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Threshold Raccoon in Short

A practical 3 round 
lattice-based Threshold Signature 

• The first scheme w/o heavy tools (e.g., FHE, hom. TDF)

• Scales gracefully up to 1024 signers with:
• Signature size ~ 13KB
• Communication cost ~ 40KB

• Compatible with Raccoon@NIST Additional PQ Sig.

• Implementations too ☺



1. Background



What are (T-out-of-N) Threshold Signatures?

⇒ An interactive signing protocol to “distribute trust”.

Verification key 𝑣𝑘

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

𝑠𝑘6

𝑠𝑘5

*In this work, we assume the distributed 
key generation is performed by a trusted 
party. More on this at the end!

“partial” signing key 
𝑠𝑘𝑖

 Single 𝑣𝑘
(Ideally, same as existing one in practice ☺)

 Nobody knows the full signing key 𝑠𝑘
 Given T-out-of-N partial signing keys, we can 

produce a signature.
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What are (T-out-of-N) Threshold Signatures?

⇒ An interactive signing protocol to “distribute trust”.

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

𝑠𝑘6

𝑠𝑘5

𝑠𝑘6

Sign 𝑚!

Ex. (T,N)=(3,6)

Any T users can generate 
signature 𝜎 under 𝑣𝑘

Verification key 𝑣𝑘

Verification should be identical to when 
the full signing key 𝑠𝑘 is used. 
I.e.,        is oblivious of thresholdization.



Security: Unforgeability

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

𝑠𝑘6

𝑠𝑘5

𝑠𝑘6

Ex. (T,N)=(3,6)

Verification key 𝑣𝑘
Phase 1
Adversary obtains 𝑇 − 1 partial signing keys by 
corrupting users.

*We only consider “selective” corruption but 
more on “adaptive” corruption at the end! 
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Verification key 𝑣𝑘
Phase 1
Adversary obtains 𝑇 − 1 partial signing keys by 
corrupting users.

Phase 2
Adversary specifies any signer set 𝑆 of size 𝑇 and 
perform a signing query.

* 𝑆 can contain corrupted users, possibly 
deviating from the real signing protocol.



Security: Unforgeability

𝑠𝑘1

𝑠𝑘2

𝑠𝑘3

𝑠𝑘6

𝑠𝑘5

𝑠𝑘6

Ex. (T,N)=(3,6)

Verification key 𝑣𝑘
Phase 1
Adversary obtains 𝑇 − 1 partial signing keys by 
corrupting users.

Phase 2
Adversary specifies any signer set 𝑆 of size 𝑇 and 
perform a signing query.

Forgery
Adversary outputs a forgery on 𝑚 it didn’t 
query in Phase 2.



 Applications of Threshold Signature
➢ Distributed key management. 

➢ E.g., thresholdizing CA’s private keys, crypto wallets.

➢ Distributed consensus mechanism on blockchains

➢ Let us know if there’s more application! ☺

 NIST Multi-Party Threshold Call

Why Study Threshold Signatures?

➢ Deadline expected to be late 2024



Known PQ Threshold Signatures

 TS based on FHE/Homomorphic TDF based

• [BGG+18]: Round optimal TS via FHE.
• [ASY22]: Optimized [BGG+18] using Renyi divergence.
• [GKS23]: Two-round TS, further optimizing [ASY22]

 STARK-based: [KCLM22]

 “Sequential” TS based on isogenies: [CS20,DM20]

 A lot of nice N-out-of-N TS w/ Key Aggregation (i.e., multi-signatures)
• [FSZ22,DOTT21,DOTT22,BTT22,Che23b]



2. An Insecure Attempt



The Basic Principle
⇒ Use (T, N)-Shamir Secret Sharing on LWE secret.

𝑣𝑘 = 𝐴′ 𝐼 𝑠 𝑠𝑘 ==𝑡 𝑠∈ 𝑅𝑞
𝑛 ∈ 𝑅𝑞

𝑚  s.t. 𝑠 is “short”

𝐴
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𝑠 =

𝑖∈𝑆

𝐿𝑆,𝑖 𝑠𝑖 ,

where 𝐿𝑆,𝑖 is the “Lagrange” coefficient.

𝑳𝑺,𝒊 ∈ 𝑹𝒒 is NOT 
short modulo 𝒒!!

𝑠𝑘𝑖 = 𝑠𝑖 = 𝑓 𝑖

deg 𝑓 = 𝑇 ∧ 𝑓 0 = 𝑠



Underlying “Linear” Signature Scheme 

Signer

1. 𝑟 ← 𝜒
2. 𝑤 = 𝐴𝑟 ∈ 𝑅𝑞

𝑛

⇒ Lyubachevsky’s signature (a.k.a. Lattice-based Schnorr.



Underlying “Linear” Signature Scheme 

Signer

1. 𝑟 ← 𝜒
2. 𝑤 = 𝐴𝑟 ∈ 𝑅𝑞

𝑛

3. “Small” 𝑐 = 𝐻(𝑣𝑘,𝑤) ⊂ 𝑅𝑞

⇒ Lyubachevsky’s signature (a.k.a. Lattice-based Schnorr.



Underlying “Linear” Signature Scheme 

Signer

1. 𝑟 ← 𝜒
2. 𝑤 = 𝐴𝑟 ∈ 𝑅𝑞

𝑛

3. “Small” 𝑐 = 𝐻(𝑣𝑘,𝑤) ⊂ 𝑅𝑞

4. 𝑧 = 𝑐 ⋅ 𝑠 + 𝑟 ∈ 𝑅𝑞
𝑚

5. 𝑅𝑒𝑗𝑆𝑎𝑚𝑝(𝑧)

⇒ Lyubachevsky’s signature (a.k.a. Lattice-based Schnorr.



Underlying “Linear” Signature Scheme 

Signer

1. 𝑟 ← 𝜒
2. 𝑤 = 𝐴𝑟 ∈ 𝑅𝑞

𝑛

3. “Small” 𝑐 = 𝐻(𝑣𝑘,𝑤) ⊂ 𝑅𝑞

4. 𝑧 = 𝑐 ⋅ 𝑠 + 𝑟 ∈ 𝑅𝑞
𝑚

5. 𝑅𝑒𝑗𝑆𝑎𝑚𝑝(𝑧)

(𝑤, 𝑧) is a valid signature if
- 𝑧 is short
- 𝐴𝑧 = 𝑐 ⋅ 𝑡 + 𝑤

𝑤

𝑧

⇒ Lyubachevsky’s signature (a.k.a. Lattice-based Schnorr.
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Signer

1. 𝑟 ← 𝜒
2. 𝑤 = 𝐴𝑟 ∈ 𝑅𝑞

𝑛

3. “Small” 𝑐 = 𝐻(𝑣𝑘,𝑤) ⊂ 𝑅𝑞

4. 𝑧 = 𝑐 ⋅ 𝑠 + 𝑟 ∈ 𝑅𝑞
𝑚

5. 𝑅𝑒𝑗𝑆𝑎𝑚𝑝(𝑧)

𝑤

𝑧

⇒ Lyubachevsky’s signature (a.k.a. Lattice-based Schnorr.

Linear in secret 𝒔 and 
randomness 𝒓.

(𝑤, 𝑧) is a valid signature if
- 𝑧 is short
- 𝐴𝑧 = 𝑐 ⋅ 𝑡 + 𝑤
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First 2 rounds are simply commit-and-open.
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efficient ROS attacks. 
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𝑤 =

𝑖∈𝑆

𝑤𝑖 =

𝑖∈𝑆

𝐴𝑟𝑖 = 𝐴𝑟

Exactly a standard signature!

Remove rejection sampling by increasing 
parameters. (Use hint MLWE rather than RD.)

Same ideology as Raccoon@NIST Additional 
PQ Sig: larger signature but no restarts ☺.
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The Attack in a Nutshell 
 The Vulnerability

Focus on user 𝑖’s partial signature 𝑧𝑖,

This attack won’t work in the 
classical setting as 𝑐 ⋅ 𝑝 ⋅ 𝑟𝑖

′ − 𝑐′ ⋅ 𝑟𝑖 is 
distributed uniformly over ℤ𝒑.



The Main Issue

Lagrange coefficients 𝐿𝑆,𝑖 can be large over 𝑚𝑜𝑑 𝑞.

BUT, it seems we need 𝑐 ⋅ 𝐿𝑆,𝑖 𝑠𝑖 < 𝑟𝑖 for a “short” 𝑟𝑖 .

Notorious in lattice-based cryptography

 Use {0,1}/{-1,0,1} linear secret sharing with O(𝑁4) share size 
 Argue 𝐿𝑆,𝑖 is “small” over 𝑚𝑜𝑑 𝑞 using exp. large modulus 𝑞 



3. Threshold Raccoon



Our Simple Key Idea

“Mask” the partial signature 𝑧𝑖 by additive shares of zero! 

Intuition

✓ Individual partial signature 𝑧𝑖 won’t reveal anything. 
✓ Collectively, they add up to the real signature 𝑧.



Additive Zero Share

Δ1 Δ2 Δ3 Δ4 Δ5 s.t. σ𝑖∈𝑆Δ𝑖 = 0 

Locally generate zero share
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𝑧5𝑧1
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Intuition of Why It’s Secure
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View of 
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No more Lagrange coefficient!

Proof boils down to non-threshold 
Raccoon signature ☺



Simple Way to Implement Zero Share

Δ𝑖 =

𝑗∈𝑆
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.
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𝑚𝑖,𝑗 𝑚𝑗,𝑖

= 𝑚𝑖 −𝑚𝑖
∗



Performances

 Asymptotically

• 𝑠𝑖𝑔 = ෨𝑂(1)
• Communication cost/signer = ෨𝑂(1)
• Runtime/signer is = ෨𝑂(𝑇)



Thank You For Listening 

Some Follow Up Works

 “Two-Round Threshold Signature from Algebraic One-More LWE” [C:EKT24]

 “Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding” [C:KTR24] 

 “Flood and submerse: Verifiable short secret sharing and application to robust threshold signatures 
on lattices” [C:ENP24]
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