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SNARK

ASuccinct Non-interactive Argument of Knowledge
" Succinct: argument size is sublinear in w
* Non-interactive: single message from Prover to Verifier

=" Argument of Knowledge: prover knows w if verifier accepts
(formally: w can be efficiently extracted in the security proof)
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Ingredient 1: Polynomial Interactive Oracle Proof (PIOP)

APIOP is knowledge-sound
" w is encoded in the polynomials

JKnown how to construct constant-round PIOPs
= Sonic, Marlin, Plonk, ...

JPIOP is not succinct
» Polynomials have high degree
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1 Kgen(n): outputs commitment key ck for degree <
n polynomials

1 Com(ck, f(X)): outputs commitment C for polynomial f of
deg(f) <n

1 Open (ck, C, a, f(X)): outputs = f () and a proof 7t
1 Verify (ck, C, a,n, m): accepts or rejects

Succinctness: Size of C and T is sublinear in n
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Recipe for SNARKs

JdWe now have an interactive argument of knowledge

" Non-black-box extractability to extract polynomials from
commitments

" Polynomials reveal w

JSuccinctness:
= |[f PIOP has a small number of rounds
" Polynomial commitment is succinct

Ingredient 3: Fiat-Shamir for non-interactivity
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Where to get ingredients?

Efficient PIOPs exist
JdWhat about poly-com?

There are many

JdPopular option: KZG commitment

JProposed By Kate, Zaverucha, and Goldberg in [Asiacrypt
2010]
" good efficiency
" constant size Cand
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KZG Polynomial Commitment

ANon-black-box extractable under strong assumptions
= Generic group model/algebraic group model, or
= Knowledge assumption (almost tautological)

Falsifiable assumption: interaction between efficient adversary
and efficient challenger
" above assumptions are non-falsifiable
= Folklore: no way to avoid in KZG extractability

Not true!

= We show extractability with rewinding under a relatively standard
falsifiable assumption
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JAdditive notation & bracket notation:

|1 for a € Z,
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Pairings

Bilinear groups: G, G,,G of prime size p with generators
:Pli ?21 :PT

JAdditive notation & bracket notation:

"a-P, =|al,fora € Z,
"a-P,:=|a], fora €Z,
"a-Pr:=|a]rfora € Z,

dBilinear map: [a], - [b], = |ab];.
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KZG Polynomial Commitment

- KGen(n): 0 <, Zp; ck = [ 1; 0, O-Zi ) O-n]l’ [1’ 0-]2)

d Com(ck, f): n

C=1f@h =) filo]

1=0
d Open(ck, G, a, f):

n = f(a),h(X) = L2270 7 = [h(o)],,

X—a

A Verify(ck, C, a,n, m):
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KZG Polynomial Commitment

d KGen(n): 0 Ly, ck =([1,0, o? c"]1,[1,0]3)

C = [f(@)y Eﬁ[a
d Open(ck, C, a, f):
n = f(a),h(x) = L2 7 = [n(o)],,

X—a
A Verify(ck, C, a,n, m):
(lf(o)]1 —nl1]y) - [1]; = [h(0)]; - (lo]; — al1];)

A Com(ck, f):
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Computational Special-Soundness

J New notion for polynomial commitments
= well-known for proof systems

C, a1,M1, T4

C) ao, M2, 1)

f(X) such that
"I2ucledd — Com(ck, f)=C
and deg(f) <n

o Gmmd Adversary

-~
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— ey
-
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1. Verify(ck, C, a;, n;, ;) accepts Vi
2.Same commitment C
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KZG Special Soundness

1 Adversary provides: {(ag, o), ..., (@, 1)}
] Basic math: n + 1 poly evaluations define unique f(X) of
degree < n

Extss([1,0,07, .., "]y, [1, 01y, [cly, Lo np, [l o)
1. Interpolate f(X);

2. [f(o)]y =?]cly;
If yes then return f(X)
else break a new assumption
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1 RSDH proposed by Gonzalez and Rafols [Asiacrypt, 2019]
 Falsifiable assumption

 Fixed S = {ag, ... a,,}

ck =[1,0,0% ...,0"],[1, 0],

Challenger Adversary

g, ¢4

Win if:
gl # [0]4
lgl1 - [1]; = [@l; - [Zs(0)],, where Zg(X): = [[pes(X — )
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More Results

ASpecial-soundness -> Black-box extractability
=" Rewind the adversary and run with distinct challenges

JCompiler for interactive arguments:
" PIOP + black-box extractable polynomial commitment
= Similar to prior compilers
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Consequences

JKZG is black-box extractable under falsifiable assumption
" random evaluation point

(JConstant-size interactive arguments under falsifiable
assumption

[ Constant-size SNARKs that are secure under falsifiable
assumption and random oracle model




Thank you for attention
Questions?
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