
Constant-Size zk-SNARKs in
ROM from Falsifiable

Assumptions

Helger Lipmaa, University of Tartu

Roberto Parisella, Simula UiB

Janno Siim, Simula UiB

1

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

2

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

2

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

2

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

Interactive Argument

❑Relation 𝑅 = {(𝑥, 𝑤)} ⊆ 0,1 ∗

▪ 𝑥 is public

▪𝑤 is private

❑Prover claims: there is 𝑤 such that (𝑥, 𝑤) ∈ 𝑅

2

Prover (𝑥,𝑤) Verifier (𝑥)

SNARK

❑Succinct Non-interactive Argument of Knowledge

3

SNARK

❑Succinct Non-interactive Argument of Knowledge
▪ Succinct: argument size is sublinear in 𝑤

3

SNARK

❑Succinct Non-interactive Argument of Knowledge
▪ Succinct: argument size is sublinear in 𝑤

▪Non-interactive: single message from Prover to Verifier

3

SNARK

❑Succinct Non-interactive Argument of Knowledge
▪ Succinct: argument size is sublinear in 𝑤

▪Non-interactive: single message from Prover to Verifier

3

Prover (𝑥,𝑤) Verifier (𝑥)

SNARK

❑Succinct Non-interactive Argument of Knowledge
▪ Succinct: argument size is sublinear in 𝑤

▪Non-interactive: single message from Prover to Verifier

3

Prover (𝑥,𝑤) Verifier (𝑥)

SNARK

❑Succinct Non-interactive Argument of Knowledge
▪ Succinct: argument size is sublinear in 𝑤

▪Non-interactive: single message from Prover to Verifier

▪ Argument of Knowledge: prover knows 𝑤 if verifier accepts
(formally: 𝑤 can be efficiently extracted in the security proof)

3

Prover (𝑥,𝑤) Verifier (𝑥)

Many Applications

4

Many Applications

❑Verifiable outsourced computation

4

Many Applications

❑Verifiable outsourced computation

❑Blockchain scalability (ZK rollups)

4

Many Applications

❑Verifiable outsourced computation

❑Blockchain scalability (ZK rollups)

❑Verifiable electronic voting

4

Many Applications

❑Verifiable outsourced computation

❑Blockchain scalability (ZK rollups)

❑Verifiable electronic voting

❑Verifiable fully homomorphic encryption

4

Many Applications

❑Verifiable outsourced computation

❑Blockchain scalability (ZK rollups)

❑Verifiable electronic voting

❑Verifiable fully homomorphic encryption

❑…

4

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

oracle 𝑓1(𝑋)

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

oracle 𝑓1(𝑋)

𝑧1

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

oracle 𝑓1(𝑋)

𝑧1
oracle 𝑓2(𝑋)

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

oracle 𝑓1(𝑋)

𝑧1
oracle 𝑓2(𝑋)
𝑧2

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

oracle 𝑓1(𝑋)

𝑧1
oracle 𝑓2(𝑋)
𝑧2
⋮

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

oracle 𝑓1(𝑋)

𝑧1
oracle 𝑓2(𝑋)
𝑧2
⋮

❑Query oracles:

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

oracle 𝑓1(𝑋)

𝑧1
oracle 𝑓2(𝑋)
𝑧2
⋮

❑Query oracles:
▪ 𝑖1 𝛼1 , … 𝑖ℓ 𝛼ℓ

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

oracle 𝑓1(𝑋)

𝑧1
oracle 𝑓2(𝑋)
𝑧2
⋮

❑Query oracles:
▪ 𝑖1 𝛼1 , … 𝑖ℓ 𝛼ℓ
▪ 𝑓1 𝛼ℓ+1 , 𝑓2 𝛼ℓ+2 , …

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

5

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

oracles 𝑖1 𝑋 ,… , 𝑖ℓ(𝑋)

oracle 𝑓1(𝑋)

𝑧1
oracle 𝑓2(𝑋)
𝑧2
⋮

❑Query oracles:
▪ 𝑖1 𝛼1 , … 𝑖ℓ 𝛼ℓ
▪ 𝑓1 𝛼ℓ+1 , 𝑓2 𝛼ℓ+2 , …

❑Run a testing algorithm
on the responses

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

6

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

❑PIOP is knowledge-sound

6

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

❑PIOP is knowledge-sound
▪𝑤 is encoded in the polynomials

6

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

❑PIOP is knowledge-sound
▪𝑤 is encoded in the polynomials

❑Known how to construct constant-round PIOPs

6

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

❑PIOP is knowledge-sound
▪𝑤 is encoded in the polynomials

❑Known how to construct constant-round PIOPs
▪ Sonic, Marlin, Plonk, …

6

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

❑PIOP is knowledge-sound
▪𝑤 is encoded in the polynomials

❑Known how to construct constant-round PIOPs
▪ Sonic, Marlin, Plonk, …

❑PIOP is not succinct

6

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

❑PIOP is knowledge-sound
▪𝑤 is encoded in the polynomials

❑Known how to construct constant-round PIOPs
▪ Sonic, Marlin, Plonk, …

❑PIOP is not succinct
▪ Polynomials have high degree

6

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

7

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

❑ Kgen(𝑛): outputs commitment key ck for degree ≤
𝑛 polynomials

7

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

❑ Kgen(𝑛): outputs commitment key ck for degree ≤
𝑛 polynomials

❑ Com(ck, 𝑓(X)): outputs commitment C for polynomial 𝑓 of
deg 𝑓 ≤ 𝑛

7

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

❑ Kgen(𝑛): outputs commitment key ck for degree ≤
𝑛 polynomials

❑ Com(ck, 𝑓(X)): outputs commitment C for polynomial 𝑓 of
deg 𝑓 ≤ 𝑛

❑ Open ck, C, 𝛼, 𝑓 X : outputs 𝜂 = 𝑓(𝛼) and a proof 𝜋

7

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

❑ Kgen(𝑛): outputs commitment key ck for degree ≤
𝑛 polynomials

❑ Com(ck, 𝑓(X)): outputs commitment C for polynomial 𝑓 of
deg 𝑓 ≤ 𝑛

❑ Open ck, C, 𝛼, 𝑓 X : outputs 𝜂 = 𝑓(𝛼) and a proof 𝜋

❑ Verify ck, C, 𝛼, 𝜂, 𝜋 : accepts or rejects

7

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

❑ Kgen(𝑛): outputs commitment key ck for degree ≤
𝑛 polynomials

❑ Com(ck, 𝑓(X)): outputs commitment C for polynomial 𝑓 of
deg 𝑓 ≤ 𝑛

❑ Open ck, C, 𝛼, 𝑓 X : outputs 𝜂 = 𝑓(𝛼) and a proof 𝜋

❑ Verify ck, C, 𝛼, 𝜂, 𝜋 : accepts or rejects

Succinctness: Size of C and 𝜋 is sublinear in 𝑛

7

Non-black-box Extractability

8

Non-black-box Extractability

8

Adversary

Non-black-box Extractability

8

Adversary

𝑐𝑘

Non-black-box Extractability

8

Adversary

𝑐𝑘

random coins 𝑟

Non-black-box Extractability

8

Adversary

𝑐𝑘

random coins 𝑟

C, 𝛼, 𝜂, 𝜋 such that
Verify(ck, C, 𝛼, 𝜂, 𝜋) accepts

Non-black-box Extractability

8

Adversary

𝑐𝑘

random coins 𝑟

C, 𝛼, 𝜂, 𝜋 such that
Verify(ck, C, 𝛼, 𝜂, 𝜋) accepts

Extractor

Non-black-box Extractability

8

Adversary

𝑐𝑘

random coins 𝑟

C, 𝛼, 𝜂, 𝜋 such that
Verify(ck, C, 𝛼, 𝜂, 𝜋) accepts

Extractor

𝑐𝑘

Non-black-box Extractability

8

Adversary

𝑐𝑘

random coins 𝑟

C, 𝛼, 𝜂, 𝜋 such that
Verify(ck, C, 𝛼, 𝜂, 𝜋) accepts

Extractor

𝑐𝑘

random coins 𝑟

Non-black-box Extractability

8

Adversary

𝑐𝑘

random coins 𝑟

C, 𝛼, 𝜂, 𝜋 such that
Verify(ck, C, 𝛼, 𝜂, 𝜋) accepts

Extractor

𝑓(𝑋) such that

Com ck, 𝑓 X = C and

deg 𝑓 ≤ 𝑛

𝑐𝑘

random coins 𝑟

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)ck

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)

ck

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)
𝑧1

ck

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)
𝑧1

C2 = Com(ck, 𝑓2 𝑋)

ck

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)
𝑧1

C2 = Com(ck, 𝑓2 𝑋)

ck

𝑧2

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)
𝑧1

⋮

C2 = Com(ck, 𝑓2 𝑋)

ck

𝑧2

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)
𝑧1

⋮

C2 = Com(ck, 𝑓2 𝑋)

ck

𝑧2

𝛼1

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)
𝑧1

⋮

C2 = Com(ck, 𝑓2 𝑋)

ck

𝑧2

𝛼1

𝜂1 = 𝑖1 𝛼𝑖 , 𝜋1

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)
𝑧1

⋮

C2 = Com(ck, 𝑓2 𝑋)

ck

𝑧2

𝛼1

𝜂1 = 𝑖1 𝛼𝑖 , 𝜋1
⋮

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)
𝑧1

⋮

C2 = Com(ck, 𝑓2 𝑋)

ck

𝑧2

𝛼1

𝜂1 = 𝑖1 𝛼𝑖 , 𝜋1
⋮

❑Verify opening proofs

Mix PIOP and Poly-Com

9

Prover (𝑥,𝑤)
Verifier (𝑥)

𝑅

ck, Com ck, 𝑖1 𝑋 ,… , Com(ck, 𝑖ℓ 𝑋)

C1 = Com(ck, 𝑓1 𝑋)
𝑧1

⋮

C2 = Com(ck, 𝑓2 𝑋)

ck

𝑧2

𝛼1

𝜂1 = 𝑖1 𝛼𝑖 , 𝜋1
⋮

❑Verify opening proofs
❑Run PIOP’s testing

algorithm

Recipe for SNARKs

❑We now have an interactive argument of knowledge

10

Recipe for SNARKs

❑We now have an interactive argument of knowledge
▪Non-black-box extractability to extract polynomials from

commitments

10

Recipe for SNARKs

❑We now have an interactive argument of knowledge
▪Non-black-box extractability to extract polynomials from

commitments

▪ Polynomials reveal 𝑤

10

Recipe for SNARKs

❑We now have an interactive argument of knowledge
▪Non-black-box extractability to extract polynomials from

commitments

▪ Polynomials reveal 𝑤

❑Succinctness:

10

Recipe for SNARKs

❑We now have an interactive argument of knowledge
▪Non-black-box extractability to extract polynomials from

commitments

▪ Polynomials reveal 𝑤

❑Succinctness:
▪ If PIOP has a small number of rounds

10

Recipe for SNARKs

❑We now have an interactive argument of knowledge
▪Non-black-box extractability to extract polynomials from

commitments

▪ Polynomials reveal 𝑤

❑Succinctness:
▪ If PIOP has a small number of rounds

▪ Polynomial commitment is succinct

10

Recipe for SNARKs

❑We now have an interactive argument of knowledge
▪Non-black-box extractability to extract polynomials from

commitments

▪ Polynomials reveal 𝑤

❑Succinctness:
▪ If PIOP has a small number of rounds

▪ Polynomial commitment is succinct

Ingredient 3: Fiat-Shamir for non-interactivity

10

Where to get ingredients?

11

Where to get ingredients?

❑Efficient PIOPs exist

11

Where to get ingredients?

❑Efficient PIOPs exist

❑What about poly-com?

11

Where to get ingredients?

❑Efficient PIOPs exist

❑What about poly-com?

❑There are many

11

Where to get ingredients?

❑Efficient PIOPs exist

❑What about poly-com?

❑There are many

❑Popular option: KZG commitment

11

Where to get ingredients?

❑Efficient PIOPs exist

❑What about poly-com?

❑There are many

❑Popular option: KZG commitment

❑Proposed By Kate, Zaverucha, and Goldberg in [Asiacrypt
2010]

11

Where to get ingredients?

❑Efficient PIOPs exist

❑What about poly-com?

❑There are many

❑Popular option: KZG commitment

❑Proposed By Kate, Zaverucha, and Goldberg in [Asiacrypt
2010]
▪ good efficiency

11

Where to get ingredients?

❑Efficient PIOPs exist

❑What about poly-com?

❑There are many

❑Popular option: KZG commitment

❑Proposed By Kate, Zaverucha, and Goldberg in [Asiacrypt
2010]
▪ good efficiency

▪ constant size C and 𝜋

11

KZG Polynomial Commitment

12

KZG Polynomial Commitment

❑Non-black-box extractable under strong assumptions

12

KZG Polynomial Commitment

❑Non-black-box extractable under strong assumptions
▪ Generic group model/algebraic group model, or

12

KZG Polynomial Commitment

❑Non-black-box extractable under strong assumptions
▪ Generic group model/algebraic group model, or
▪ Knowledge assumption (almost tautological)

12

KZG Polynomial Commitment

❑Non-black-box extractable under strong assumptions
▪ Generic group model/algebraic group model, or
▪ Knowledge assumption (almost tautological)

❑Falsifiable assumption: interaction between efficient adversary
and efficient challenger

12

KZG Polynomial Commitment

❑Non-black-box extractable under strong assumptions
▪ Generic group model/algebraic group model, or
▪ Knowledge assumption (almost tautological)

❑Falsifiable assumption: interaction between efficient adversary
and efficient challenger
▪ above assumptions are non-falsifiable

12

KZG Polynomial Commitment

❑Non-black-box extractable under strong assumptions
▪ Generic group model/algebraic group model, or
▪ Knowledge assumption (almost tautological)

❑Falsifiable assumption: interaction between efficient adversary
and efficient challenger
▪ above assumptions are non-falsifiable
▪ Folklore: no way to avoid in KZG extractability

12

KZG Polynomial Commitment

❑Non-black-box extractable under strong assumptions
▪ Generic group model/algebraic group model, or
▪ Knowledge assumption (almost tautological)

❑Falsifiable assumption: interaction between efficient adversary
and efficient challenger
▪ above assumptions are non-falsifiable
▪ Folklore: no way to avoid in KZG extractability

❑Not true!

12

KZG Polynomial Commitment

❑Non-black-box extractable under strong assumptions
▪ Generic group model/algebraic group model, or
▪ Knowledge assumption (almost tautological)

❑Falsifiable assumption: interaction between efficient adversary
and efficient challenger
▪ above assumptions are non-falsifiable
▪ Folklore: no way to avoid in KZG extractability

❑Not true!
▪ We show extractability with rewinding under a relatively standard

falsifiable assumption

12

Pairings

13

Pairings

❑Bilinear groups: 𝔾1, 𝔾2,𝔾𝑇 of prime size 𝑝 with generators
𝒫1, 𝒫2, 𝒫𝑇

13

Pairings

❑Bilinear groups: 𝔾1, 𝔾2,𝔾𝑇 of prime size 𝑝 with generators
𝒫1, 𝒫2, 𝒫𝑇
❑Additive notation & bracket notation:

13

Pairings

❑Bilinear groups: 𝔾1, 𝔾2,𝔾𝑇 of prime size 𝑝 with generators
𝒫1, 𝒫2, 𝒫𝑇
❑Additive notation & bracket notation:

▪ 𝑎 ∙ 𝒫1 ≔ 𝑎 1 for 𝑎 ∈ ℤ𝑝

13

Pairings

❑Bilinear groups: 𝔾1, 𝔾2,𝔾𝑇 of prime size 𝑝 with generators
𝒫1, 𝒫2, 𝒫𝑇
❑Additive notation & bracket notation:

▪ 𝑎 ∙ 𝒫1 ≔ 𝑎 1 for 𝑎 ∈ ℤ𝑝
▪ 𝑎 ∙ 𝒫2 ≔ 𝑎 2 for 𝑎 ∈ ℤ𝑝

13

Pairings

❑Bilinear groups: 𝔾1, 𝔾2,𝔾𝑇 of prime size 𝑝 with generators
𝒫1, 𝒫2, 𝒫𝑇
❑Additive notation & bracket notation:

▪ 𝑎 ∙ 𝒫1 ≔ 𝑎 1 for 𝑎 ∈ ℤ𝑝
▪ 𝑎 ∙ 𝒫2 ≔ 𝑎 2 for 𝑎 ∈ ℤ𝑝
▪ 𝑎 ∙ 𝒫𝑇 ≔ 𝑎 𝑇 for 𝑎 ∈ ℤ𝑝

13

Pairings

❑Bilinear groups: 𝔾1, 𝔾2,𝔾𝑇 of prime size 𝑝 with generators
𝒫1, 𝒫2, 𝒫𝑇
❑Additive notation & bracket notation:

▪ 𝑎 ∙ 𝒫1 ≔ 𝑎 1 for 𝑎 ∈ ℤ𝑝
▪ 𝑎 ∙ 𝒫2 ≔ 𝑎 2 for 𝑎 ∈ ℤ𝑝
▪ 𝑎 ∙ 𝒫𝑇 ≔ 𝑎 𝑇 for 𝑎 ∈ ℤ𝑝

❑Bilinear map: 𝑎 1 ∙ 𝑏 2 = 𝑎𝑏 𝑇.

13

KZG Polynomial Commitment

14

❑ KGen 𝑛 :

❑ Com ck, 𝑓 :

❑ Open ck, C, 𝛼, 𝑓 :

❑ Verify ck, C, 𝛼, 𝜂, 𝜋 :

KZG Polynomial Commitment

14

❑ KGen 𝑛 :

❑ Com ck, 𝑓 :

❑ Open ck, C, 𝛼, 𝑓 :

❑ Verify ck, C, 𝛼, 𝜂, 𝜋 :

𝜎 ←𝑟 ℤ𝑝, 𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

KZG Polynomial Commitment

14

❑ KGen 𝑛 :

❑ Com ck, 𝑓 :

❑ Open ck, C, 𝛼, 𝑓 :

❑ Verify ck, C, 𝛼, 𝜂, 𝜋 :

𝜎 ←𝑟 ℤ𝑝, 𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝐶 = 𝑓 𝜎 1 =

𝑖=0

𝑛

𝑓𝑖 𝜎
𝑖

KZG Polynomial Commitment

14

❑ KGen 𝑛 :

❑ Com ck, 𝑓 :

❑ Open ck, C, 𝛼, 𝑓 :

❑ Verify ck, C, 𝛼, 𝜂, 𝜋 :

𝜎 ←𝑟 ℤ𝑝, 𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝐶 = 𝑓 𝜎 1 =

𝑖=0

𝑛

𝑓𝑖 𝜎
𝑖

𝜂 = 𝑓 𝛼 , ℎ 𝑋 =
𝑓 𝑋 −𝜂

𝑋−𝛼
, 𝜋 = ℎ 𝜎 1,

KZG Polynomial Commitment

14

❑ KGen 𝑛 :

❑ Com ck, 𝑓 :

❑ Open ck, C, 𝛼, 𝑓 :

❑ Verify ck, C, 𝛼, 𝜂, 𝜋 :

𝜎 ←𝑟 ℤ𝑝, 𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝐶 = 𝑓 𝜎 1 =

𝑖=0

𝑛

𝑓𝑖 𝜎
𝑖

𝜂 = 𝑓 𝛼 , ℎ 𝑋 =
𝑓 𝑋 −𝜂

𝑋−𝛼
, 𝜋 = ℎ 𝜎 1,

𝑓 𝜎 1 − 𝜂 1 1 ∙ 1 2 = ℎ 𝜎 1 ∙ 𝜎 2 − 𝛼 1 2

Computational Special-Soundness

15

Computational Special-Soundness

15

❑ New notion for polynomial commitments

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversary

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversary Extractor

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck Extractor

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck

C, 𝛼1, 𝜂1, 𝜋1

Extractor

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck

C, 𝛼1, 𝜂1, 𝜋1
C, 𝛼2, 𝜂2, 𝜋2

Extractor

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck

C, 𝛼1, 𝜂1, 𝜋1
C, 𝛼2, 𝜂2, 𝜋2

Extractor
⋮

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck

C, 𝛼1, 𝜂1, 𝜋1
C, 𝛼2, 𝜂2, 𝜋2

C, 𝛼𝑛+1, 𝜂𝑛+1, 𝜋𝑛+1

Extractor
⋮

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck

C, 𝛼1, 𝜂1, 𝜋1
C, 𝛼2, 𝜂2, 𝜋2

C, 𝛼𝑛+1, 𝜂𝑛+1, 𝜋𝑛+1

Extractor
⋮

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck

C, 𝛼1, 𝜂1, 𝜋1
C, 𝛼2, 𝜂2, 𝜋2

C, 𝛼𝑛+1, 𝜂𝑛+1, 𝜋𝑛+1

Extractor
⋮

1. Verify ck, C, 𝛼𝑖 , 𝜂𝑖 , 𝜋𝑖 accepts ∀𝑖

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck

C, 𝛼1, 𝜂1, 𝜋1
C, 𝛼2, 𝜂2, 𝜋2

C, 𝛼𝑛+1, 𝜂𝑛+1, 𝜋𝑛+1

Extractor
⋮

1. Verify ck, C, 𝛼𝑖 , 𝜂𝑖 , 𝜋𝑖 accepts ∀𝑖
2.Same commitment C

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck

C, 𝛼1, 𝜂1, 𝜋1
C, 𝛼2, 𝜂2, 𝜋2

C, 𝛼𝑛+1, 𝜂𝑛+1, 𝜋𝑛+1

Extractor
⋮

1. Verify ck, C, 𝛼𝑖 , 𝜂𝑖 , 𝜋𝑖 accepts ∀𝑖
2.Same commitment C
3. 𝛼𝑖 are distinct

Computational Special-Soundness

15

❑ New notion for polynomial commitments
▪ well-known for proof systems

Adversaryck

C, 𝛼1, 𝜂1, 𝜋1
C, 𝛼2, 𝜂2, 𝜋2

C, 𝛼𝑛+1, 𝜂𝑛+1, 𝜋𝑛+1

Extractor
⋮

1. Verify ck, C, 𝛼𝑖 , 𝜂𝑖 , 𝜋𝑖 accepts ∀𝑖
2.Same commitment C
3. 𝛼𝑖 are distinct

𝑓 𝑋 such that
Com ck, 𝑓 = C
and deg 𝑓 ≤ 𝑛

KZG Special Soundness

16

KZG Special Soundness

16

❑ Adversary provides: { 𝛼0, 𝜂0 , … , 𝛼𝑛, 𝜂𝑛 }

KZG Special Soundness

16

❑ Adversary provides: { 𝛼0, 𝜂0 , … , 𝛼𝑛, 𝜂𝑛 }
❑ Basic math: 𝑛 + 1 poly evaluations define unique 𝑓(𝑋) of

degree ≤ 𝑛

KZG Special Soundness

16

❑ Adversary provides: { 𝛼0, 𝜂0 , … , 𝛼𝑛, 𝜂𝑛 }
❑ Basic math: 𝑛 + 1 poly evaluations define unique 𝑓(𝑋) of

degree ≤ 𝑛

ExtSS(1, 𝜎, 𝜎
2, … , 𝜎𝑛 1, 1, 𝜎 2, 𝑐 1, 𝛼𝑖 , 𝜂𝑖 , 𝜋𝑖 1 𝑖=0

𝑛)

KZG Special Soundness

16

❑ Adversary provides: { 𝛼0, 𝜂0 , … , 𝛼𝑛, 𝜂𝑛 }
❑ Basic math: 𝑛 + 1 poly evaluations define unique 𝑓(𝑋) of

degree ≤ 𝑛

ExtSS(1, 𝜎, 𝜎
2, … , 𝜎𝑛 1, 1, 𝜎 2, 𝑐 1, 𝛼𝑖 , 𝜂𝑖 , 𝜋𝑖 1 𝑖=0

𝑛)
1. Interpolate 𝑓 𝑋 ;

KZG Special Soundness

16

❑ Adversary provides: { 𝛼0, 𝜂0 , … , 𝛼𝑛, 𝜂𝑛 }
❑ Basic math: 𝑛 + 1 poly evaluations define unique 𝑓(𝑋) of

degree ≤ 𝑛

ExtSS(1, 𝜎, 𝜎
2, … , 𝜎𝑛 1, 1, 𝜎 2, 𝑐 1, 𝛼𝑖 , 𝜂𝑖 , 𝜋𝑖 1 𝑖=0

𝑛)
1. Interpolate 𝑓 𝑋 ;
2. 𝑓 𝜎 1 =? 𝑐 1;

KZG Special Soundness

16

❑ Adversary provides: { 𝛼0, 𝜂0 , … , 𝛼𝑛, 𝜂𝑛 }
❑ Basic math: 𝑛 + 1 poly evaluations define unique 𝑓(𝑋) of

degree ≤ 𝑛

ExtSS(1, 𝜎, 𝜎
2, … , 𝜎𝑛 1, 1, 𝜎 2, 𝑐 1, 𝛼𝑖 , 𝜂𝑖 , 𝜋𝑖 1 𝑖=0

𝑛)
1. Interpolate 𝑓 𝑋 ;
2. 𝑓 𝜎 1 =? 𝑐 1;

If yes then return 𝑓(𝑋)

KZG Special Soundness

16

❑ Adversary provides: { 𝛼0, 𝜂0 , … , 𝛼𝑛, 𝜂𝑛 }
❑ Basic math: 𝑛 + 1 poly evaluations define unique 𝑓(𝑋) of

degree ≤ 𝑛

ExtSS(1, 𝜎, 𝜎
2, … , 𝜎𝑛 1, 1, 𝜎 2, 𝑐 1, 𝛼𝑖 , 𝜂𝑖 , 𝜋𝑖 1 𝑖=0

𝑛)
1. Interpolate 𝑓 𝑋 ;
2. 𝑓 𝜎 1 =? 𝑐 1;

If yes then return 𝑓(𝑋)
else break a new assumption

Rational Strong Diffie-Hellman
Assumption

17

❑ RSDH proposed by González and Ràfols [Asiacrypt, 2019]

Rational Strong Diffie-Hellman
Assumption

17

❑ RSDH proposed by González and Ràfols [Asiacrypt, 2019]
❑ Falsifiable assumption

Rational Strong Diffie-Hellman
Assumption

17

❑ RSDH proposed by González and Ràfols [Asiacrypt, 2019]
❑ Falsifiable assumption
❑ Fixed 𝑆 = {𝛼0, … 𝛼𝑛}

Rational Strong Diffie-Hellman
Assumption

17

Adversary

❑ RSDH proposed by González and Ràfols [Asiacrypt, 2019]
❑ Falsifiable assumption
❑ Fixed 𝑆 = {𝛼0, … 𝛼𝑛}

Challenger

Rational Strong Diffie-Hellman
Assumption

17

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

Adversary

❑ RSDH proposed by González and Ràfols [Asiacrypt, 2019]
❑ Falsifiable assumption
❑ Fixed 𝑆 = {𝛼0, … 𝛼𝑛}

Challenger

Rational Strong Diffie-Hellman
Assumption

17

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝑔, 𝜑 1

Adversary

❑ RSDH proposed by González and Ràfols [Asiacrypt, 2019]
❑ Falsifiable assumption
❑ Fixed 𝑆 = {𝛼0, … 𝛼𝑛}

Challenger

Rational Strong Diffie-Hellman
Assumption

17

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝑔, 𝜑 1

Win if:

Adversary

❑ RSDH proposed by González and Ràfols [Asiacrypt, 2019]
❑ Falsifiable assumption
❑ Fixed 𝑆 = {𝛼0, … 𝛼𝑛}

Challenger

Rational Strong Diffie-Hellman
Assumption

17

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝑔, 𝜑 1

Win if:
• 𝑔 1 ≠ 0 1

Adversary

❑ RSDH proposed by González and Ràfols [Asiacrypt, 2019]
❑ Falsifiable assumption
❑ Fixed 𝑆 = {𝛼0, … 𝛼𝑛}

Challenger

Rational Strong Diffie-Hellman
Assumption

17

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝑔, 𝜑 1

Win if:
• 𝑔 1 ≠ 0 1

• 𝑔 1 ∙ 1 2 = 𝜑 1 ∙ 𝑍𝑆 𝜎 2, where 𝑍𝑆 𝑋 := ς𝛼∈𝑆 𝑋 − 𝛼

Adversary

❑ RSDH proposed by González and Ràfols [Asiacrypt, 2019]
❑ Falsifiable assumption
❑ Fixed 𝑆 = {𝛼0, … 𝛼𝑛}

Challenger

Adaptive RSDH

18

❑ A new assumption ARSDH

Adaptive RSDH

18

❑ A new assumption ARSDH
❑ Falsifiable assumption

Adaptive RSDH

18

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝑔, 𝜑 1, 𝑆

❑ A new assumption ARSDH
❑ Falsifiable assumption

Challenger Adversary

Adaptive RSDH

18

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝑔, 𝜑 1, 𝑆

Win if:

❑ A new assumption ARSDH
❑ Falsifiable assumption

Challenger Adversary

Adaptive RSDH

18

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝑔, 𝜑 1, 𝑆

Win if:
• 𝑆 ⊂ ℤ𝑝 ∧ 𝑆 = 𝑛 + 1

❑ A new assumption ARSDH
❑ Falsifiable assumption

Challenger Adversary

Adaptive RSDH

18

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝑔, 𝜑 1, 𝑆

Win if:
• 𝑆 ⊂ ℤ𝑝 ∧ 𝑆 = 𝑛 + 1

• 𝑔 1 ≠ 0 1

❑ A new assumption ARSDH
❑ Falsifiable assumption

Challenger Adversary

Adaptive RSDH

18

𝑐𝑘 = 1, 𝜎, 𝜎2, … , 𝜎𝑛 1, 1, 𝜎 2

𝑔, 𝜑 1, 𝑆

Win if:
• 𝑆 ⊂ ℤ𝑝 ∧ 𝑆 = 𝑛 + 1

• 𝑔 1 ≠ 0 1

• 𝑔 1 ∙ 1 2 = 𝜑 1 ∙ 𝑍𝑆 𝜎 2, where 𝑍𝑆 𝑋 := ς𝛼∈𝑆 𝑋 − 𝛼

❑ A new assumption ARSDH
❑ Falsifiable assumption

Challenger Adversary

More Results

❑Special-soundness -> Black-box extractability

19

More Results

❑Special-soundness -> Black-box extractability
▪Rewind the adversary and run with distinct challenges

19

More Results

❑Special-soundness -> Black-box extractability
▪Rewind the adversary and run with distinct challenges

❑Compiler for interactive arguments:

19

More Results

❑Special-soundness -> Black-box extractability
▪Rewind the adversary and run with distinct challenges

❑Compiler for interactive arguments:
▪PIOP + black-box extractable polynomial commitment

19

More Results

❑Special-soundness -> Black-box extractability
▪Rewind the adversary and run with distinct challenges

❑Compiler for interactive arguments:
▪PIOP + black-box extractable polynomial commitment
▪Similar to prior compilers

19

Consequences

20

Consequences

❑KZG is black-box extractable under falsifiable assumption

20

Consequences

❑KZG is black-box extractable under falsifiable assumption
▪ random evaluation point

20

Consequences

❑KZG is black-box extractable under falsifiable assumption
▪ random evaluation point

❑Constant-size interactive arguments under falsifiable
assumption

20

Consequences

❑KZG is black-box extractable under falsifiable assumption
▪ random evaluation point

❑Constant-size interactive arguments under falsifiable
assumption

❑ Constant-size SNARKs that are secure under falsifiable
assumption and random oracle model

20

Thank you for attention
Questions?

21

