
Jolt:

SNARKs for VMs using lookups

Srinath SettyArasu Arun Justin Thaler

1 2 3 4

1 2 3, 4

Proofs of program execution
Prover’s claim: Running program on input gives output .
Verifier could re-execute the claim to check.

𝒫 x y

SNARKs convince the verifier far more efficiently.

Proofs of program execution
Prover’s claim: Running program on input gives output .
Verifier could re-execute the claim to check.

𝒫 x y

Succinct = short, easy to check; verification often takes seconds or minutes

Non-interactive = just one proof that can be shared with anyone

Argument = computationally-sound

(Optional): Zero-knowledge = the verifier learns nothing about the advice w

Prove𝒫 Verify𝒫

x

y
x
y

π 0/1
π

w

SNARKs convince the verifier far more efficiently.

Building SNARKs: frontends and backends

Frontend
Converts program to a

mathematical IR

Proof π

Eg: C program Think of this as an arithmetic
circuit with wires and gates

over a finite field .
+, ×

𝔽

Think of this as a
Circuit-SAT proof
on the given I/O.

Intermediate
Representation

Backend
Proves that the IR is satisfied

on the given I/O.

Building SNARKs: frontends and backends

Frontend
Converts program to a

mathematical IR

Proof π

Eg: C program Think of this as an arithmetic
circuit with wires and gates

over a finite field .
+, ×

𝔽

Think of this as a
Circuit-SAT proof
on the given I/O.

Intermediate
Representation

Eg: R1CS, Plonkish, AIR, CCS Eg: GKR, GGPR, Groth16,
Polynomial IOPs like Spartan,
Plonk.

Backend
Proves that the IR is satisfied

on the given I/O.

A primer on prover costs
Suppose the circuit has gates and wires .g w

Proof πArithmetic
Circuit

Backend

Generally, a two-step process:

Steps Type Factor

1. Commit to wires (using a
polynomial commitment scheme) Group operations

2. Run a probabilistic proof
algorithm. Field operations

O(w)

O(g + w)

A primer on prover costs
Suppose the circuit has gates and wires .g w

Proof πArithmetic
Circuit

Backend

Generally, a two-step process:

The larger the circuit (especially the wires) the higher the prover cost.

Steps Type Factor

1. Commit to wires (using a
polynomial commitment scheme) Group operations

2. Run a probabilistic proof
algorithm. Field operations

O(w)

O(g + w)

Two frontend approaches

Per-program approach:
compiles each program into
a new circuit.

Program
Circuit

x y
Eg: C program

Two frontend approaches

Per-program approach:
compiles each program into
a new circuit.

Universal
Circuit

Program
Circuit

x y

x y

Per-processor approach:
a universal circuit that can
take a class of programs as
input.

Eg: C program

Eg: x86, RISC-V, Ethereum VM

Eg: RISC-V assembly program Popularly referred to as “zkVMs”

Advantages of the CPU approach

1. Avoids per-program processing and storage
2. Programmability: re-use existing languages, compilers and tooling.
3. Focus auditing and formal verification efforts into one circuit.

Vital for developing and deploying SNARKs.

Universal
Circuit

Advantages of the CPU approach

However… universal circuits are notoriously large, incurring proving time overheads
compared to a circuit optimized for a given program.

1. Avoids per-program processing and storage
2. Programmability: re-use existing languages, compilers and tooling.
3. Focus auditing and formal verification efforts into one circuit.

Vital for developing and deploying SNARKs.

Universal
Circuit

Why are CPU circuits large?

1. The cost of generality: To handle arbitrary programs,
CPU circuits must be able to execute any operation at a
given step. This leads to a blowup in the gate/wire count.

switch (instr) {  
case ADD: {..}  
case XOR: {..}  
...

 (50 more)
 ...  
case SHIFT: {..}  

}
RISC-V 50 operations.

Ethereum VM 140 operations.

≈
≈

A switch-case over the instruction set is
emulated in the CPU circuit.

Why are CPU circuits large?

1. The cost of generality: To handle arbitrary programs,
CPU circuits must be able to execute any operation at a
given step. This leads to a blowup in the gate/wire count.

switch (instr) {  
case ADD: {..}  
case XOR: {..}  
...

 (50 more)
 ...  
case SHIFT: {..}  

}
RISC-V 50 operations.

Ethereum VM 140 operations.

≈
≈

2. Instruction sets are designed to work with bitwise
operations, which are costly to perform with field elements.

Require bit decompositions: 1 wire per bit of input.

XOR of two 32-bit values takes 100 gates and wires!≈ v ∈ 𝔽

1 0 11 …

A switch-case over the instruction set is
emulated in the CPU circuit.

Decomposition of a field element.

This work: Jolt
CPU Circuit

Just
One

Lookup
Table

This work: Jolt

We design a new paradigm to efficiently proof program executions.

Pay for only the instruction that is executed!

Minimal circuit: just about 60 gates and 100 wires per step of RISC-V

CPU Circuit
Just
One

Lookup
Table

How? Offload work outside of the circuit to more efficient arguments.

Primitive assembly instructions have interesting mathematical structure (namely,
efficient polynomial representations).

We use this to design efficient “lookup arguments” for CPU instructions— namely,
structured Lasso.

This work: Jolt

We design a new paradigm to efficiently proof program executions.

Pay for only the instruction that is executed!

Minimal circuit: just about 60 gates and 100 wires per step of RISC-V

CPU Circuit
Just
One

Lookup
Table

Companion work: STW23 - ia.cr/2023/1216

How? Offload work outside of the circuit to more efficient arguments.

Primitive assembly instructions have interesting mathematical structure (namely,
efficient polynomial representations).

We use this to design efficient “lookup arguments” for CPU instructions— namely,
structured Lasso.

This work: Jolt

We design a new paradigm to efficiently proof program executions.

Pay for only the instruction that is executed!

Minimal circuit: just about 60 gates and 100 wires per step of RISC-V

Implemented this on the RISC-V processor.

Achieve proving speeds of about 100 kHz instrs/second on a MacBook.

CPU Circuit
Just
One

Lookup
Table

Companion work: STW23 - ia.cr/2023/1216

Machine state and Transitions

1. Fetch instr.
2. Decode opcode, operands.
3. Execute instruction.
4. Update registers

Machine State (Deterministic) Transition function

RAM
Program Code

PC Registers

Instr1, Instr2, …

Machine state and Transitions

1. Fetch instr.
2. Decode opcode, operands.
3. Execute instruction.
4. Update registers

Machine
State

Transition Machine
State …Transition Machine

State
Machine

State
Transition

 total stepsn

Machine State (Deterministic) Transition function

Transition

RAM
Program Code

PC Registers

Instr1, Instr2, …

Machine state and Transitions

1. Fetch instr.
2. Decode opcode, operands.
3. Execute instruction.
4. Update registers

Machine
State

Transition Machine
State …Transition Machine

State
Machine

State
Transition

 total stepsn

Machine State (Deterministic) Transition function

Transition

Each transition step consists of memory accesses and instruction executions.

RAM
Program Code

PC Registers

Instr1, Instr2, …

Obtaining the execution trace

Each step consists of
memory operations and
instruction logic:

memory accesses
instruction exec.

: a vector of (R/W, address, value)
: (operation, operands, output)

Machine
State …Transition Machine

State
Machine

State
Transition TransitionProver executes the

program and records
the execution trace
trace.

Obtaining the execution trace

After executing the whole
program:

Each step consists of
memory operations and
instruction logic:

memory accesses
instruction exec.

Trace of memory accesses.

Trace of instruction execs.

Concatenate

: a vector of (R/W, address, value)
: (operation, operands, output)

Machine
State …Transition Machine

State
Machine

State
Transition TransitionProver executes the

program and records
the execution trace
trace.

The Jolt proof modules

Prove consistency of
memory accesses.

Trace of memory accesses Trace of instruction execs

Proof correctness of instruction
execs.

π𝗂𝗇𝗌𝗍𝗋π𝗆𝖾𝗆

Machine
State

Transition Machine
State …Transition Machine

State
Machine

State
Transition Transition

vector of (R/W, address, value) Vector of (operation, operands, output)

The Jolt proof modules

Prove consistency of
memory accesses.

Trace of memory accesses Trace of instruction execs

Proof correctness of instruction
execs.

Prove consistency
of traces.

π𝗂𝗇𝗌𝗍𝗋π𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝗒π𝗆𝖾𝗆

Machine
State

Transition Machine
State …Transition Machine

State
Machine

State
Transition Transition

vector of (R/W, address, value) Vector of (operation, operands, output)

The Jolt proof modules

Prove consistency of
memory accesses.

Trace of memory accesses Trace of instruction execs

Proof correctness of instruction
execs.

Prove consistency
of traces.

π𝗂𝗇𝗌𝗍𝗋π𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝗒π𝗆𝖾𝗆

Machine
State

Transition Machine
State …Transition Machine

State
Machine

State
Transition Transition

vector of (R/W, address, value) Vector of (operation, operands, output)

Memory-checking frontend
Online memory-checking: Design a circuit that maintains a commitment to the memory
(e.g. Merkle tree) in a circuit. Verify reads and verifiably update after writes.
Produce a SNARK proof for this circuit and the given memory access trace.

Memory-checking frontend

Expensive! Each cryptographic hash costs 100s of wires and gates.

Online memory-checking: Design a circuit that maintains a commitment to the memory
(e.g. Merkle tree) in a circuit. Verify reads and verifiably update after writes.
Produce a SNARK proof for this circuit and the given memory access trace.

Memory-checking frontend

Expensive! Each cryptographic hash costs 100s of wires and gates.

Offline memory checking [BEGKN91]. Adapted to SNARKs in Spice [SAGL18].

Multiset hash algorithm:
1. Convert each memory access to a scalar with a

Reed-Solomon fingerprint
2. Product of these scalars produces the multiset hash

[SAGL18] - Spice: Proving the correct
execution of concurrent services in zero-
knowledge - Setty et al., 2018

[BEGKN91] - Checking the correctness of
memories - Blum et al., 1991

Online memory-checking: Design a circuit that maintains a commitment to the memory
(e.g. Merkle tree) in a circuit. Verify reads and verifiably update after writes.
Produce a SNARK proof for this circuit and the given memory access trace.

With this method, each multiset
hash costs only 3 gates per

memory access!

Consistency of a
sequence of

memory accesses

Multiset equality
check

reduces to

Memory-checking backend

GKR-style
Grand Product

Argument

performed usingConsistency of a
sequence of

memory accesses

Multiset equality
check

reduces to

First used in
Spartan - Setty19

Memory-checking backend

GKR-style
Grand Product

Argument

performed using

Prover complexity:
 field operations Õ(m + M)

Consistency of a
sequence of

memory accesses

Multiset equality
check

reduces to

Trace of memory accesses

• vector of (R/W, address,
value) tuples

Offline Memory Checking π𝗆𝖾𝗆

Prover commits to the trace.

First used in
Spartan - Setty19

 accesses with memory size : m M

Up next: instruction execution

Trace of memory accesses Trace of instruction execs.

Proof correctness of
instruction execs.

Prove consistency
of traces.

π𝗂𝗇𝗌𝗍𝗋π𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝗒

Machine
State

Transition Machine
State …Transition Machine

State
Machine

State
Transition Transition

π𝗆𝖾𝗆

Offline Memory Checking
(Spice + GKR)

Instruction execution without circuits?
What if we had a pre-processed table with a list of all valid (operation, operands,
output) combinations?

T𝖷𝖮𝖱

T𝖫𝖳

T𝖲𝖫𝖫

…

T𝖢𝖯𝖴

Instruction execution without circuits?
What if we had a pre-processed table with a list of all valid (operation, operands,
output) combinations?

T𝖷𝖮𝖱

T𝖫𝖳

T𝖲𝖫𝖫

…

Trace of instruction execs Prove that each exec. is in
this pre-processed table

T𝖢𝖯𝖴

T𝖢𝖯𝖴

• Vector of (operation,
operands, output) tuples

π𝗂𝗇𝗌𝗍𝗋

Instruction execution without circuits?
What if we had a pre-processed table with a list of all valid (operation, operands,
output) combinations?

Lookup arguments are a class of protocols that do this.

Pre-processing + prover costs: usually between linear/quadratic in #ops, . |T |

T𝖷𝖮𝖱

T𝖫𝖳

T𝖲𝖫𝖫

…

Trace of instruction execs Prove that each exec. is in
this pre-processed table

T𝖢𝖯𝖴

T𝖢𝖯𝖴

• Vector of (operation,
operands, output) tuples

π𝗂𝗇𝗌𝗍𝗋

But this table is HUGE, making these protocols infeasible.

Two -bit operands = (32-bit) entries per instruction! W ⟹ 22W 264

But these tables are highly structured.
We never have to materialize these tables because they each have some succinct
representation.

Each operation’s output is an efficient-
to-evaluate* multilinear polynomial

over the bits of its input.

** can be evaluated at a random point in r ∈ 𝔽 O(|𝚟𝚊𝚛𝚜 |)

But these tables are highly structured.
We never have to materialize these tables because they each have some succinct
representation.

Each operation’s output is an efficient-
to-evaluate* multilinear polynomial

over the bits of its input.

Let the operands be .
Some example tables are:

x, y ∈ {0,1}W

T𝖷𝖮𝖱(x, y) =
W

∑
i=0

2i(xi ⋅ yi + (1 − xi) ⋅ (1 − yi))

T𝖫𝖳(x, y) =
W

∑
i=0

(1 − xi) ⋅ yi ⋅ �̃�𝖰(x>i, y>i)

T𝖲𝖫𝖫(x, y) =
W

∑
k=0

�̃�𝖰(y, k) ⋅
W

∑
j=k

2jxj−kShift Left Logical:

Less Than:

** can be evaluated at a random point in r ∈ 𝔽 O(|𝚟𝚊𝚛𝚜 |)

But these tables are highly structured.
We never have to materialize these tables because they each have some succinct
representation.

Each operation’s output is an efficient-
to-evaluate* multilinear polynomial

over the bits of its input.

Why is this interesting?

Because polynomials
are the language of
SNARK backends!

Let the operands be .
Some example tables are:

x, y ∈ {0,1}W

T𝖷𝖮𝖱(x, y) =
W

∑
i=0

2i(xi ⋅ yi + (1 − xi) ⋅ (1 − yi))

T𝖫𝖳(x, y) =
W

∑
i=0

(1 − xi) ⋅ yi ⋅ �̃�𝖰(x>i, y>i)

T𝖲𝖫𝖫(x, y) =
W

∑
k=0

�̃�𝖰(y, k) ⋅
W

∑
j=k

2jxj−kShift Left Logical:

Less Than:

** can be evaluated at a random point in r ∈ 𝔽 O(|𝚟𝚊𝚛𝚜 |)

The tables can be “decomposed” further
Each table’s output is a simple collation of smaller subtable MLEs, each over a chunk of

the original inputs.

x

y

x63 x0

y63 y0 chunks, sayc = 8

= g(), ,…T(x, y) gc() g1()g2(),

…

The tables can be “decomposed” further
Each table’s output is a simple collation of smaller subtable MLEs, each over a chunk of

the original inputs.

x

y

x63 x0

y63 y0 chunks, sayc = 8

We only need 23 unique subtable MLEs to represent all the base RISC-V

instructions.

AND, EQ, GT, LTU, OR, SIGN-EXTEND, SLL, SRL, TRUNCATE, ZERO-LSB, …

= g(), ,…T(x, y) gc() g1()g2(),

…

Lasso efficiently looks up decomposed tables

Core tools: sumchecks, offline memory-checking. Built on Spark from Spartan.

• Operand chunks, subtable outputs.
• Memory-checking advice.
• Flags indicating the subtables

used.

π𝗂𝗇𝗌𝗍𝗋

[STW23] - Lasso: ia.cr/2023/1216

Trace of instruction executions

Setty19: ia.cr/2019/550

Lasso Lookup
Argument

 lookups, decomposed chunks Prover cost is m c ⟹ 3c ⋅ (m + |T |1/c)

, second term is |T | = 2128 c = 8 ⟹ 216

Proving consistency of traces

Consistency checks:
Values read from memory =
operands looked up.
PC = address of instruction
fetched in memory
Check lookup query format
(we have four types)
…

Circuit to prove
consistency of

traces

Trace of memory accesses Trace of instruction logic

Only about 60 gates, 100 wires
for RISC-V!

Proving consistency of traces

Consistency checks:
Values read from memory =
operands looked up.
PC = address of instruction
fetched in memory
Check lookup query format
(we have four types)
…

Circuit to prove
consistency of

traces

Trace of memory accesses Trace of instruction logic

π𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝗒

SNARK
backend

Only about 60 gates, 100 wires
for RISC-V!

Proving consistency of traces

Consistency checks:
Values read from memory =
operands looked up.
PC = address of instruction
fetched in memory
Check lookup query format
(we have four types)
…

Circuit to prove
consistency of

traces

Trace of memory accesses Trace of instruction logic

π𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝗒

SNARK
backend

Highly uniform computation:
repeated copies of the same
circuit. Significantly improves
proving and verification times.

We use R1CS and Spartan
Setty19: ia.cr/2019/550

Only about 60 gates, 100 wires
for RISC-V!

The final Jolt prover

Trace of memory accesses Trace of instruction logic

π𝗂𝗇𝗌𝗍𝗋π𝖼𝗈𝗇𝗌𝗂𝗌𝗍𝖾𝗇𝖼𝗒π𝗆𝖾𝗆

Consistency
Checks

(Spartan)

Lookup Argument
(Lasso)

Offline Memory
Checking

(Spice + GKR)

1. Commit to the
traces.

We use the
Hyrax scheme.

2. Prover backend:
Linear in the
number of steps.
Entirely sumcheck
+ multi-linear
polynomial
evaluations.

[Totally about 100 elements per step]

Prover backend is linear in the number of CPU steps.

CPU = RISC-V 32-bit Integer ISA

The Jolt prover’s costs
1. Commitment costs

2. Prover backend

CPU = RISC-V 32-bit Integer ISA

As most of the 100 elements are small, when using Hyrax with
Pippenger’s MSM algorithm, this is equivalent to committing to
about 8 arbitrary (256-bit) elems. 𝔽

Just sumchecks and multi-linear polynomial evaluations.

For an -step program with memory size : n |M |

Module Main steps P cost

Memory-checking (Spice) 2 GKRs O(n + |memory|)

Constraints (Spartan) 2 sumchecks O(n)

Lookups (Lasso) 1 sumcheck, 2 GKRs O(c2n)

Proof size: Depends on the poly comm scheme. With Hyrax, it’s group elements. O(n)

Conclusion

Open-source implementation:
https://github.com/a16z/jolt

Sumchecks:
52%

Commitments:
23%

https://github.com/a16z/jolt

Conclusion

Open-source implementation:
https://github.com/a16z/jolt

50 kHz 100 kHz 15 mHz

Instructions proven per second: (on a MacBook)

The Apollo 11
computer Jolt

Sumchecks:
52%

Commitments:
23%

https://github.com/a16z/jolt

Conclusion

Open-source implementation:
https://github.com/a16z/jolt

50 kHz 100 kHz 15 mHz

Instructions proven per second: (on a MacBook)

The Apollo 11
computer Jolt

Sumchecks:
52%

Commitments:
23%

A lot more (exciting) work to do!
Thanks for listening!

https://github.com/a16z/jolt

