ multi-linear 
polynomial 
evaluations. 

[Totally about 100 elements per step]

Prover backend is linear in the number of CPU steps.

CPU = RISC-V 32-bit Integer ISA



The Jolt prover’s costs
1. Commitment costs

2. Prover backend

CPU = RISC-V 32-bit Integer ISA

As most of the 100 elements are small, when using Hyrax with 
Pippenger’s MSM algorithm, this is equivalent to committing to 
about 8 arbitrary (256-bit)  elems. 𝔽

Just sumchecks and multi-linear polynomial evaluations.   

For an -step program with memory size : n |M |

Module Main steps P cost

Memory-checking (Spice) 2 GKRs O(n + |memory|)

Constraints (Spartan) 2 sumchecks O(n)

Lookups (Lasso) 1 sumcheck, 2 GKRs O(c2n)

Proof size: Depends on the poly comm scheme. With Hyrax, it’s  group elements. O( n)
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https://github.com/a16z/jolt

Sumchecks: 
52%

Commitments: 
23%

https://github.com/a16z/jolt


Conclusion

Open-source implementation: 
https://github.com/a16z/jolt

50 kHz 100 kHz 15 mHz

Instructions proven per second: (on a MacBook)

The Apollo 11 
computer Jolt

Sumchecks: 
52%

Commitments: 
23%

https://github.com/a16z/jolt


Conclusion

Open-source implementation: 
https://github.com/a16z/jolt

50 kHz 100 kHz 15 mHz

Instructions proven per second: (on a MacBook)

The Apollo 11 
computer Jolt

Sumchecks: 
52%

Commitments: 
23%

A lot more (exciting) work to do! 
Thanks for listening!

https://github.com/a16z/jolt

