Fast Public-Key Silent OT and More from Constrained Naor-Reingold

Dung Bui¹, Geoffroy Couteau¹, Pierre Meyer², Alain Passelègue³, and

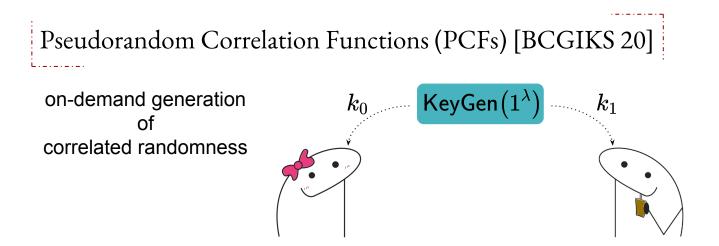
Mahshid Riahinia⁴

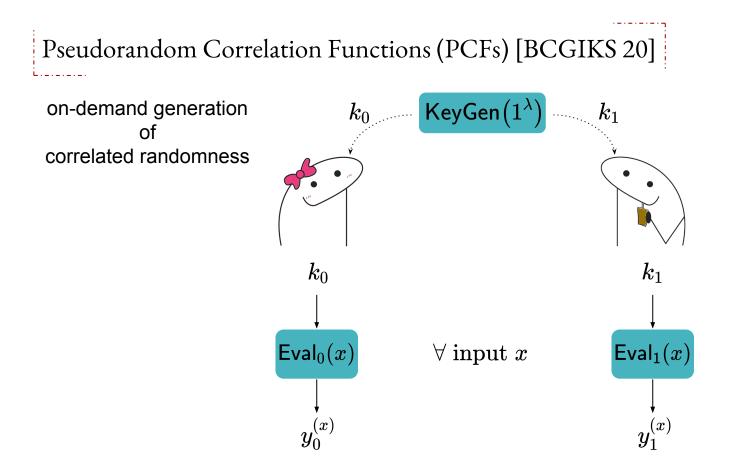
¹ Université Paris Cité, CNRS, IRIF, Paris, France.
 ² Aarhus Universitet, Denmark.
 ³ CryptoLab, France.
 ⁴ ENS de Lyon, Laboratoire LIP, France.

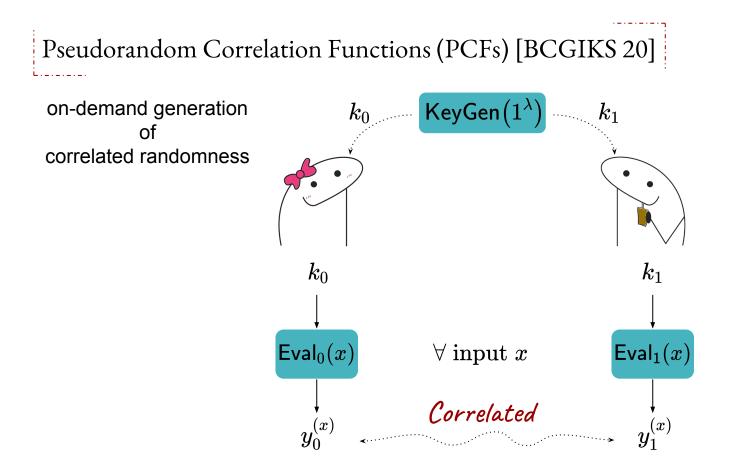
EUROCRYPT 2024 - Zurich

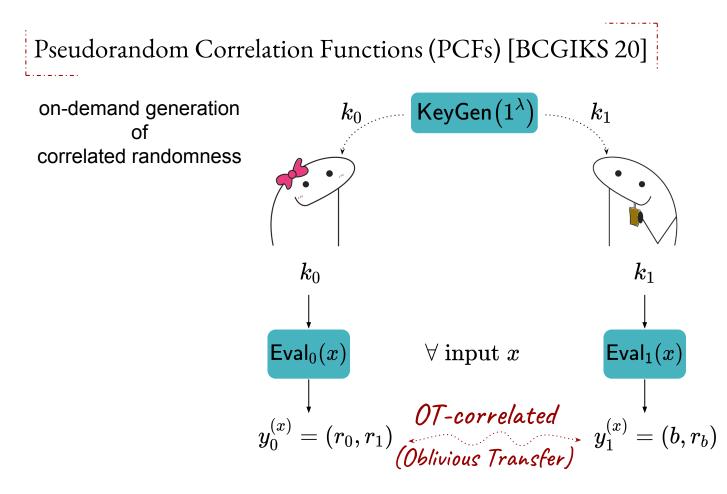
Pseudorandom Correlation Functions

Pseudorandom Correlation Functions (PCFs) [BCGIKS 20] on-demand generation of correlated randomness

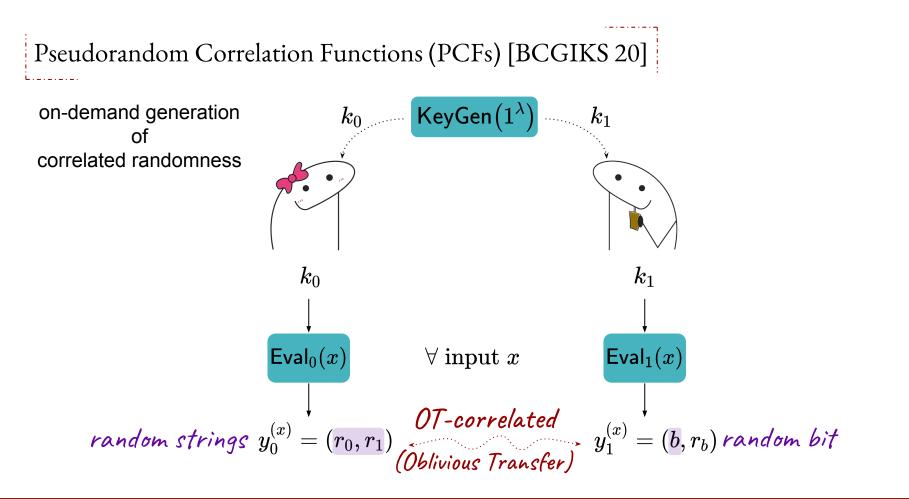


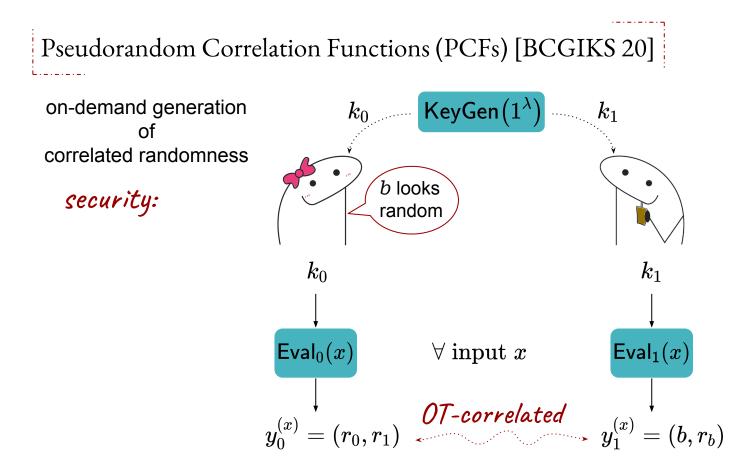


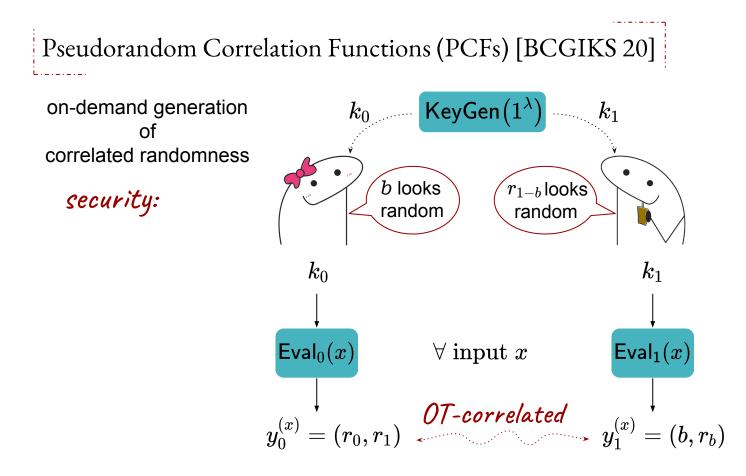


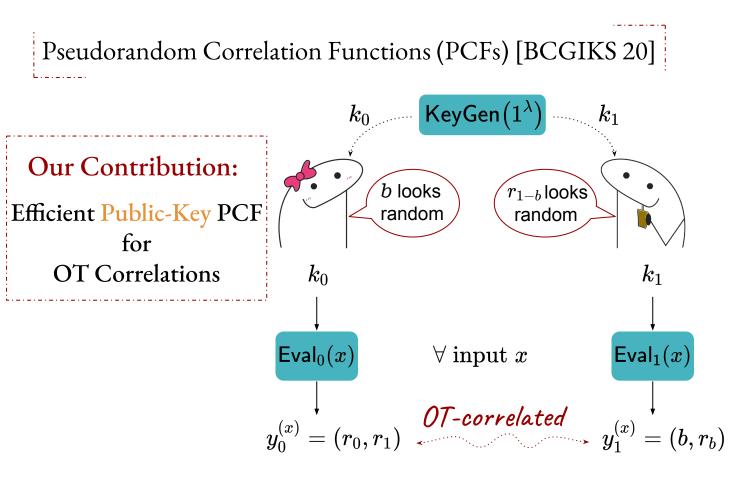


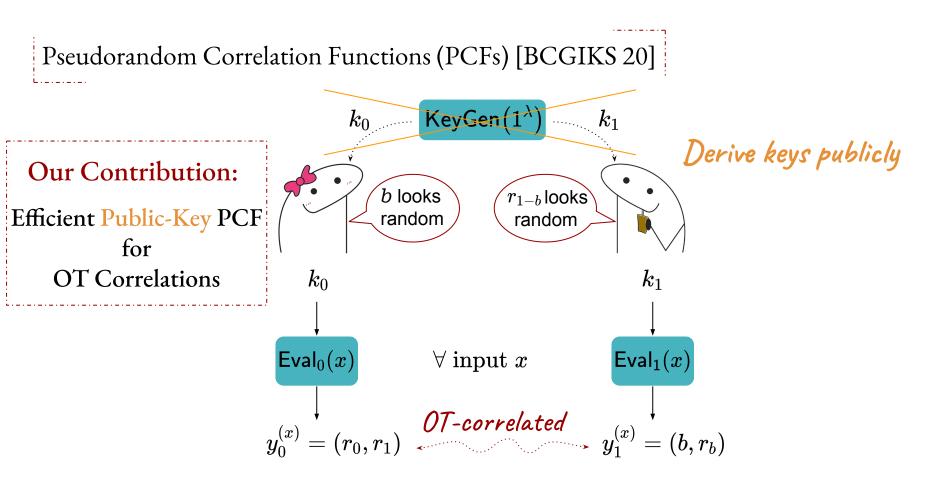
Mahshid Riahinia, ENS Lyon





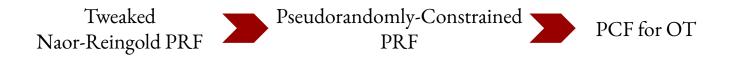


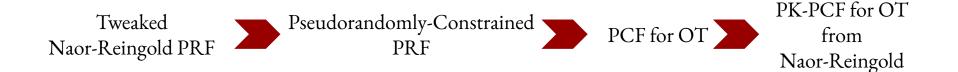




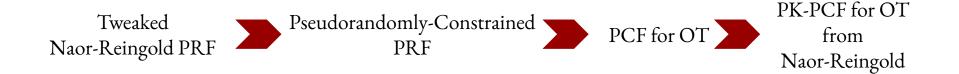
Efficient Public-Key PCF for OT Correlations from Naor-Reingold Constrained-PRF

Tweaked Naor-Reingold PRF

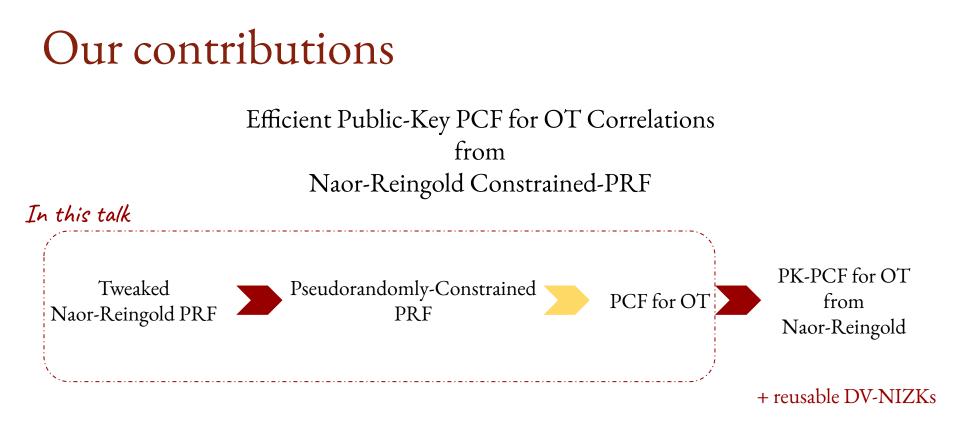




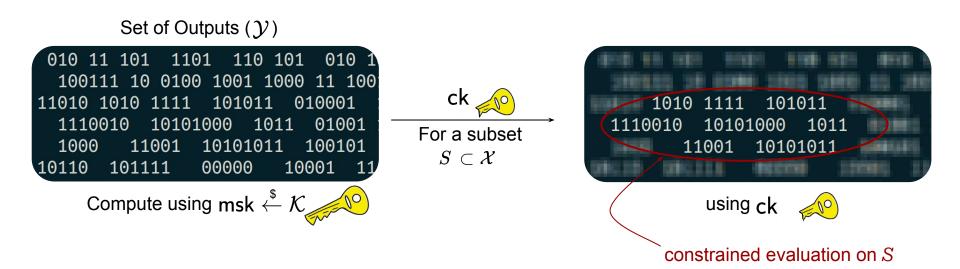
Efficient Public-Key PCF for OT Correlations from Naor-Reingold Constrained-PRF



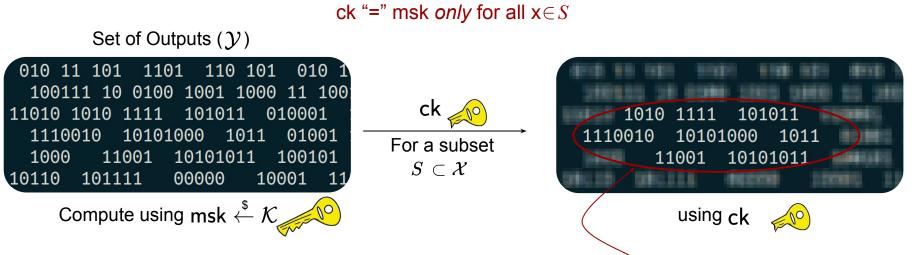
+ reusable DV-NIZKs



Pseudorandom Functions with constrained access to the evaluation.



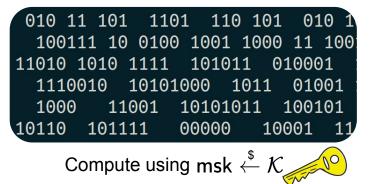
Pseudorandom Functions with constrained access to the evaluation.

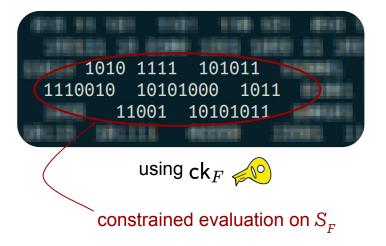


constrained evaluation on S

Every predicate $F:\mathcal{X}
ightarrow \{0,1\}$ defines a subset $S_F=\{x\ \in \mathcal{X}:\ F\left(x
ight)=0\}$

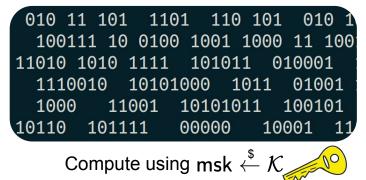
Set of Outputs (\mathcal{Y})

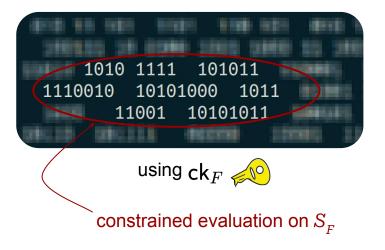




Every predicate $F:\mathcal{X}
ightarrow \{0,1\}$ defines a subset $S_F=\{x\ \in \mathcal{X}:\ F\left(x
ight)=0\}$

(w)PRF ~~ Pseudorandomly Constrained PRF





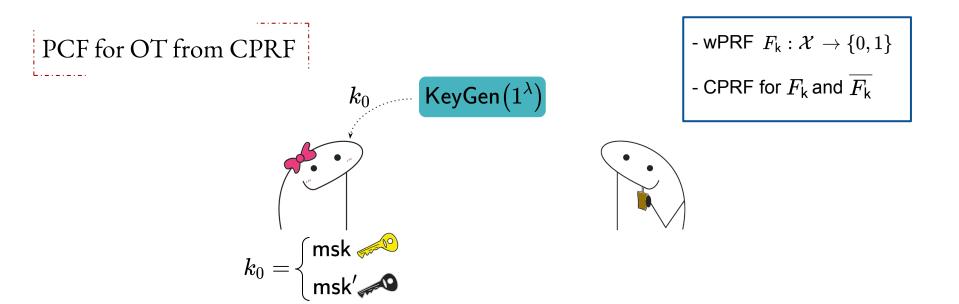
PCF for OT from Pseudorandomly-Constrained PRFs

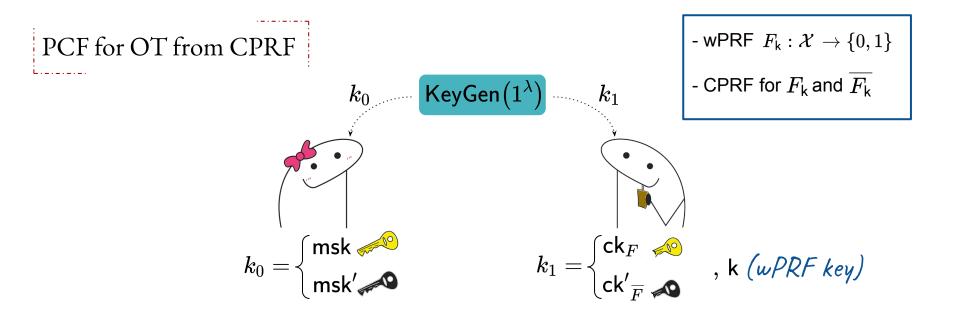
- wPRF $\ F_{\mathsf{k}}: \mathcal{X}
ightarrow \{0,1\}$

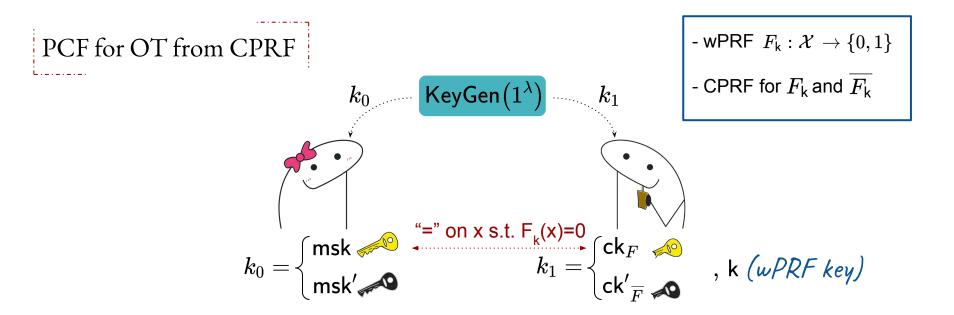
- wPRF $\ F_{\mathsf{k}}: \mathcal{X} o \{0,1\}$ - CPRF for F_{k} and $\overline{F_{\mathsf{k}}}$

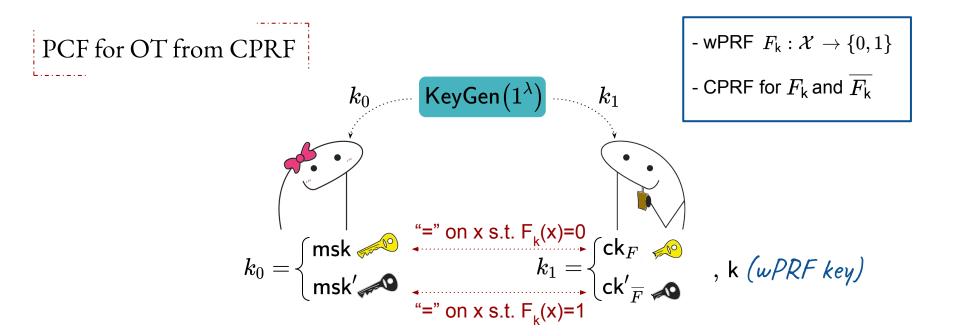
- wPRF
$$F_k : \mathcal{X} \to \{0, 1\}$$

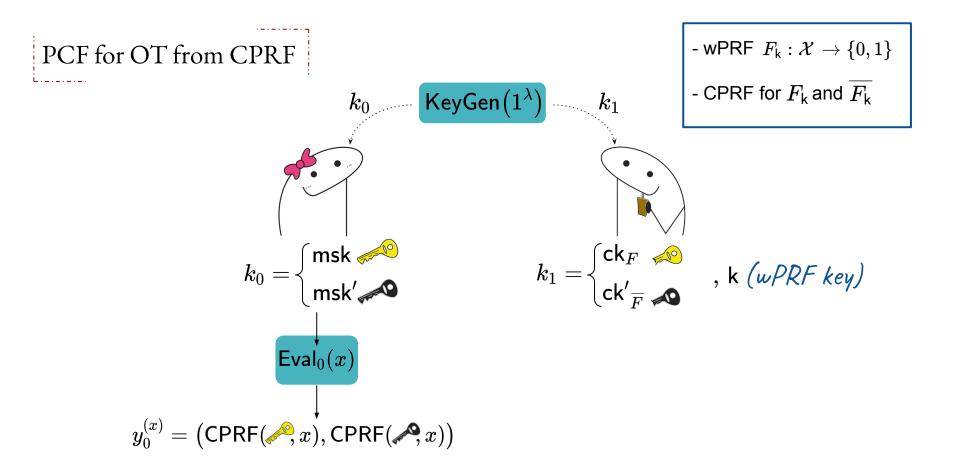
- CPRF for F_k and $\overline{F_k}$
can generate a ck for
either:
-all x s.t. $F_k(x)=0$
or
-all x s.t. $F_k(x)=1$

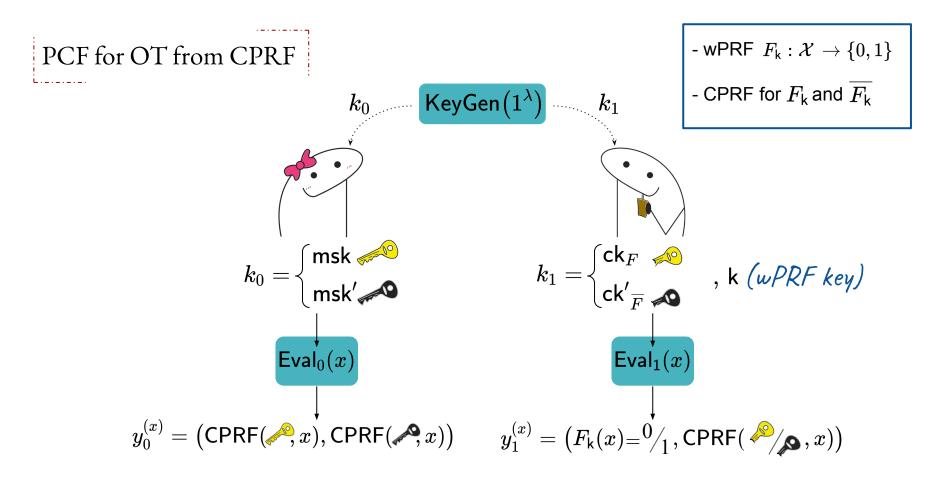


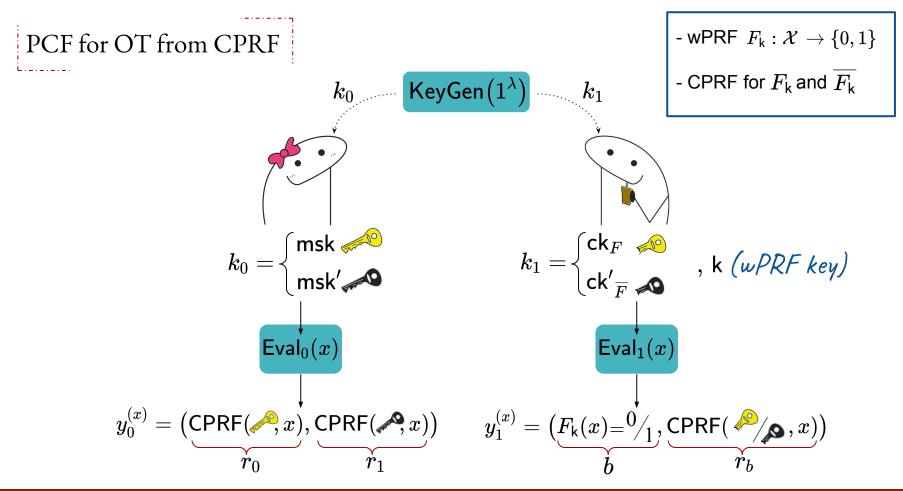






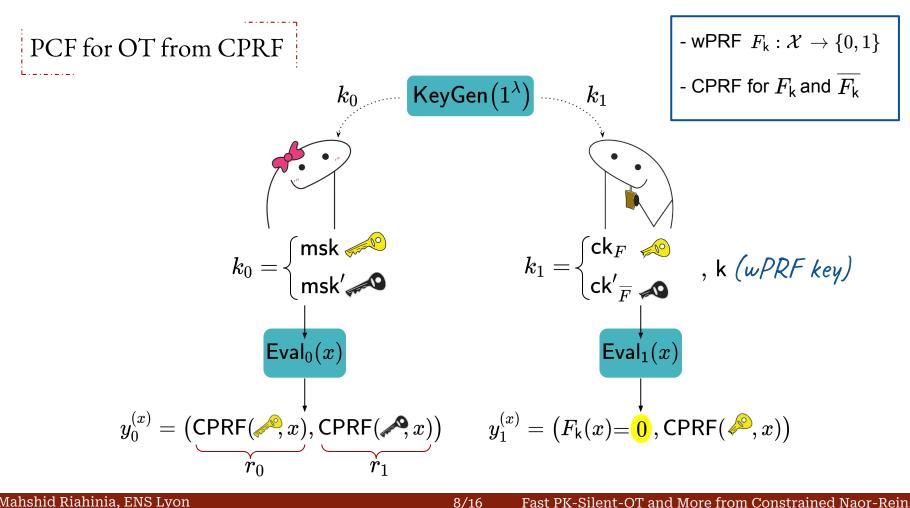


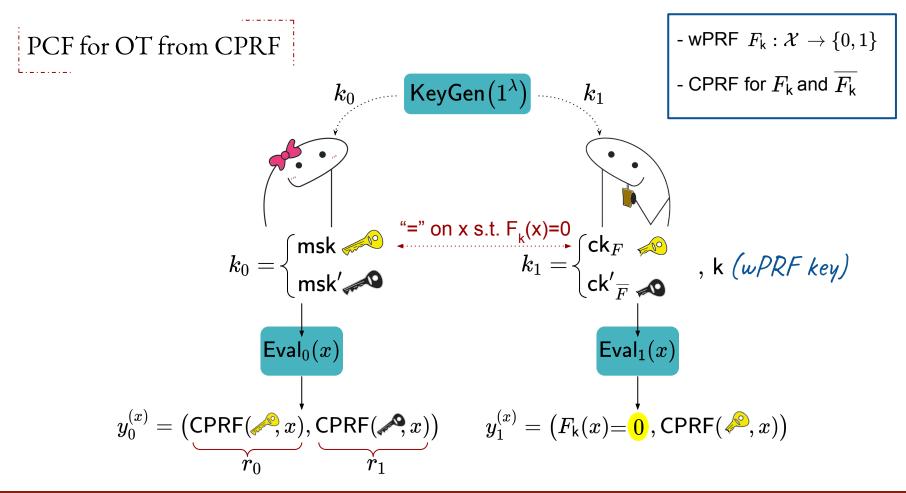




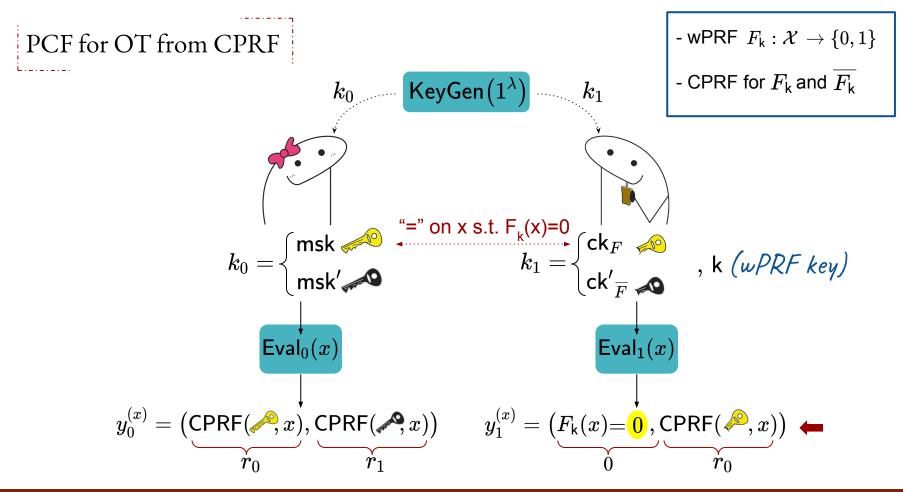
Mahshid Riahinia, ENS Lyon

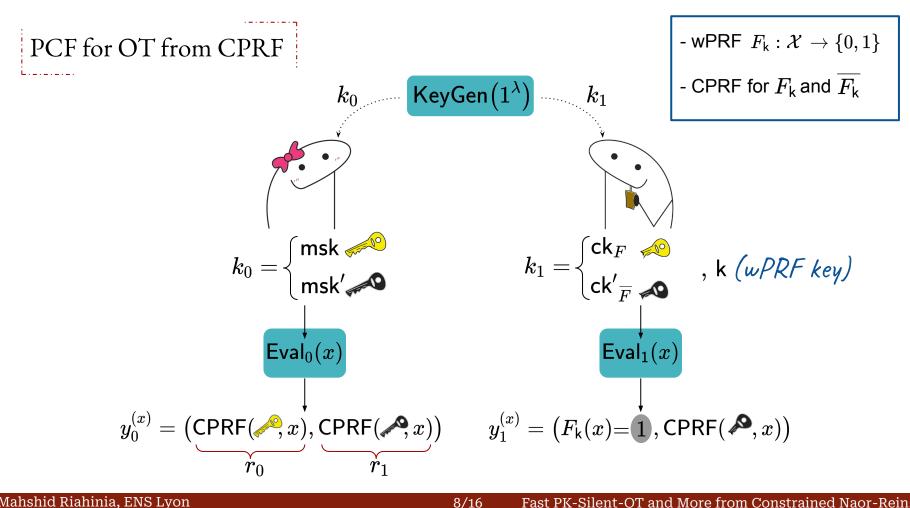
Fast PK-Silent-OT and More from Constrained Naor-Reingold





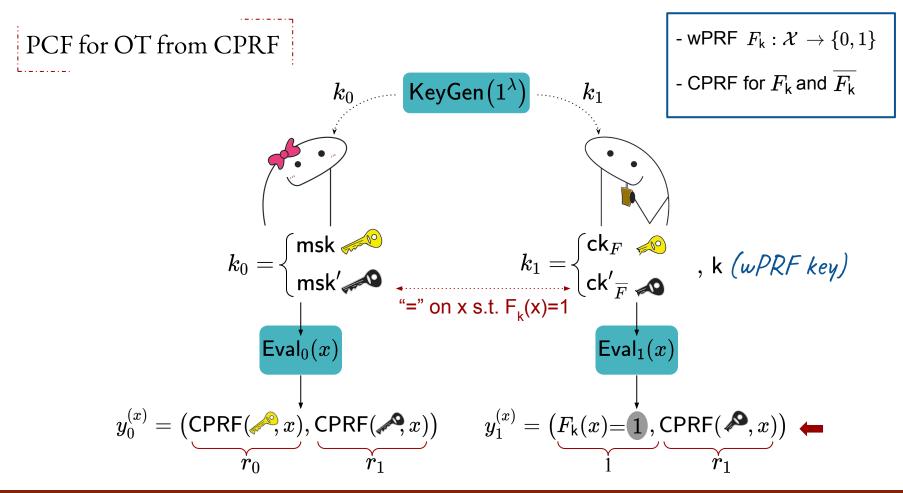
8/16

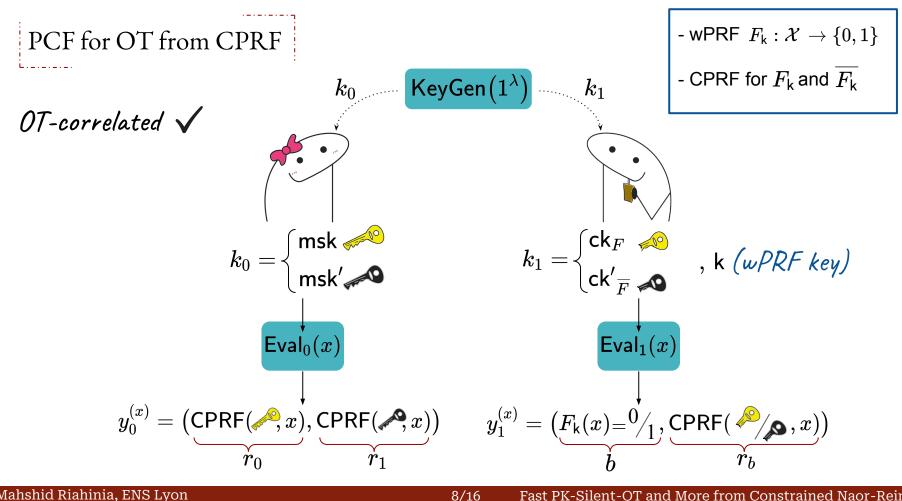


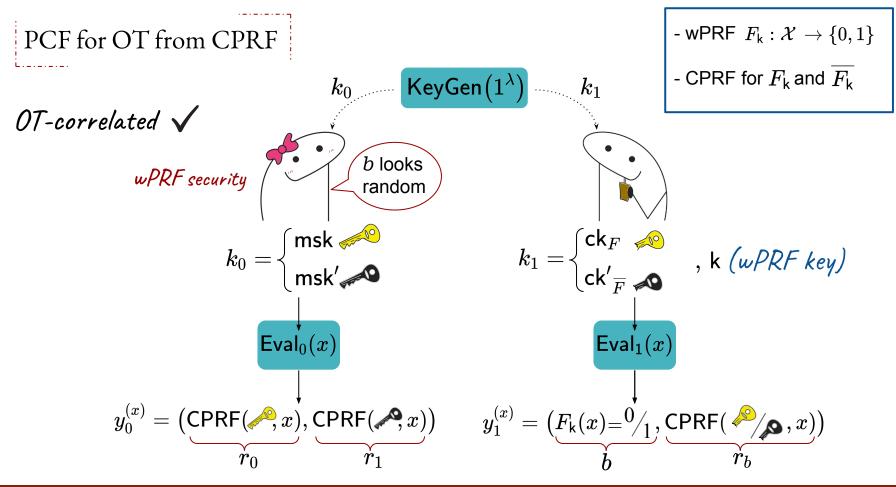


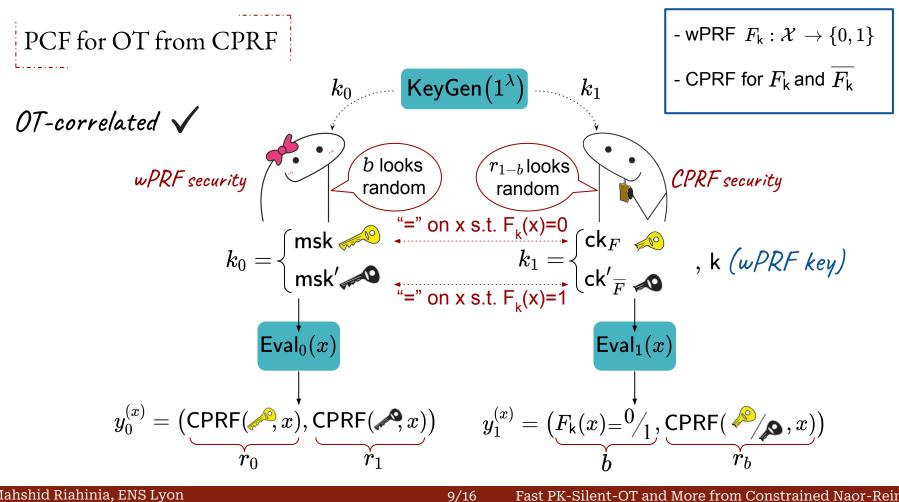


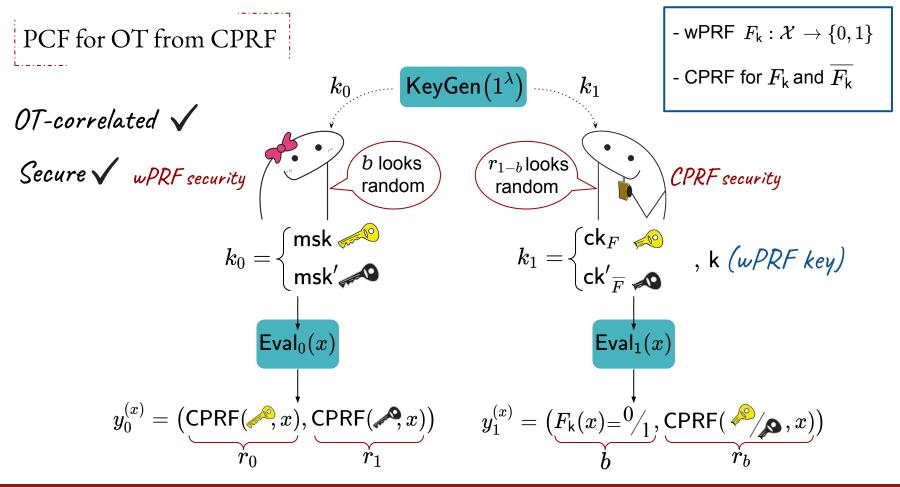
8/16

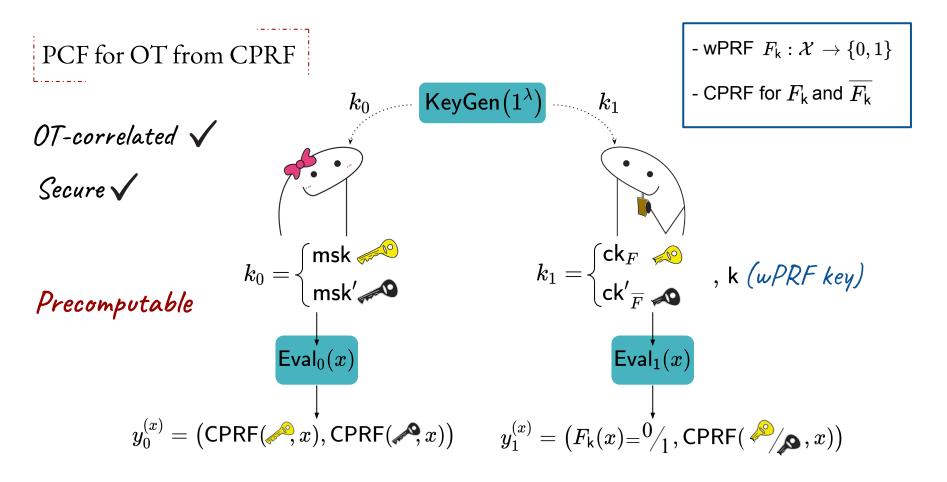


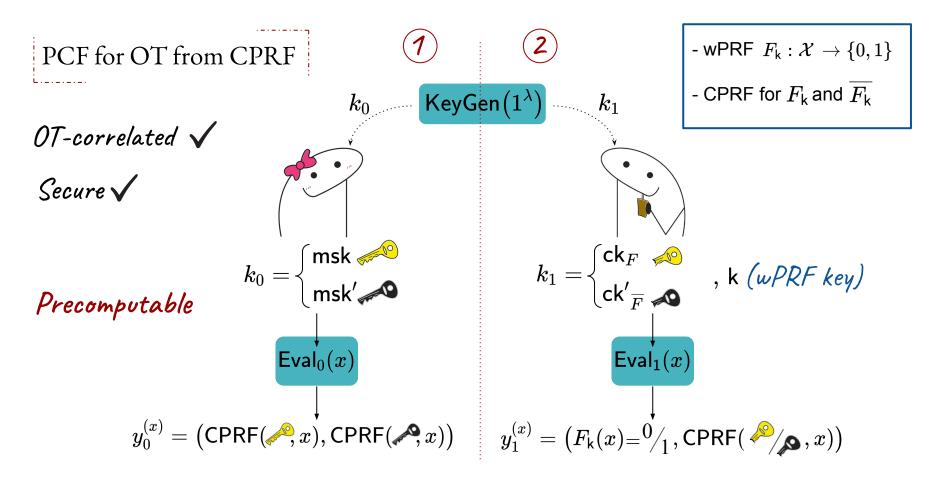


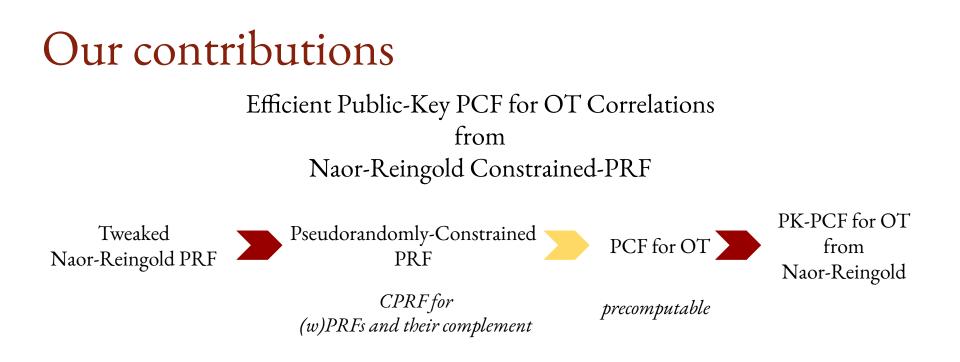


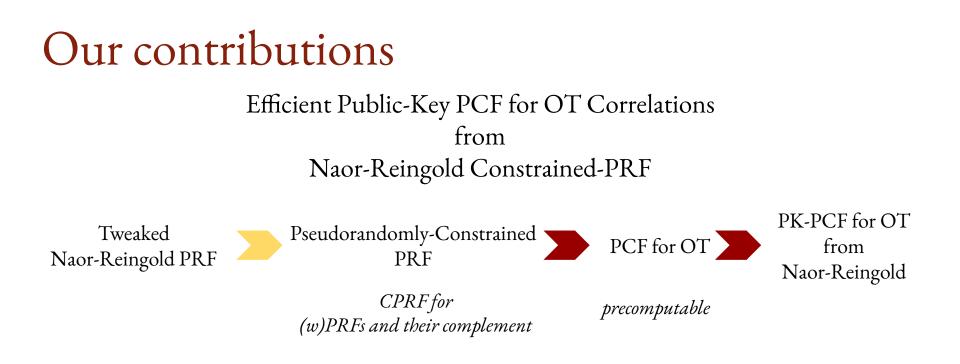


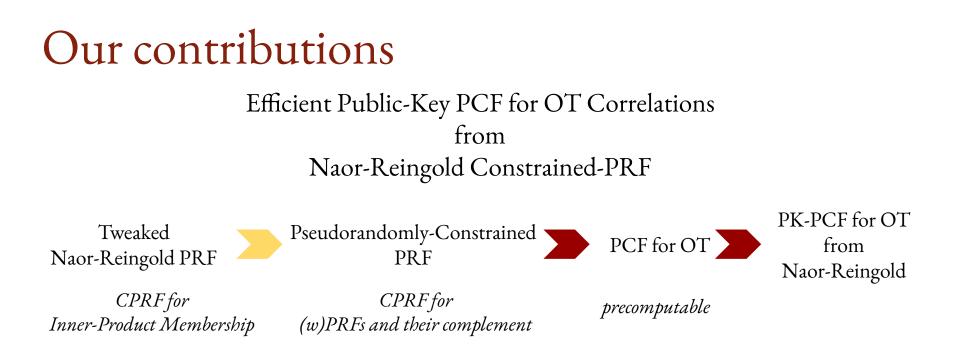


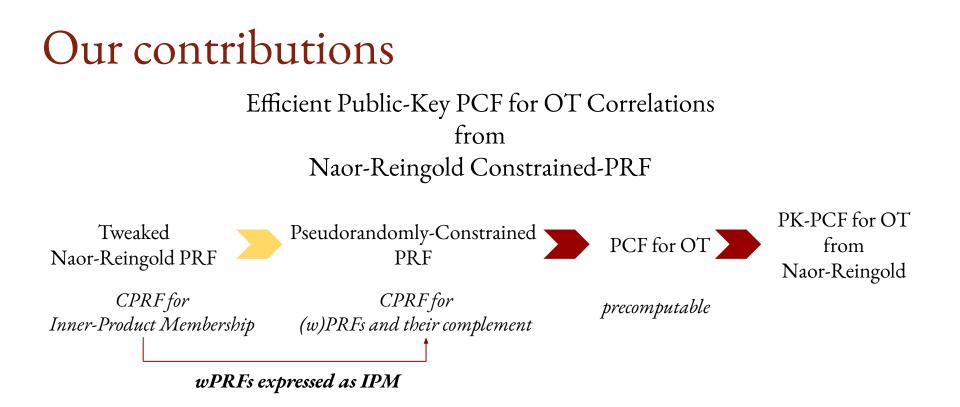












Naor-Reingold CPRF for Inner-Product Membership

.

Naor Reingold PRF

• Master Secret Key :

_ . _ . _ . _ .

$$\mathsf{msk}:=ig(g\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}\mathbb{G},\,(a_1,a_2,\ldots,a_n)\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}ig(\mathbb{Z}_p^{\star}ig)^nig)$$

• Evaluation on
$$ec x= \overbrace{x_1,x_2,\ldots,x_n}^{ ext{binary}}$$
: $F_{\mathsf{msk}}(x):=g^{\prod_{i=1}^n a_i^{x_i}}$

Naor Reingold PRF

Master Secret Key :

$$\mathsf{msk}:=ig(g\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}\mathbb{G},\,(a_1,a_2,\ldots,a_n)\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}ig(\mathbb{Z}_p^{\star}ig)^nig)$$

• Evaluation on
$$ec{x}=x_1,x_2,\ldots,x_n$$
: $F_{\mathsf{msk}}(x):=g^{\prod_{i=1}^n a_i^{x_i}}$

Constraining Inner-Product binary

Constrained Key for $\vec{z} = z_1, z_2, \dots, z_n$:

 $ck_{\vec{z}}$ can evaluate on all \vec{x} s.t.

 $\langle ec{x},ec{z}
angle = 0$

Constrained Evaluation:

Naor Reingold PRF

Master Secret Key :

$$\mathsf{msk}:=ig(g\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}\mathbb{G},\,(a_1,a_2,\ldots,a_n)\stackrel{\hspace{0.1em}\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}ig(\mathbb{Z}_p^{*}ig)^nig)$$

• Evaluation on
$$ec x = x_1, x_2, \dots, x_n$$
: $F_{\mathsf{msk}}(x) := g^{\prod_{i=1}^n a_i^{x_i}}$

Constraining Inner-Product

• Constrained Key for $ec{z} = z_1, z_2, \dots, z_n$: ck $_{ec{z}} := \left(g, \left\{a_i \cdot r^{-z_i}\right\}_{i \in [n]}\right); r \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{0\}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{0\}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{0\}}{\overset{\hspace{0.1em}}}{\overset{0\}}{\overset{\hspace{0.1em}}{\overset{0\}}{\overset{\hspace{0.1em}}}{\overset{0\}}{\overset{0\}}{\overset{\hspace{0\}}}}}}}}{\overset{0\}{\overset{0\}}{\overset{0\}}{\overset{0\}}{\overset{0\}}{\overset{0\}}{\overset{0\}}{\overset{0\}}{\overset{0\}}}}}, r^{*}$

 $ck_{\vec{z}}$ can evaluate on all \vec{x} s.t.

 $\langle ec{x},ec{z}
angle=0$

Constrained Evaluation:

Naor Reingold PRF

Master Secret Key :

$$\mathsf{msk}:=ig(g\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}\mathbb{G},\,(a_1,a_2,\ldots,a_n)\stackrel{\hspace{0.1em}\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}ig(\mathbb{Z}_p^{\star}ig)^nig)$$

• Evaluation on
$$ec x = x_1, x_2, \dots, x_n$$
: $F_{\mathsf{msk}}(x) := g^{\prod_{i=1}^n a_i^{x_i}}$

Constraining Inner-Product

• Constrained Key for $ec{z} = z_1, z_2, \dots, z_n$: ck $_{ec{z}} := \left(g, \left\{a_i \cdot r^{-z_i}\right\}_{i \in [n]}\right); \, r \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}\overset{\hspace{0.1em}\hspace{0.1em}}}{\overset{\hspace{0.1em}\hspace{0.1em}}}{\overset{\hspace{0.1em}\hspace{0.1em}}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}}\overset{\hspace{0.1em}\hspace{0.1em}}{\overset{\hspace{0.1em}}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{01em}}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{01em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace{0.1em}}}_{\hspace{0.1em}}}^{\hspace$

 $ck_{\vec{z}}$ can evaluate on all \vec{x} s.t.

 $\langle ec{x},ec{z}
angle=0$

Constrained Evaluation: $F_{\mathsf{ck}_{ec{z}}}(x) = g^{\prod_{i=1}^n (a_i \cdot r^{-z_i})^{x_i}} = \left(g^{\prod_{i=1}^n a_i^{x_i}}
ight)^{r^{-\langle ec{x}, ec{z}
angle}}$

Naor Reingold PRF

Master Secret Key :

$$\mathsf{msk}:=ig(g\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}\mathbb{G},\,(a_1,a_2,\ldots,a_n)\stackrel{\hspace{0.1em}\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}ig(\mathbb{Z}_p^{*}ig)^nig)$$

• Evaluation on
$$ec x=x_1,x_2,\ldots,x_n$$
: $F_{\sf msk}(x):=g^{\prod_{i=1}^n a_i^{x_i}}$ equal if $\langle ec x,ec z
angle=0$

Constraining Inner-Product

• Constrained Key for $ec{z} = z_1, z_2, \dots, z_n$: ck $_{ec{z}} := \left(g, \left\{a_i \cdot r^{-z_i}\right\}_{i \in [n]}\right); r \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$

 $ck_{\vec{z}}$ can evaluate on all \vec{x} s.t.

 $\langle ec{x},ec{z}
angle=0$

Constrained Evaluation: $F_{\mathsf{ck}_{ec{z}}}(x) = g^{\prod_{i=1}^n (a_i \cdot r^{-z_i})^{x_i}} \ = \left(g^{\prod_{i=1}^n a_i^{x_i}}
ight)^{r^{-\langle ec{x}, ec{z}
angle}}$

Naor Reingold PRF

Master Secret Key :

$$\mathsf{msk}:=ig(g\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}\mathbb{G},\,(a_1,a_2,\ldots,a_n)\stackrel{\hspace{0.1em}\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}ig(\mathbb{Z}_p^{\star}ig)^nig)$$

Evaluation on
$$ec{x}=x_1,x_2,\ldots,x_n$$
:
 $F_{\sf msk}(x):=g^{\prod_{i=1}^n a_i^{x_i}}$ equal if $\langle ec{x},ec{z}
angle=0$

No-Evaluation Security
$$g^{r^{\langle ec{x}, ec{z}
angle}}$$
looks random (unconditional)

Constraining Inner-Product

• Constrained Key for $ec{z} = z_1, z_2, \dots, z_n$: ck $_{ec{z}} := \left(g, \left\{a_i \cdot r^{-z_i}\right\}_{i \in [n]}\right); \, r \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}\overset{\hspace{0.1em}\hspace{0.1em}}}{\overset{\hspace{0.1em}\hspace{0.1em}}}{\overset{\hspace{0.1em}}}{\overset{\hspace{0.1em}}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}\hspace{0.1em}}^{\hspace{0.1em}\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}}}_{\hspace{0.1em}}^{\hspace{0.1em}}}, r^{\hspace{0.1em}\hspace{0.1em}}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}}}}_{\hspace{0.1em}}}^{\hspace{0.1em}\hspace{0.1em}}}_{\hspace{0.1em}}}})$

 $ck_{\vec{z}}$ can evaluate on all \vec{x} s.t.

 $\langle ec{x},ec{z}
angle = 0$

Constrained Evaluation: $F_{\mathsf{ck}_{ec{z}}}(x) = g^{\prod_{i=1}^n (a_i \cdot r^{-z_i})^{x_i}} = \left(g^{\prod_{i=1}^n a_i^{x_i}}
ight)^{r^{-\langle ec{x}, ec{z}
angle}}$

Full security via random oracle

Naor Reingold PRF

Master Secret Key :

$$\mathsf{msk}:=ig(g\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}\mathbb{G},\,(a_1,a_2,\ldots,a_n)\stackrel{\hspace{0.1em}\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}ig(\mathbb{Z}_p^{\star}ig)^nig)$$

• Evaluation on
$$ec{x}=x_1,x_2,\ldots,x_n$$
: $F_{\mathsf{msk}}(x):=g^{\prod_{i=1}^n a_i^{x_i}}$

Constraining Inner-Product Membership

Constrained Key for $(ec{z}\in\{0,1\}^n,S\subseteq[n])$:

Constrained Evaluation:

Naor Reingold PRF

Master Secret Key :

$$\mathsf{msk}:=ig(g\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}\mathbb{G},\,(a_1,a_2,\ldots,a_n)\stackrel{\hspace{0.1em}\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}ig(\mathbb{Z}_p^{\star}ig)^nig)$$

• Evaluation on
$$ec{x}=x_1,x_2,\ldots,x_n$$
: $F_{\mathsf{msk}}(x):=g^{\prod_{i=1}^n a_i^{x_i}}$

 $\mathsf{ck}_{(ec{z},S)}$ can evaluate on all $ec{x}$ s.t. $\langle ec{x},ec{z}
angle\in S$

Constraining Inner-Product Membership

Constrained Key for $(ec{z}\in\{0,1\}^n,S\subseteq[n])$:

Constrained Evaluation:

Naor Reingold PRF

Master Secret Key :

$$\mathsf{msk}:=ig(g\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}\mathbb{G},\,(a_1,a_2,\ldots,a_n)\stackrel{\hspace{0.1em}\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}ig(\mathbb{Z}_p^{\star}ig)^nig)$$

• Evaluation on
$$ec x = x_1, x_2, \dots, x_n$$
: $F_{\mathsf{msk}}(x) := g^{\prod_{i=1}^n a_i^{x_i}}$

 $\mathsf{ck}_{(\vec{z},S)} \text{ can evaluate on all } \vec{x} \text{ s.t.}$ $\langle \vec{x}, \vec{z} \rangle \in S$

Constraining Inner-Product Membership

- Constrained Key for $(\vec{z} \in \{0,1\}^n, S \subseteq [n])$: $\mathsf{ck}_{(\vec{z},S)} := \left(\left(g^{r^s} \right)_{s \in S}, \left\{ a_i \cdot r^{-z_i} \right\}_{i \in [n]} \right)$ $(r \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*)$
- Constrained Evaluation: $F_{\mathsf{ck}_{(ec{z},S)}}(x) = \left(g^{r^s}
 ight)^{\prod\limits_{i=1}^n \left(a_i \cdot r^{-z_i}
 ight)^{x_i}} = \left(g^{\prod_{i=1}^n a_i^{x_i}}
 ight)^{r^s \cdot r^{-\langle ec{x}, ec{z}
 angle}}$

Naor Reingold PRF

Master Secret Key : $\mathsf{msk} := \left(g \stackrel{\$}{\leftarrow} \mathbb{G}, (a_1, a_2, \dots, a_n) \stackrel{\$}{\leftarrow} \left(\mathbb{Z}_p^*\right)^n\right)$

Evaluation on
$$ec{x}=x_1,x_2,\ldots,x_n$$
: $F_{\mathsf{msk}}(x):=g^{\prod_{i=1}^n a_i^{x_i}}$ equal if $\exists s\in S:\langle ec{x},ec{z}
angle=s$

 $\mathsf{ck}_{(\vec{z},S)}$ can evaluate on all \vec{x} s.t. $\langle ec{x},ec{z}
angle\in S$

Constraining Inner-Product Membership

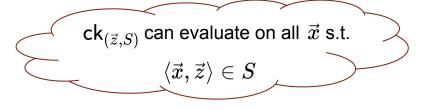
- Constrained Key for $(\vec{z} \in \{0,1\}^n, S \subseteq [n])$: $\mathsf{ck}_{(\vec{z},S)} := \left(\left(g^{r^s} \right)_{s \in S}, \left\{ a_i \cdot r^{-z_i} \right\}_{i \in [n]} \right)$ $(r \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*)$
- $| \text{ual if} \ \langle ec{x}, ec{z}
 angle = s \ igsquare{1.5}{igsquare{1.5}{1.5}} F_{\mathsf{ck}_{(ec{z},S)}}(x) = \left(g^{r^s}
 ight)^{\prod \atop i=1}^n \left(a_i \cdot r^{-z_i}
 ight)^{x_i} \ = \left(g^{\prod \limits_{i=1}^n a_i^{x_i}}
 ight)^{r^s \cdot r^{-\langle ec{x}, ec{z}
 angle}}$

Naor Reingold PRF

 $\begin{array}{l} \bullet \\ \quad \mathsf{Master Secret Key:} \\ \mathsf{msk} := \left(g \stackrel{\$}{\leftarrow} \mathbb{G}, \, (a_1, a_2, \ldots, a_n) \stackrel{\$}{\leftarrow} \left(\mathbb{Z}_p^*\right)^n\right) \end{array}$

Evaluation on
$$ec{x} = x_1, x_2, \dots, x_n$$
:
 $F_{\mathsf{msk}}(x) := g^{\prod_{i=1}^n a_i^{x_i}}$ equal if
 $\exists s \in S : \langle ec{x}, ec{z} \rangle = s$
No-Evaluation Security
 $g^{r^{\langle ec{x}, ec{z} \rangle}}$ looks random given $(g^{r^s})_{s \in S}$

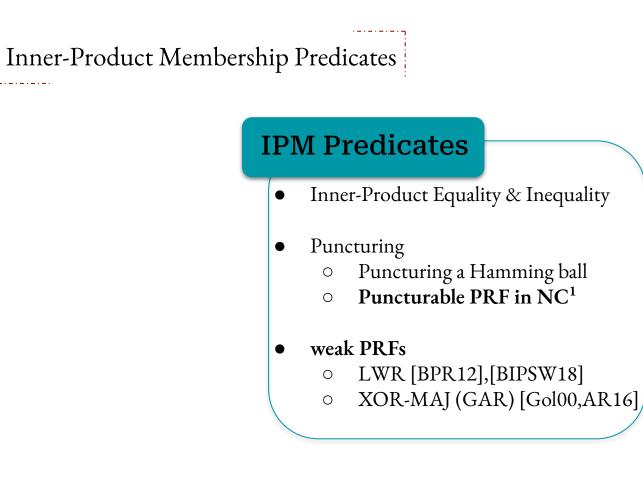
(sparse power-DDH)



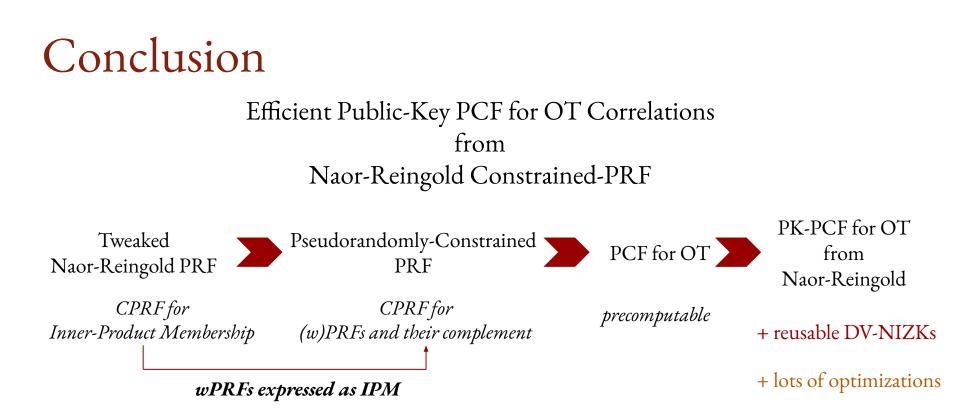
Constraining Inner-Product Membership

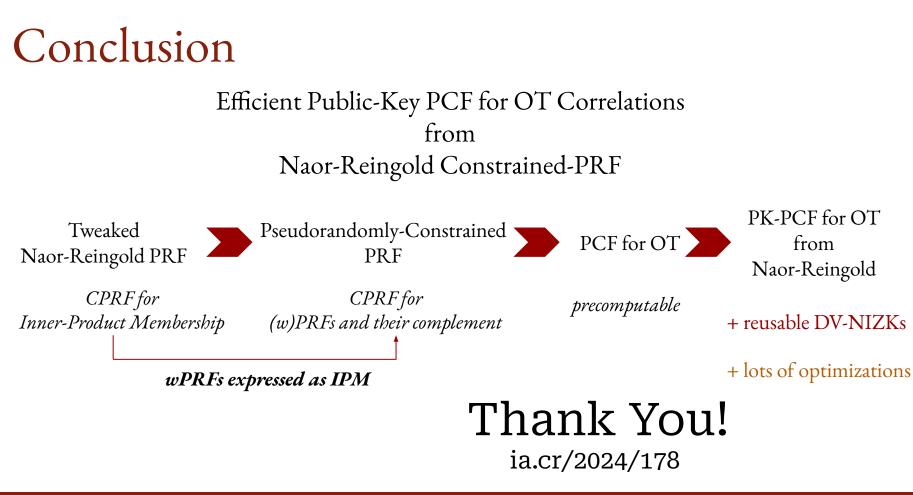
- Constrained Key for $(\vec{z} \in \{0,1\}^n, S \subseteq [n])$: $\mathsf{ck}_{(\vec{z},S)} := \left(\left(g^{r^s} \right)_{s \in S}, \left\{ a_i \cdot r^{-z_i} \right\}_{i \in [n]} \right)$ $(r \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*)$
- Constrained Evaluation: $F_{\mathsf{ck}_{(\vec{z},S)}}(x) = (g^{r^s})^{\prod\limits_{i=1}^n (a_i \cdot r^{-z_i})^{x_i}} = (g^{\prod_{i=1}^n a_i^{x_i}})^{r^s \cdot r^{-\langle \vec{x}, \vec{z} \rangle}}$

Full security via random oracle



 $egin{aligned} & [extbf{BPR12}] extbf{weak PRF:} \ & F_{ec k}(ec x) = \lfloor \langle ec k, ec x
angle
ceil_2 \ & ec k, ec x \in \mathbb{Z}_q^n \ & ec k, ec x \in \mathbb{Z}_q^n \ & ec F_{ec k}(ec x) = 0 \iff \langle ec k, ec x
angle \in S \ & S = \{s \in \mathbb{Z}_{n \cdot q^2} \mid \lfloor s
ceil_2 = 0\} \end{aligned}$





16/16