Constant-Size zk-SNARKSs In
ROM from Falsifiable
Assumptions

Helger Lipmaa, University of Tartu
Roberto Parisella, Simula UiB
Janno Siim, Simula UiB

)
&

ﬁ
>> E“
ey

& =
Simula ,: ”“ I :,
UiB Z mminmm “
f@ 1632 &

JP‘TITY DE

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"

= x is public

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Prover claims: there is w such that (x,w) € R

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Prover claims: there is w such that (x,w) € R

Prover (x, w)

*}a’@
|

sl

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Prover claims: there is w such that (x,w) € R

Prover (x, w) Verifier (x)

‘}a’o
|

sl

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Prover claims: there is w such that (x,w) € R

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Prover claims: there is w such that (x,w) € R

Interactive Argument

dRelation R = {(x,w)} <€ {0,1}"
= x is public
=W is private

Prover (x, w) Verifier (x)
@ AccepT
@ > ~— OR

REJIECT

SNARK

ASuccinct Non-interactive Argument of Knowledge

SNARK

ASuccinct Non-interactive Argument of Knowledge
" Succinct: argument size is sublinear in w

SNARK

ASuccinct Non-interactive Argument of Knowledge
" Succinct: argument size is sublinear in w
* Non-interactive: single message from Prover to Verifier

SNARK

ASuccinct Non-interactive Argument of Knowledge
" Succinct: argument size is sublinear in w
* Non-interactive: single message from Prover to Verifier

N N
NSV e =Y
SN =)N:2
=t R
L0 I£E>
* < N~ =
/ [2
()

Prover (x, w) Verifier (x)
f%‘;f . AccepT

oL~/ OR
REJECT

SNARK

ASuccinct Non-interactive Argument of Knowledge
" Succinct: argument size is sublinear in w
* Non-interactive: single message from Prover to Verifier

\. &\
NS
RN %,
=54
/ Q2
,)

Prover (x, w) Verifier (x)
E"E . AccepT

el ~— OR
REJIECT

SNARK

ASuccinct Non-interactive Argument of Knowledge
" Succinct: argument size is sublinear in w
* Non-interactive: single message from Prover to Verifier

=" Argument of Knowledge: prover knows w if verifier accepts
(formally: w can be efficiently extracted in the security proof)
o A o

W =
N

Prover (x, w) Verifier (x)

‘%i«'@
l

Pl

AccepT

o — OoR
- RE3IECT

Many Applications

Calculator eBackup

E-Yiewer File Explorer

®

Mp3Player

2l

Messenger

Many Applications

dVerifiable outsourced computation

Many Applications

dVerifiable outsourced computation
dBlockchain scalability (ZK rollups)

Many Applications

dVerifiable outsourced computation
dBlockchain scalability (ZK rollups)
dVerifiable electronic voting

Many Applications

Verifiable outsourced computation
Blockchain scalability (ZK rollups)

dVerifiable electronic voting

JVerifiable fully homomorphic encryption

Many Applications

Verifiable outsourced computation
Blockchain scalability (ZK rollups)

dVerifiable electronic voting

JVerifiable fully homomorphic encryption
...

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

Prover (x, w)

L
ﬁ

Verifier (x)

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

Prover (x, w)

L
ﬁ

Verifier (x)

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

oracles i, (X), ..., ip(X)

Prover (x, w)

L
ﬁ

Verifier (x)

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

oracles i, (X), ..., ip(X)

Prover (x, w) oracle f; (X)

L
ﬁ

. Verifier (x)

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

oracles i, (X), ..., ip(X)

Prover (x, w) oracle f; (X)

L
i

. Verifier (x)

_ Zq

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

N
SR
s he)
=7 >
N T
) \

oracles i, (X), ..., ip(X)

Prover (x, w) oracle f; (X)

L
i

. Verifier (x)

Z1
oracle 1, (X)

P
<

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

oracles i, (X), ..., ip(X)

Prover (x, w) oracle f; (X)

_ Verifier (x)
Zq]

oracle 1, (X)

$ P -
“ - ZZ - |

P

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

oracles i, (X), ..., ip(X)

Prover (x, w) oracle f; (X)

_ Verifier (x)
Zq]

oracle 1, (X)

& P -
“ - ZZ - g

P

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

oracles i, (X), ..., ip(X)

Prover (x, w) oracle f; (X) JQuery oracles:

. Verifier (x)

Z1
oracle 1, (X)

& P -
“ - ZZ - g

P

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

oracles i, (X), ..., ip(X)

Prover (x, w) oracle f; (X) JQuery oracles:

. Verifier (x) . .
" (1), . ip(ap)

Z1
oracle 1, (X)

& P -
“ - ZZ - g

P

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

N &
S e
=S
G, S 6.
AR
N 2
) \

oracles i, (X), ..., ip(X)

Prover (x, w) oracle f; (X) JQuery oracles:

= i(aq), ... 1p(ap)

= fi(aps1), f2(@py2), -

_ Verifier (x)
Zq]

oracle 1, (X)

@Q‘
J
| —

P

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

oracles i, (X), ..., ip(X)

Prover (x, w) oracle f; (X) JQuery oracles:

= i(aq), ... 1p(ap)

= fi(aps1), f2(@py2), -

JRun a testing algorithm
on the responses

. Verifier (x)

Z1
oracle 1, (X)

& P -
“ - ZZ - g

P

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)
APIOP is knowledge-sound

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

APIOP is knowledge-sound
" w is encoded in the polynomials

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

APIOP is knowledge-sound
" w is encoded in the polynomials

JKnown how to construct constant-round PIOPs

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

APIOP is knowledge-sound
" w is encoded in the polynomials

JKnown how to construct constant-round PIOPs
= Sonic, Marlin, Plonk, ...

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

APIOP is knowledge-sound
" w is encoded in the polynomials

JKnown how to construct constant-round PIOPs
= Sonic, Marlin, Plonk, ...

JPIOP is not succinct

Recipe for SNARKs

Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

APIOP is knowledge-sound
" w is encoded in the polynomials

JKnown how to construct constant-round PIOPs
= Sonic, Marlin, Plonk, ...

JPIOP is not succinct
» Polynomials have high degree

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

1 Kgen(n): outputs commitment key ck for degree <
n polynomials

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

1 Kgen(n): outputs commitment key ck for degree <
n polynomials

1 Com(ck, f(X)): outputs commitment C for polynomial f of
deg(f) <n

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

1 Kgen(n): outputs commitment key ck for degree <
n polynomials

1 Com(ck, f(X)): outputs commitment C for polynomial f of
deg(f) <n

1 Open (ck, C, a,f(X)): outputs n = f(a) and a proof

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

1 Kgen(n): outputs commitment key ck for degree <
n polynomials

1 Com(ck, f(X)): outputs commitment C for polynomial f of
deg(f) <n

1 Open (ck, C, a,f(X)): outputs n = f(a) and a proof
1 Verify (ck, C, a,n, m): accepts or rejects

Recipe for SNARKs

Ingredient 2: Polynomial Commitment Scheme

1 Kgen(n): outputs commitment key ck for degree <
n polynomials

1 Com(ck, f(X)): outputs commitment C for polynomial f of
deg(f) <n

1 Open (ck, C, a, f(X)): outputs = f () and a proof 7t
1 Verify (ck, C, a,n, m): accepts or rejects

Succinctness: Size of C and T is sublinear in n

Non-black-box Extractability

Non-black-box Extractability

Non-black-box Extractability

ck -
Adversary

Non-black-box Extractability

ck

Adversary

random coins r

Non-black-box Extractability

ck

C, a,n, such that
» Adversary ammme Verify(ck, Ca 0 T[) accepts

random coins r

Non-black-box Extractability

ck .

C, a,n, m such that
— Verify(ck, C, a,n,) accepts

Adversary

random coins r -

Extractor

Non-black-box Extractability

ck .

C, a,n, m such that
— Verify(ck, C, a,n,) accepts

Adversary

random coins r -

ck .

Extractor

Non-black-box Extractability

ck

random coins r

ck

random coins r

C, a,n, m such that
ACLERER — Verify(ck, C, o, n,) accepts

Extractor

Non-black-box Extractability

ck

random coins r

ck

random coins r

C, a,n, m such that
ACLERER — Verify(ck, C, o, n,) accepts

f(X) such that
EXtractor jumms Com(ck,f(X)) = Cand

deg(f) <n

Mix PIOP and Poly-Com

Verifier (x)

v Al

=
°

Mix PIOP and Poly-Com

ck, Com(ck, i1 (X)), ..., Com(ck, i,(X))

Prover (x, w) Verifier (x)

v Ag

=
°

) ——

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x, w) Verifier (x)

v ne

=
°

) ——

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X)) Verifier (x)

v ‘ML%
s

) ——

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X))

7
¢ oo 1 ne

=
°

_ Verifier (x)

) ——

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X))
Z1
C, = Com(ck, f,(X)) R =

_ Verifier (x)

@

) ——

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X)) _ Verifier (x)

| Z1
) Cz = Com(ck /L)) &%
| ——

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X)) _ Verifier (x)

| Z1
) Cz = Com(ck /L)) &%
| ——

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X)) _ Verifier (x)

| Z1

) C, = Com(ck, f,(X)) &%
| ———
n i

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X)) _ Verifier (x)

@' Q < Z1

) C, = Com(ck, f,(X)) &%
| ———

n i

N, = i1 (a;), mq

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X)) _ Verifier (x)

@5" Q < Z1

) C, = Com(ck, f,(X)) &%
| ———

n i

N, = i1 (a;), mq

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X)) _ Verifier (x)

$ P - 2\ n

) C, = Com(ck, f(X)) L 85 QVerify opening proofs
| ——

)1 & i

N, = i1 (a;), mq

Mix PIOP and Poly-Com

»4 ck, Com(ck, il(X)), ..., Com(ck, i,(X))

Prover (x,w) ¢, = Com(ck, f; (X)) _ Verifier (x)

€ Zy
B
| C; = Com(ck, (X)) L 85 QVerify opening proofs
“ - 22 JRun PIOP’s testing
2L 4 021 algorithm

N, = i1 (a;), mq

Recipe for SNARKs

JdWe now have an interactive argument of knowledge

10

Recipe for SNARKs

JdWe now have an interactive argument of knowledge

" Non-black-box extractability to extract polynomials from
commitments

Recipe for SNARKs

JdWe now have an interactive argument of knowledge

" Non-black-box extractability to extract polynomials from
commitments

" Polynomials reveal w

Recipe for SNARKs

JdWe now have an interactive argument of knowledge

" Non-black-box extractability to extract polynomials from
commitments

" Polynomials reveal w

JSuccinctness:

Recipe for SNARKs

JdWe now have an interactive argument of knowledge

" Non-black-box extractability to extract polynomials from
commitments

" Polynomials reveal w

JSuccinctness:
= |f PIOP has a small number of rounds

Recipe for SNARKs

JdWe now have an interactive argument of knowledge

" Non-black-box extractability to extract polynomials from
commitments

" Polynomials reveal w

JSuccinctness:
= |[f PIOP has a small number of rounds
" Polynomial commitment is succinct

Recipe for SNARKs

JdWe now have an interactive argument of knowledge

" Non-black-box extractability to extract polynomials from
commitments

" Polynomials reveal w

JSuccinctness:
= |[f PIOP has a small number of rounds
" Polynomial commitment is succinct

Ingredient 3: Fiat-Shamir for non-interactivity

Where to get ingredients?

F=R Yo
B e
\\ J.: :::::::

11

Where to get ingredients?

JEfficient PIOPs exist

11

Where to get ingredients?

JEfficient PIOPs exist
JdWhat about poly-com?

11

Where to get ingredients?

JEfficient PIOPs exist
JdWhat about poly-com?
There are many

11

Where to get ingredients?

JEfficient PIOPs exist
JdWhat about poly-com?

There are many

JdPopular option: KZG commitment

11

Where to get ingredients?

Efficient PIOPs exist
JdWhat about poly-com?

There are many

JdPopular option: KZG commitment

JProposed By Kate, Zaverucha, and Goldberg in [Asiacrypt
2010]

11

Where to get ingredients?

Efficient PIOPs exist
JdWhat about poly-com?

There are many

JdPopular option: KZG commitment

JProposed By Kate, Zaverucha, and Goldberg in [Asiacrypt
2010]

" good efficiency

11

Where to get ingredients?

Efficient PIOPs exist
JdWhat about poly-com?

There are many

JdPopular option: KZG commitment

JProposed By Kate, Zaverucha, and Goldberg in [Asiacrypt
2010]
" good efficiency
" constant size Cand

11

KZG Polynomial Commitment

12

KZG Polynomial Commitment

ANon-black-box extractable under strong assumptions

12

KZG Polynomial Commitment

ANon-black-box extractable under strong assumptions
= Generic group model/algebraic group model, or

12

KZG Polynomial Commitment

ANon-black-box extractable under strong assumptions
= Generic group model/algebraic group model, or
= Knowledge assumption (almost tautological)

KZG Polynomial Commitment

ANon-black-box extractable under strong assumptions
= Generic group model/algebraic group model, or
= Knowledge assumption (almost tautological)

Falsifiable assumption: interaction between efficient adversary
and efficient challenger

KZG Polynomial Commitment

ANon-black-box extractable under strong assumptions
= Generic group model/algebraic group model, or
= Knowledge assumption (almost tautological)

Falsifiable assumption: interaction between efficient adversary
and efficient challenger

" above assumptions are non-falsifiable

KZG Polynomial Commitment

ANon-black-box extractable under strong assumptions
= Generic group model/algebraic group model, or
= Knowledge assumption (almost tautological)

Falsifiable assumption: interaction between efficient adversary
and efficient challenger
" above assumptions are non-falsifiable
= Folklore: no way to avoid in KZG extractability

KZG Polynomial Commitment

ANon-black-box extractable under strong assumptions
= Generic group model/algebraic group model, or
= Knowledge assumption (almost tautological)

Falsifiable assumption: interaction between efficient adversary
and efficient challenger
" above assumptions are non-falsifiable
= Folklore: no way to avoid in KZG extractability

Not true!

KZG Polynomial Commitment

ANon-black-box extractable under strong assumptions
= Generic group model/algebraic group model, or
= Knowledge assumption (almost tautological)

Falsifiable assumption: interaction between efficient adversary
and efficient challenger
" above assumptions are non-falsifiable
= Folklore: no way to avoid in KZG extractability

Not true!

= We show extractability with rewinding under a relatively standard
falsifiable assumption

Pairings

13

Pairings

Bilinear groups: G, G,,G of prime size p with generators
:Pli ?2, ?T

13

Pairings

Bilinear groups: G, G,,G of prime size p with generators
?11 Pz, :PT

JAdditive notation & bracket notation:

13

Pairings

Bilinear groups: G, G,,G of prime size p with generators
:Pl; Pz, ?T

JAdditive notation & bracket notation:
"a-P;:=la],fora €Z,

13

Pairings

Bilinear groups: G, G,,G of prime size p with generators
:Pli ?2, ?T

JAdditive notation & bracket notation:
"a-P;:=la],fora €Z,
"a-P,:=|a], fora €Z,

13

Pairings

Bilinear groups: G, G,,G of prime size p with generators

:PLPZI:PT

JAdditive notation & bracket notation:

|1 for a € Z,
al, fora € Z,

alr fora € Z,

"aq-P;:
la.j)zg
la.f})T;

a

13

Pairings

Bilinear groups: G, G,,G of prime size p with generators
:Pli ?21 :PT

JAdditive notation & bracket notation:

"a-P, =|al,fora € Z,
"a-P,:=|a], fora €Z,
"a-Pr:=|a]rfora € Z,

dBilinear map: [a], - [b], = |ab];.

13

KZG Polynomial Commitment
d KGen(n):

A Com(ck, f):
d Open(ck, G, a, f):

A Verify(ck, C, a,n, m):

14

KZG Polynomial Commitment

d KGen(n): 0 — L, ck = ([1, g,0% ...,0"%4[1,0],)

A Com(ck, f):
d Open(ck, G, a, f):

A Verify(ck, C, a,n, m):

14

KZG Polynomial Commitment

- KGen(n): 0 <, Zp; ck = [1; 0, O-Zl) O-n]l’ [1’ 0-]2)

d Com(ck, f): ik

C=[f@l =) filo]

1=0
d Open(ck, G, a, f):

A Verify(ck, C, a,n, m):

14

KZG Polynomial Commitment

- KGen(n): 0 <, Zp; ck = [1; 0, O-Zi) O-n]l’ [1’ 0-]2)

d Com(ck, f): n

C=1f@h =) filo]

1=0
d Open(ck, G, a, f):

n = f(a),h(X) = L2270 7 = [h(o)],,

X—a

A Verify(ck, C, a,n, m):

14

KZG Polynomial Commitment

d KGen(n): 0 Ly, ck =([1,0, o? c"]1,[1,0]3)

C = [f(@)y Eﬁ[a
d Open(ck, C, a, f):
n = f(a),h(x) = L2 7 = [n(o)],,

X—a
A Verify(ck, C, a,n, m):
(lf(o)]1 —nl1]y) - [1]; = [h(0)]; - (lo]; — al1];)

A Com(ck, f):

Computational Special-Soundness

15

Computational Special-Soundness

1 New notion for polynomial commitments

15

Computational Special-Soundness

1 New notion for polynomial commitments
= well-known for proof systems

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

Adversary

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

Adversary Extractor

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

Extractor

o Gmmd Adversary

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C,aq,Mq, T4

Extractor

o Gmmd Adversary

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C, a1,M1, T4

C, ao, M2, 1)

o Guad Adversary d Extractor

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C, a1,M1, T4

C, ao, M2, 1)

o Guad Adversary d Extractor

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C, a1,M1, T4

C) ao, M2, 1)

d Extractor
G, Xn+1 Mn+1) T[n+1

o Gmmd Adversary

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C, a1,M1, T4

C) ao, M2, 1)

o Guad Adversary d Extractor

-~

-~y
— ey
-

-~y
—~— ey
S

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C, a1,M1, T4

C) ao, M2, 1)

o Guad Adversary d Extractor

-~

-~y
— ey
-

-~y
—~— ey
S

1. Verify(ck, C, a;,n;, m;) accepts Vi

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C, a1,M1, T4

C) ao, M2, 1)

o Guad Adversary d Extractor

-~

-~y
— ey
-

-~y
—~— ey
S

1. Verify(ck, C, a;, n;, ;) accepts Vi
2.Same commitment C

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C, a1,M1, T4

C) ao, M2, 1)

o Guad Adversary d Extractor

-~

-~y
— ey
-

-~y
—~— ey
S

1. Verify(ck, C, a;, n;, ;) accepts Vi
2.Same commitment C
3. «; are distinct

15

Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C, a1,M1, T4

C) ao, M2, 1)

f(X) such that
"I2ucledd — Com(ck, f)=C
and deg(f) <n

o Gmmd Adversary

-~

-~y
— ey
-

-~y
—~— ey
S

1. Verify(ck, C, a;, n;, ;) accepts Vi
2.Same commitment C

3. «; are distinct
15

KZG Special Soundness

16

KZG Special Soundness
A Adversary provides: {(ag, 1), .-, (@, 1) }

16

KZG Special Soundness

1 Adversary provides: {(ag, o), ..., (@, 1)}
] Basic math: n + 1 poly evaluations define unique f(X) of
degree < n

16

KZG Special Soundness

1 Adversary provides: {(ag, o), ..., (@, 1)}
] Basic math: n + 1 poly evaluations define unique f(X) of
degree < n

Extss([1, 0,02, .., "]y, [1, 013, [cly, {ag, mi, [g

16

KZG Special Soundness

1 Adversary provides: {(ag, o), ..., (@, 1)}
] Basic math: n + 1 poly evaluations define unique f(X) of
degree < n

Extss([1,0,07, .., 0"y, [1, 015 [l i, 15, [g
1. Interpolate f(X);

16

KZG Special Soundness

1 Adversary provides: {(ag, o), ..., (@, 1)}
] Basic math: n + 1 poly evaluations define unique f(X) of
degree < n

Extss([1,0,07, .., 0"y, [1, 015 [l i, 15, [g
1. Interpolate f(X);

2. [f(o)]1 =?lcly;

16

KZG Special Soundness

1 Adversary provides: {(ag, o), ..., (@, 1)}
] Basic math: n + 1 poly evaluations define unique f(X) of
degree < n

Extss([1,0,07,...,0"]1, [1, 0]y, [clq, {ai i i1 3o
1. Interpolate f(X);
2. [f(o)]y =?lcly;
If yes then return f(X)

16

KZG Special Soundness

1 Adversary provides: {(ag, o), ..., (@, 1)}
] Basic math: n + 1 poly evaluations define unique f(X) of
degree < n

Extss([1,0,07, .., "]y, [1, 01y, [cly, Lo np, [l o)
1. Interpolate f(X);

2. [f(o)]y =?]cly;
If yes then return f(X)
else break a new assumption

16

Rational Strong Diffie-Hellman
Assumption

1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]

17

Rational Strong Diffie-Hellman
Assumption

1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]

J Falsifiable assumption

17

Rational Strong Diffie-Hellman
Assumption

1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]
J Falsifiable assumption
4 Fixed S = {ay, ... a,}

17

Rational Strong Diffie-Hellman
Assumption

1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]
 Falsifiable assumption

 Fixed S = {ag, ... a,,}

Challenger Adversary

17

Rational Strong Diffie-Hellman
Assumption

1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]
 Falsifiable assumption

 Fixed S = {ag, ... a,,}

ck =[1,0,0% ...,0"],[1, 0],

l Adversa ry

Challenger

17

Rational Strong Diffie-Hellman
Assumption

1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]
 Falsifiable assumption

 Fixed S = {ag, ... a,,}

ck =[1,0,0% ...,0"],[1, 0],

l Adversa ry

Challenger

g, ¢4

17

Rational Strong Diffie-Hellman
Assumption

1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]
 Falsifiable assumption

 Fixed S = {ag, ... a,,}

ck =[1,0,0% ...,0"],[1, 0],

Challenger Adversary

g, ¢4

Win if:

17

Rational Strong Diffie-Hellman
Assumption

1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]
 Falsifiable assumption

 Fixed S = {ag, ... a,,}

ck =[1,0,0% ...,0"],[1, 0],

Challenger Adversary

g, ¢4

Win if:
gl # [0]4

17

Rational Strong Diffie-Hellman
Assumption

1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]
 Falsifiable assumption

 Fixed S = {ag, ... a,,}

ck =[1,0,0% ...,0"],[1, 0],

Challenger Adversary

g, ¢4

Win if:
gl # [0]4
lgl1 - [1]; = [@l; - [Zs(0)],, where Zg(X): = [[pes(X —)

17

Adaptive RSDH

J A new assumption ARSDH

18

Adaptive RSDH

J A new assumption ARSDH
J Falsifiable assumption

18

Adaptive RSDH

J A new assumption ARSDH
 Falsifiable assumption

Ck — [1) 0, 0-2; seny O-n]l' [1J 0-]2‘

Challenger Adversary

[g» (p]l,S

18

Adaptive RSDH

J A new assumption ARSDH
 Falsifiable assumption

Ck — [1) 0, 0-2; seny O-n]l' [1J 0-]2‘

Challenger Adversary

[g» (p]l,S

Win if:

18

Adaptive RSDH

J A new assumption ARSDH
 Falsifiable assumption

Ck — [1) 0, 0-2; seny O-n]l' [1J 0-]2‘

Challenger Adversary

[g» (p]l,S

Win if:
0 SCZp/\IS|=n+1

18

Adaptive RSDH

J A new assumption ARSDH
 Falsifiable assumption

Ck — [1) 0, 0-2; seny O-n]l' [1J 0-]2‘

Challenger Adversary

[g» (p]l,S

Win if:
¢« SCZ,AlS|=n+1
* |gly #[0]4

18

Adaptive RSDH

J A new assumption ARSDH
 Falsifiable assumption

Ck — [1) 0, 0-2; seny O-n]l' [1J 0-]2‘

Challenger Adversary

[g» (p]l,S

Win if:
¢« SCZ,AlS|=n+1
* |gly #[0]4

* lgli- 1]z = ol - [Zs(0)]2, where Zg(X): = [[4es(X —) 18

More Results

ASpecial-soundness -> Black-box extractability

More Results

ASpecial-soundness -> Black-box extractability
=" Rewind the adversary and run with distinct challenges

More Results

ASpecial-soundness -> Black-box extractability
=" Rewind the adversary and run with distinct challenges

JCompiler for interactive arguments:

More Results

ASpecial-soundness -> Black-box extractability
=" Rewind the adversary and run with distinct challenges

JCompiler for interactive arguments:
" PIOP + black-box extractable polynomial commitment

More Results

ASpecial-soundness -> Black-box extractability
=" Rewind the adversary and run with distinct challenges

JCompiler for interactive arguments:
" PIOP + black-box extractable polynomial commitment
= Similar to prior compilers

Consequences

20

Consequences

JKZG is black-box extractable under falsifiable assumption

Consequences

JKZG is black-box extractable under falsifiable assumption
" random evaluation point

Consequences

JKZG is black-box extractable under falsifiable assumption
" random evaluation point

(JConstant-size interactive arguments under falsifiable
assumption

Consequences

JKZG is black-box extractable under falsifiable assumption
" random evaluation point

(JConstant-size interactive arguments under falsifiable
assumption

[Constant-size SNARKs that are secure under falsifiable
assumption and random oracle model

Thank you for attention
Questions?

21

