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SNARK

❑Succinct Non-interactive Argument of Knowledge
▪ Succinct: argument size is sublinear in 𝑤

▪Non-interactive: single message from Prover to Verifier

▪ Argument of Knowledge: prover knows 𝑤 if verifier accepts 
(formally: 𝑤 can be efficiently extracted in the security proof) 

3
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❑Run a testing algorithm 
on the responses
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❑ Com(ck, 𝑓(X)): outputs commitment C for polynomial 𝑓 of 
deg 𝑓 ≤ 𝑛

❑ Open ck, C, 𝛼, 𝑓 X : outputs 𝜂 = 𝑓(𝛼) and a proof 𝜋

❑ Verify ck, C, 𝛼, 𝜂, 𝜋 : accepts or rejects

Succinctness: Size of C and 𝜋 is sublinear in 𝑛
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C, 𝛼, 𝜂, 𝜋 such that 
Verify(ck, C, 𝛼, 𝜂, 𝜋) accepts 

Extractor

𝑓(𝑋) such that 

Com ck, 𝑓 X = C and

deg 𝑓 ≤ 𝑛

𝑐𝑘

random coins 𝑟
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ck

𝑧2

𝛼1

𝜂1 = 𝑖1 𝛼𝑖 , 𝜋1
⋮

❑Verify opening proofs
❑Run PIOP’s testing 

algorithm
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Recipe for SNARKs

❑We now have an interactive argument of knowledge
▪Non-black-box extractability to extract polynomials from 

commitments

▪ Polynomials reveal 𝑤

❑Succinctness:
▪ If PIOP has a small number of rounds

▪ Polynomial commitment is succinct

Ingredient 3: Fiat-Shamir for non-interactivity
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❑Falsifiable assumption: interaction between efficient adversary
and efficient challenger
▪ above assumptions are non-falsifiable
▪ Folklore: no way to avoid in KZG extractability

❑Not true!
▪ We show extractability with rewinding under a relatively standard 

falsifiable assumption
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𝑛
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𝜂 = 𝑓 𝛼 , ℎ 𝑋 =
𝑓 𝑋 −𝜂

𝑋−𝛼
, 𝜋 = ℎ 𝜎 1,

𝑓 𝜎 1 − 𝜂 1 1 ∙ 1 2 = ℎ 𝜎 1 ∙ 𝜎 2 − 𝛼 1 2
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3. 𝛼𝑖 are distinct

𝑓 𝑋 such that 
Com ck, 𝑓 = C
and deg 𝑓 ≤ 𝑛
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▪PIOP + black-box extractable polynomial commitment
▪Similar to prior compilers
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Thank you for attention
Questions?
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