SNARKs for VMs using lookups

Jolt:

Arasu Arun¹ Srinath Setty² Justin Thaler^{3, 4}

GEORGETOWN alózcrypto UNIVERSITY

Proofs of program execution

Prover's claim: Running program \mathscr{P} on input *x* gives output *y*.

- Verifier could re-execute the claim to check.
- **SNARKs** convince the verifier far more efficiently.
- put *x* gives output *y*. k.

Proofs of program execution

Prover's claim: Running program \mathscr{P} on input x gives output y.

Verifier could re-execute the claim to check.

SNARKs convince the verifier far more efficiently.

Succinct = short, easy to check; verification often takes seconds or minutes **Non-interactive** = just one proof that can be shared with anyone **Argument** = computationally-sound (**Optional**): **Zero-knowledge** = the verifier learns nothing about the advice w

mathematical IR

Eg: C program

Think of this as an arithmetic **circuit** with wires and $+, \times$ gates over a finite field \mathbb{F} .

Think of this as a **Circuit-SAT** proof on the given I/O.

Frontend

Converts program to a mathematical IR

Eg: C program

Think of this as an **arithmetic circuit** with wires and $+, \times$ gates over a finite field \mathbb{F} .

Eg: R1CS, Plonkish, AIR, CCS

Think of this as a **Circuit-SAT** proof on the given I/O.

Eg: GKR, GGPR, Groth16, Polynomial IOPs like Spartan, Plonk.

A primer on prover costs

Suppose the circuit has g gates and w wires.

Arithmetic

Circuit

Generally, a two-step process:

Туре Steps

1. Commit to wires (using a polynomial commitment scheme)

2. Run a probabilistic proof algorithm.

A primer on prover costs

Suppose the circuit has g gates and w wires.

Arithmetic

Circuit

Generally, a two-step process:

Steps Туре

1. Commit to wires (using a polynomial commitment scheme)

2. Run a probabilistic proof algorithm.

The larger the circuit (especially the wires) the higher the prover cost.

Two frontend approaches

Per-program approach: compiles each program into a new circuit.

Eg: C program

Two frontend approaches

Per-program approach: compiles each program into a new circuit.

Eg: C program

Per-processor approach: a universal circuit that can

take a class of programs as input.

Popularly referred to as "zkVMs"

Eg: RISC-V assembly program

Advantages of the CPU approach

- Avoids per-program processing and storage
- **Programmability**: re-use existing languages, compilers and tooling. 2.
- 3. Focus **auditing** and formal verification efforts into one circuit.

Vital for developing and deploying SNARKs.

Advantages of the CPU approach

- Avoids per-program processing and storage
- **Programmability**: re-use existing languages, compilers and tooling. 2.
- Focus auditing and formal verification efforts into one circuit. 3.

Vital for developing and deploying SNARKs.

universal circuits are notoriously large, incurring proving time overheads However compared to a circuit optimized for a given program.

Why are CPU circuits large?

1. The cost of generality: To handle arbitrary programs, CPU circuits must be able to execute any operation at a given step. This leads to a blowup in the gate/wire count.

RISC-V \approx 50 operations.

Ethereum VM \approx 140 operations.

```
'switch (instr) {
            case ADD: {..}
            case XOR: {..}
            • • •
             (50 more)
             • • •
            case SHIFT: {..}
A switch-case over the instruction set is
```

emulated in the CPU circuit.

Why are CPU circuits large?

1. **The cost of generality**: To handle arbitrary programs, CPU circuits must be able to execute any operation at a given step. This leads to a blowup in the gate/wire count.

RISC-V \approx 50 operations.

Ethereum VM \approx 140 operations.

2. Instruction sets are designed to work with **bitwise operations**, which are costly to perform with field elements. Require bit decompositions: 1 wire per bit of input. XOR of two 32-bit values takes \approx 100 gates and wires!

emulated in the CPU circuit.

Decomposition of a field element.

We design a new paradigm to efficiently proof program executions.

- o Pay for only the instruction that is executed!
- o Minimal circuit: just about 60 gates and 100 wires per step of RISC-V

We design a new paradigm to efficiently proof program executions.

- o Pay for only the instruction that is executed!
- o Minimal circuit: just about 60 gates and 100 wires per step of RISC-V

How? **Offload** work outside of the circuit to more efficient arguments.

- o Primitive assembly instructions have interesting mathematical structure (namely, efficient polynomial representations).
- o We use this to design efficient "lookup arguments" for CPU instructions namely, structured Lasso. Companion work: STW23 - ia.cr/2023/1216

We design a new paradigm to efficiently proof program executions.

- o Pay for only the instruction that is executed!
- o Minimal circuit: just about 60 gates and 100 wires per step of RISC-V

How? **Offload** work outside of the circuit to more efficient arguments.

- o Primitive assembly instructions have interesting mathematical structure (namely, efficient polynomial representations).
- o We use this to design efficient "lookup arguments" for CPU instructions namely, structured Lasso. Companion work: STW23 - ia.cr/2023/1216

Implemented this on the RISC-V processor. o Achieve proving speeds of about 100 kHz instrs/second on a MacBook.

Machine state and Transitions

Machine State

PC Registers		
Program Code		
Instr1, Instr2, …		

(Deterministic) Transition function

- **1. Fetch** instr.
- 2. Decode opcode, operands.
- 3. Execute instruction.
- 4. Update registers

Machine state and Transitions

Machine State

PC	Registers	
Pr	ogram Code	RAM
Instr1,	Instr2, …	

(Deterministic) Transition function

Machine state and Transitions

Machine State

PC	R	egisters			
Pre	ogram	Code		RAM	
Instr1, Instr2, …					

Each transition step consists of memory accesses and instruction executions.

(Deterministic) Transition function

Obtaining the execution trace

Prover executes the program and records the execution trace trace.

Each step consists of memory operations and instruction logic:

Transition Machine State instruction exec.

memory accesses : a vector of (R/W, address, value) : (operation, operands, output)

Obtaining the execution trace

Prover executes the program and records the execution trace trace.

Each step consists of memory operations and instruction logic:

After executing the whole program:

memory accesses : a vector of (R/W, address, value) instruction exec. : (operation, operands, output)

Concatenate

Trace of memory accesses.

Trace of instruction execs.

The Jolt proof modules

The Jolt proof modules

The Jolt proof modules

Memory-checking frontend

(e.g. Merkle tree) in a circuit. Verify reads and verifiably update after writes. Produce a SNARK proof for this circuit and the given memory access trace.

- **Online memory-checking:** Design a circuit that maintains a commitment to the memory

Memory-checking frontend

(e.g. Merkle tree) in a circuit. Verify reads and verifiably update after writes.

Produce a SNARK proof for this circuit and the given memory access trace.

- **Online memory-checking:** Design a circuit that maintains a commitment to the memory

 - **Expensive!** Each cryptographic hash costs 100s of wires and gates.

Memory-checking frontend

Online memory-checking: Design a circuit that maintains a commitment to the memory (e.g. Merkle tree) in a circuit. Verify reads and verifiably update after writes.

Produce a SNARK proof for this circuit and the given memory access trace.

Expensive! Each cryptographic hash costs 100s of wires and gates.

<u>Offline memory checking [BEGKN91]</u>. Adapted to SNARKs in Spice [SAGL18].

Consistency of a sequence of memory accesses

reduces to

Multiset hash algorithm:

- 1. Convert each memory access to a scalar with a **Reed-Solomon** fingerprint
- 2. Product of these scalars produces the multiset hash

[BEGKN91] - Checking the correctness of memories - Blum et al., 1991

[SAGL18] - Spice: Proving the correct execution of concurrent services in zeroknowledge - Setty et al., 2018

Multiset equality check

With this method, each multiset hash costs only 3 gates per memory access!

Memory-checking backend

Consistency of a sequence of memory accesses

performed using

First used in Spartan - Setty19

GKR-style Grand Product Argument

Memory-checking backend

Up next: instruction execution

Instruction execution without circuits?

What if we had a pre-processed table with a list of all valid (operation, operands, output) combinations? τ

Instruction execution without circuits?

What if we had a pre-processed table with a list of all valid (operation, operands, output) combinations?

Trace of instruction execs

 Vector of (operation, operands, output) tuples

Instruction execution without circuits?

What if we had a pre-processed table with a list of all valid (operation, operands, output) combinations?

Trace of instruction execs

 Vector of (operation, operands, output) tuples

Lookup arguments are a class of protocols that do this.

<u>Pre-processing + prover costs</u>: usually between linear/quadratic in #ops, |T|.

But this table is **HUGE**, making these protocols infeasible. Two W-bit operands $\implies 2^{2W} = 2^{64}$ (32-bit) entries per instruction!

Prove that each exec. is in this pre-processed table $T_{\rm CPU}$

 π_{instr}

But these tables are highly structured.

We never have to materialize these tables because they each have some succinct representation.

Each operation's output is an efficientto-evaluate* multilinear polynomial over the bits of its input.

** can be evaluated at a random point $r \in \mathbb{F}$ in O(|vars|)

But these tables are highly structured.

We never have to materialize these tables because they each have some succinct representation.

Each operation's output is an efficientto-evaluate* multilinear polynomial over the bits of its input.

Shift Left Logica

Less Than

** can be evaluated at a random point $r \in \mathbb{F}$ in O(|vars|)

Let the operands be $x, y \in \{0,1\}^W$. Some example tables are:

$$T_{\text{XOR}}(x, y) = \sum_{i=0}^{W} 2^{i} (x_{i} \cdot y_{i} + (1 - x_{i}) \cdot (1 - x_{i}))$$

I: $T_{\text{SLL}}(x, y) = \sum_{k=0}^{W} \widetilde{\text{EQ}}(y, k) \cdot \sum_{j=k}^{W} 2^{j} x_{j-k}$
I: $T_{\text{LT}}(x, y) = \sum_{i=0}^{W} (1 - x_{i}) \cdot y_{i} \cdot \widetilde{\text{EQ}}(x_{>i}, y_{>i})$

But these tables are highly structured.

We never have to materialize these tables because they each have some succinct representation.

Each operation's output is an efficientto-evaluate* multilinear polynomial over the bits of its input.

Why is this interesting?

Because polynomials are the language of **SNARK** backends!

Shift Left Logica

Less Than

Let the operands be $x, y \in \{0,1\}^W$. Some example tables are:

$$T_{\text{XOR}}(x, y) = \sum_{i=0}^{W} 2^{i} (x_{i} \cdot y_{i} + (1 - x_{i}) \cdot (1 - x_{i}))$$

I: $T_{\text{SLL}}(x, y) = \sum_{k=0}^{W} \widetilde{\text{EQ}}(y, k) \cdot \sum_{j=k}^{W} 2^{j} x_{j-k}$
I: $T_{\text{LT}}(x, y) = \sum_{i=0}^{W} (1 - x_{i}) \cdot y_{i} \cdot \widetilde{\text{EQ}}(x_{>i}, y_{>i})$

** can be evaluated at a random point $r \in \mathbb{F}$ in O(|vars|)

The tables can be "decomposed" further

Each table's output is a simple collation of smaller subtable MLEs, each over a chunk of the original inputs.

$$c = 8$$
 chunks, say

The tables can be "decomposed" further

Each table's output is a simple collation of smaller subtable MLEs, each over a chunk of the original inputs.

We only need 23 unique subtable MLEs to represent all the base RISC-V instructions.

AND, EQ, GT, LTU, OR, SIGN-EXTEND, SLL, SRL, TRUNCATE, ZERO-LSB, ...

Lasso efficiently looks up decomposed tables

[STW23] - Lasso: ia.cr/2023/1216

Core tools: sumchecks, offline memory-checking. Built on Spark from Spartan.

Trace of **instruction** executions

- Operand chunks, subtable outputs.
- Memory-checking advice.
- Flags indicating the subtables used.

m lookups, *c* decomposed chunks \implies Prover cost is $3c \cdot (m + |T|^{1/c})$

Setty19: ia.cr/2019/550

Lasso Lookup Argument

 π_{instr}

 $|T| = 2^{128}, c = 8 \implies$ second term is 2^{16}

Proving consistency of traces

Trace of memory accesses

Consistency checks:

- Values read from memory = operands looked up.
- o PC = address of instruction
 fetched in memory
- o Check lookup query format (we have four types)

Ο...

Proving consistency of traces

Trace of memory accesses

Consistency checks:

- Values read from memory = operands looked up.
- o PC = address of instruction
 fetched in memory
- o Check lookup query format (we have four types)

ο...

 $\pi_{\rm consistency}$

Proving consistency of traces

Trace of memory accesses

Consistency checks:

- Values read from memory = operands looked up.
- o PC = address of instruction
 fetched in memory
- o Check lookup query format (we have four types)

ο...

Trace of instruction logic

Circuit to prove consistency of traces

> SNARK backend

Only about 60 gates, 100 wires for RISC-V!

Highly **uniform** computation: repeated copies of the same circuit. Significantly improves proving and verification times.

o We use R1CS and Spartan

Setty19: ia.cr/2019/550

 $\pi_{\rm consistency}$

The final Jolt prover

- 1. **Commit** to the traces.
- o We use the Hyrax scheme.

2. Prover backend:

- o Linear in the number of steps.
- o Entirely sumcheck + multi-linear polynomial evaluations.

Prover backend is **linear** in the number of CPU steps.

The Jolt prover's costs

1. Commitment costs

2. Prover backend

Module	Main steps	P cost
Memory-checking (Spice)	2 GKRs	O(n + memory)
Constraints (Spartan)	2 sumchecks	O(n)
Lookups (Lasso)	1 sumcheck, 2 GKRs	O(c²n)

Proof size: Depends on the poly comm scheme. With Hyrax, it's $O(\sqrt{n})$ group elements.

- As most of the 100 elements are small, when using Hyrax with Pippenger's MSM algorithm, this is equivalent to committing to about 8 arbitrary (256-bit) Felems.
- Just sumchecks and multi-linear polynomial evaluations.
- For an *n*-step program with memory size |M|:

Conclusion

Open-source implementation: <u>https://github.com/a16z/jolt</u>

Conclusion

Open-source implementation: https://github.com/a16z/jolt

Instructions proven per second: (on a MacBook)

15 mHz

Conclusion

Open-source implementation: https://github.com/a16z/jolt

Instructions proven per second: (on a MacBook)

50 kHz 100 kHz The Apollo 11 Jolt computer

A lot more (exciting) work to do! Thanks for listening!