Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Threshold Raccoon in Short

A practical 3 round lattice-based Threshold Signature

- The <u>first</u> scheme w/o heavy tools (e.g., FHE, hom. TDF)
- Scales gracefully up to 1024 signers with:
 - Signature size ~ 13KB
 - Communication cost ~ 40KB
- Compatible with <u>Raccoon</u>@NIST Additional PQ Sig.
- Implementations too ③

1. Background

What are (T-out-of-N) Threshold Signatures?

\Rightarrow An interactive signing protocol to <u>"distribute trust"</u>.

- □ Single vk
 (Ideally, same as existing one in practice ☺)
- $\square \quad \underline{\text{Nobody knows the full signing key } sk}$
- Given <u>T-out-of-N partial signing keys</u>, we can produce a signature.

*In this work, we assume the distributed key generation is performed by a trusted party. More on this at the end!

What are (T-out-of-N) Threshold Signatures?

 \Rightarrow An interactive signing protocol to <u>"distribute trust"</u>.

What are (T-out-of-N) Threshold Signatures?

 \Rightarrow An interactive signing protocol to <u>"distribute trust"</u>.

Security: Unforgeability

Phase 1

Adversary obtains T - 1 partial signing keys by corrupting users.

*We only consider "selective" corruption but more on "adaptive" corruption at the end!

Security: Unforgeability

Phase 1

Adversary obtains T - 1 partial signing keys by corrupting users.

Phase 2

Adversary specifies any signer set S of size T and perform a signing query.

* *S* can contain corrupted users, possibly deviating from the real signing protocol.

Security: Unforgeability

Phase 1

Adversary obtains T - 1 partial signing keys by corrupting users.

Phase 2

Adversary specifies any signer set *S* of size *T* and perform a signing query.

Forgery

Adversary outputs a forgery on *m* it didn't query in Phase 2.

Why Study Threshold Signatures?

Applications of Threshold Signature

- Distributed key management.
 - > E.g., thresholdizing CA's private keys, crypto wallets.
- Distributed consensus mechanism on blockchains
- > Let us know if there's more application! ③

□ NIST Multi-Party Threshold Call

Deadline expected to be late 2024

PROJECTS

Multi-Party Threshold Cryptography MPTC

Known PQ Threshold Signatures

D TS based on FHE/Homomorphic TDF based

- [BGG+18]: Round optimal TS via FHE.
- [ASY22]: Optimized [BGG+18] using Renyi divergence.
- [GKS23]: Two-round TS, further optimizing [ASY22]
- □ STARK-based: [KCLM22]
- □ "Sequential" TS based on isogenies: [CS20,DM20]

- □ A lot of nice N-out-of-N TS w/ Key Aggregation (i.e., multi-signatures)
 - [FSZ22,DOTT21,DOTT22,BTT22,Che23b]

2. An Insecure Attempt

The Basic Principle

 \Rightarrow Use (T, N)-Shamir Secret Sharing on LWE secret.

$$vk = \begin{bmatrix} t \end{bmatrix} = \begin{bmatrix} A' & I \end{bmatrix} \underset{A}{S} \in R_q^n \qquad sk = \begin{bmatrix} s \in R_q^m & \text{s.t. } s \text{ is "short"} \\ A \end{bmatrix}$$

The Basic Principle

 $\deg(f) = T \wedge f(0) = s$

 \Rightarrow Use (T, N)-Shamir Secret Sharing on LWE secret.

$$vk = \begin{bmatrix} t \\ e \end{bmatrix} = \begin{bmatrix} A' & I \\ A \end{bmatrix} s \in R_q^n \quad sk = s \in R_q^m \text{ s.t. } s \text{ is "short"}$$

$$K_q = s_i = f(i)$$

$$sk_i = s_i = f(i)$$

$$k = \sum_{i \in S} L_{S,i} s_i,$$

where $L_{S,i}$ is the "Lagrange" coefficient.

The Basic Principle

 \Rightarrow Use (T, N)-Shamir Secret Sharing on LWE secret.

$$vk = \begin{bmatrix} t \\ e \end{bmatrix} = \begin{bmatrix} A' & I \\ A \end{bmatrix} s \in R_q^n \quad sk = \begin{bmatrix} s \\ e \end{bmatrix} \in R_q^m \text{ s.t. } s \text{ is "short"}$$

$$K_i = s_i = f(i)$$

$$sk_i = s_i = f(i)$$

$$k_i = f(i)$$

⇒ Lyubachevsky's signature (a.k.a. Lattice-based Schnorr.

2.
$$w = Ar \in \mathbb{R}_q^n$$

$$vk = \begin{bmatrix} t \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \stackrel{s}{s} \in R_q^n \quad sk = \begin{bmatrix} s \end{bmatrix} \in R_q^m$$

⇒ Lyubachevsky's signature (a.k.a. Lattice-based Schnorr.

Signer

$$vk = \begin{bmatrix} t \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} s \in R_q^n \quad sk = \\ s \in R_q^n \quad sk = \\ s \in R_q^n$$

1. $r \leftarrow \chi$
2. $w = Ar \in R_q^n$

3. "Small" $c = H(vk, w) \subset R_q$

⇒ Lyubachevsky's signature (a.k.a. Lattice-based Schnorr.

Signer

$$vk = \begin{bmatrix} t \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} s \in R_q^n \quad sk = \\ s \in R_q^m \end{bmatrix}$$

 $1. r \leftarrow \chi$
 $2. w = Ar \in R_q^n$

3. "Small" $c = H(vk, w) \subset R_q$

4. $z = c \cdot s + r \in R_q^m$ 5. RejSamp(z)

⇒ Lyubachevsky's signature (a.k.a. Lattice-based Schnorr.

⇒ Lyubachevsky's signature (a.k.a. Lattice-based Schnorr.

\Rightarrow Adapting 3-round threshold Schnorr to lattices

Signer $i \in S$	
1. $r_i \leftarrow \chi$	cmt_i
2. $w_i = Ar_i \in R_q^n$ 3. $cmt_i = G(w_i)$	$(cmt_j)_{j\in S\setminus\{i\}}$
4. Open cmt _i and check others	W_i $(w_j)_{j \in S \setminus \{i\}}$

⇒ Adapting 3-round threshold Schnorr to lattices

First 2 rounds are simply commit-and-open.

W/o it, it is (potentially) insecure against efficient ROS attacks.

⇒ Adapting 3-round threshold Schnorr to lattices

⇒ Adapting 3-round threshold Schnorr to lattices

Correctness

Using linearity,

 $z = \sum_{i \in S} z_i = \sum_{i \in S} (c \cdot L_{S,i} s_i + r_i)$

⇒ Adapting 3-round threshold Schnorr to lattices

Correctness

Using linearity,

$$z = \sum_{i \in S} z_i = \sum_{i \in S} (c \cdot L_{S,i} s_i + r_i) = cs + r$$

Via Shamir SS

⇒ Adapting 3-round threshold Schnorr to lattices

Correctness

Using linearity,

$$z = \sum_{i \in S} z_i = \sum_{i \in S} (c \cdot L_{S,i} s_i + r_i) = cs + r$$

Via Shamir SS

$$w = \sum_{i \in S} w_i = \sum_{i \in S} Ar_i = Ar$$

⇒ Adapting 3-round threshold Schnorr to lattices

(The Elephant in the Room)

⇒ Adapting 3-round threshold Schnol

Signer $i \in S$

Correctness

 $w_i =$

ies

+r

nir SS

d signature!

- 2. Remove rejection sampling by increasing
- 3. parameters. (Use hint MLWE rather than RD.)
- 4. Same ideology as <u>Raccoon</u>@NIST Additional
 ch PQ Sig: larger signature but no restarts ^(C).

 Z_i

 $(z)_{j\in S\setminus\{i\}}$

5.
$$c = H(vk, \sum_{j})$$

6. $z_i = c \cdot L_{s,i} s$, $r_i \in R_q^m$
7. $RejSamp(z)$

Question: Is This Naïve Attempt Secure??

The classical 3-round threshold Schnorr would be secure ⁽²⁾ [CKM23]

Question: Is This Naïve Attempt Secure??

The classical 3-round threshold Schnorr would be secure ⁽³⁾ [CKM23]

Sadly, **it's insecure in the lattice setting** 🛞

□ The Vulnerability

Focus on user *i*'s partial signature z_i ,

□ The Vulnerability

□ The Vulnerability

Focus on user *i*'s partial signature z_i ,

(Informal) Attack:

- Find signer sets S, S' with *i* such that $L_{S,i} = p \cdot L_{S',i}$, where p < q but sufficiently large.
- Obtain two partial signatures

$$z_i = c \cdot L_{S,i} s_i + r_i$$
 and $z'_i = c' \cdot L_{S',i} s_i + r'_i$

□ The Vulnerability

Focus on user *i*'s partial signature z_i ,

(Informal) Attack:

- Find signer sets S, S' with *i* such that $L_{S,i} = p \cdot L_{S',i}$, where p < q but sufficiently large.
- (2) Obtain two partial signatures

 $z_i = c \cdot L_{S,i} s_i + r_i$ and $z'_i = c' \cdot L_{S',i} s_i + r'_i$

Recover $\mathbf{c} \cdot \mathbf{p} \cdot \mathbf{r}'_i - \mathbf{c}' \cdot \mathbf{r}_i$ over \mathbb{Z} . (3)

□ The Vulnerability

Focus on user *i*'s partial signature z_i ,

(Informal) Attack:

- 1 Find signer sets *S*, *S'* with *i* such that $L_{S,i} = p \cdot L_{S',i}$, where p < q but sufficiently large.
- Obtain two partial signatures

 $z_i = c \cdot L_{S,i} s_i + r_i$ and $z'_i = c' \cdot L_{S',i} s_i + r'_i$

- (3) Recover $c \cdot p \cdot r'_i c' \cdot r_i$ over \mathbb{Z} .
- (4) If $p > |c' \cdot r_i|$, we can recover r_i, r_i , and then recover $s_i!!$

□ The Vulnerability

The Main Issue

Lagrange coefficients $L_{S,i}$ can be large over *mod* q. BUT, it seems we need $|c \cdot L_{S,i} s_i| < |r_i|$ for a "short" r_i .

Notorious in lattice-based cryptography

□ Use $\{0,1\}/\{-1,0,1\}$ linear secret sharing with $O(N^4)$ share size \otimes □ Argue $L_{S,i}$ is "small" over *mod q* using exp. large modulus *q* \otimes

3. Threshold Raccoon

Our Simple Key Idea

"Mask" the partial signature z_i by additive shares of zero!

Intuition

✓ Individual partial signature z_i won't reveal anything.
 ✓ Collectively, they add up to the real signature z.

Additive Zero Share

Additive Zero Share

Additive Zero Share

Via correctness of zero share

Simple Way to Implement Zero Share

Touring KeyGen, give user *i*, PRF keys $(k_{i,j}, k_{j,i})_{j \in [N]}$.

ZeroShare

$$\Delta_{i} = \sum_{j \in S} PRF(k_{i,j}, sid) - PRF(k_{j,i}, sid)$$

Simple Way to Implement Zero Share

Touring KeyGen, give user *i*, PRF keys $(k_{i,j}, k_{j,i})_{j \in [N]}$.

ZeroShare

$$\Delta_{i} = \sum_{j \in S} PRF(k_{i,j}, sid) - PRF(k_{j,i}, sid)$$
$$= m_{i} - m_{i}^{*}$$

	L 1		2		• 3		• 4		\$ 5		
• 1	m _{1,1}	+	m _{1,2}	+	m _{1,3}	+	m _{1,4}	+	m _{1,5}	=	m ₁
2 2	+ m _{2,1}	+	+ m _{2,2}	+	+ m _{2,3}	+	+ m _{2,4}	+	+ m _{2,5}	=	+ m ₂
•	+ m _{3,1}	+	+ m _{3,2}	+	+ m _{3,3}	+	+ m _{3,4}	+	+ m _{3,5}	_	+ m ₃
•	+ m _{4 1}		+ m ₄ 2	_	+ m _{4 2}	_L	+ m ₄	_L	+ m4 5	_	+ m 4
— 4	+	T	+	Т	+	Т	+	T	+	_	+
6 5	m _{5,1} ∥	+	m _{5,2} ∥	+	m _{5,3} ∥	+	m _{5,4} ∥	+	m _{5,5} ∥	=	m ₅ ∥
	\mathbf{m}_1^*	+	m [*] ₂	+	\mathbf{m}_3^*	+	\mathbf{m}_4^*	+	\mathbf{m}_5^*	=	m

Performances

Bit security	Т	vk	sig	Comm. / Signer	Runtime / Signer
128	4 16 64 256 1024	3.9 KB	12.7 KB	40.8 KB	11 ms 13 ms 24 ms 72 ms 256 ms

□ Asymptotically

- $|sig| = \tilde{O}(1)$
- Communication cost/signer = $\tilde{O}(1)$
- Runtime/signer is = $\tilde{O}(T)$

Some Follow Up Works

- "Two-Round Threshold Signature from Algebraic One-More LWE" [C:EKT24]
- <u>Adaptively Secure</u> 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding" [C:<u>K</u>TR24]
- "Flood and submerse: Verifiable short secret sharing and application to robust threshold signatures on lattices" [C:ENP24]

