Lower Bounds for Lattice-based Compact Functional Encryption

TECHNISCHE UNIVERSITÄT WIEN

Erkan Tairi TU Wien, Vienna, Austria

 \rightarrow

DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France

ETHzürich FC-

Akın Ünal ETH Zurich, Zurich, Switzerland

 \rightarrow

IST Austria, Klosterneuburg, Austria

Institute of Science and Technology **Austria**

Overview

- Motivation
- Our Framework: Lattice-Based FE
- Our Lower Bound
- Our Tool and Proof Strategy
- Open Questions & Limits

Functional Encryption

A functional encryption (FE) scheme is (Setup, KeyGen, Enc, Dec) …

Functional Encryption

A functional encryption (FE) scheme is (Setup, KeyGen, Enc, Dec) …

… you all know it by now.

IND-CPA Security under Unbounded Collusions

Inner-Product Encryption / Linear FE

Quadratic FE

IND-CPA Security under Unbounded Collusions

Inner-Product Encryption / Linear FE An unbounded number of secret keys $sk_{f_1},...,sk_{f_Q}$ does not help at distinguishing ct_{x_1} , ct_{x_2} as long as $\forall i \in [Q]$: $f_i(x_1) = f_i(x_2)$.

Quadratic FE

IND-CPA Security under Unbounded Collusions

An unbounded number of secret keys $sk_{f_1},...,sk_{f_Q}$ does not help at distinguishing ct_{x_1} , ct_{x_2} as long as $\forall i \in [Q]$: $f_i(x_1) = f_i(x_2)$.

Inner-Product Encryption / Linear FE

FE schemes supports secret keys for linear functions: $f: \mathbb{Z}_p^n \to \mathbb{Z}_p$, $f(X) = \alpha_1 \cdot X_1 + \dots + \alpha_n X_n$

Quadratic FE

IND-CPA Security under Unbounded Collusions

An unbounded number of secret keys $sk_{f_1},...,sk_{f_Q}$ does not help at distinguishing ct_{x_1} , ct_{x_2} as long as $\forall i \in [Q]$: $f_i(x_1) = f_i(x_2)$.

Inner-Product Encryption / Linear FE

FE schemes supports secret keys for linear functions: $f: \mathbb{Z}_p^n \to \mathbb{Z}_p$, $f(X) = \alpha_1 \cdot X_1 + \dots + \alpha_n X_n$

Quadratic FE

FE schemes can hand out secret keys for degree-2 functions

$$
f: \mathbb{Z}_p^n \to \mathbb{Z}_p, \qquad f(X) = \sum_{1 \le i \le j \le n} \alpha_{i,j} \cdot X_i \cdot X_j
$$

Why?

What are inherit limits to the power of LWE and other lattice-based Assumptions?

Our Results

- Revisit a Framework [Üna20] for Lattice-Based FE
- Prove Lower Bounds for Lattice-Based Quadratic Compact FE

Our Results

- Revisit a Framework [Üna20] for Lattice-Based FE
- Prove Lower Bounds for Lattice-Based Quadratic Compact FE
	- Lower Bound is Not Black-Box

Our Results

- Revisit a Framework [Üna20] for Lattice-Based FE
- Prove Lower Bounds for Lattice-Based Quadratic Compact FE
	- Lower Bound is Not Black-Box
	- Result is agnostic to Assumptions (RingLWE, EvasiveLWE)

FE=(Setup, KeyGen, Enc, Dec) is **lattice-based** if:

FE=(Setup, KeyGen, Enc, Dec) is **lattice-based** if:

• Ciphertexts are vectors $ct \in \mathbb{Z}_q^m$.

FE=(Setup, KeyGen, Enc, Dec) is **lattice-based** if:

- Ciphertexts are vectors $ct \in \mathbb{Z}_q^m$.
- Secret keys are polynomials $sk \in \mathbb{Z}_q[C_1, ..., C_m]$ of constant degree.

FE=(Setup, KeyGen, Enc, Dec) is **lattice-based** if:

- Ciphertexts are vectors $ct \in \mathbb{Z}_q^m$.
- Secret keys are polynomials $sk \in \mathbb{Z}_q[C_1, ..., C_m]$ of constant degree.
- Dec(sk, ct) works by

$$
\text{Dec}(sk, ct) = \left| \frac{p}{q} \cdot sk(ct) \right| \in \mathbb{Z}_p
$$

FE=(Setup, KeyGen, Enc, Dec) is **lattice-based** if:

- Ciphertexts are vectors $ct \in \mathbb{Z}_q^m$.
- Secret keys are polynomials $sk \in \mathbb{Z}_q[C_1, ..., C_m]$ of constant degree.
- Dec (sk, ct) works by

$$
\text{Dec}(sk, ct) = \left| \frac{p}{q} \cdot sk(ct) \right| \in \mathbb{Z}_p
$$

• Enc(msk, x) is *offline / online of constant depth.*

FE=(Setup, KeyGen, Enc, Dec) is **lattice-based** if:

- Ciphertexts are vectors $ct \in \mathbb{Z}_q^m$.
- Secret keys are polynomials $sk \in \mathbb{Z}_q[C_1, ..., C_m]$ of constant degree.
- Dec(sk, ct) works by

$$
\text{Dec}(sk, ct) = \left| \frac{p}{q} \cdot sk(ct) \right| \in \mathbb{Z}_p
$$

• Enc (msk, x) is *offline / online of constant depth.*

Framework captures most Lattice-Based Schemes.

FE=(Setup, KeyGen, Enc, Dec) is **lattice-based** if:

- Ciphertexts are vectors $ct \in \mathbb{Z}_q^m$.
- Secret keys are polynomials $sk \in \mathbb{Z}_q[C_1, ..., C_m]$ of constant degree.
- Dec(sk, ct) works by

$$
\text{Dec}(sk, ct) = \left| \frac{p}{q} \cdot sk(ct) \right| \in \mathbb{Z}_p
$$

• Enc (msk, x) is *offline / online of constant depth.*

Framework captures most Lattice-Based Schemes.

Exception: Fully Homorphic Encryption, Bit-Decomposition

Our Theorem

Let FE=(Setup, KeyGen, Enc, Dec) be a Quadratic FE Scheme s.t.

- FE is *lattice-based*
- Ciphertexts are *linearly* compact, i.e., $m \in O(n)$
- Secret Keys are of *minimal* degree 2

Then, FE is either not IND-CPA secure or not correct.

Lemma

Let SKE=(Enc, Dec) be an SKE scheme for messages $x \in \mathbb{Z}_p$. If

- each ciphertext ct_x lies in \mathbb{Z}_q^m ,
- Enc is *offline / online of constant depth,*
- each ciphertext ct_x has a *short norm* $||ct_r|| < B \in o(q),$

then SKE is either not IND-CPA secure or not correct.

Lemma

Let SKE=(Enc, Dec) be an SKE scheme for messages $x \in \mathbb{Z}_p$. If

- each ciphertext ct_x lies in \mathbb{Z}_q^m ,
- Enc is *offline / online of constant depth,*
- each ciphertext ct_x has a *short norm* $||ct_r|| < B \in o(q),$

then SKE is either not IND-CPA secure or not correct.

There is no simple Encryption Scheme with Short Ciphertexts.

Lemma

Let SKE=(Enc, Dec) be an SKE scheme for messages $x \in \mathbb{Z}_p$. If

- each ciphertext ct_x lies in \mathbb{Z}_q^m ,
- Enc is *offline / online of constant depth,*
- each ciphertext ct_x has a *short norm* $||ct_r|| < B \in o(q),$

then SKE is either not IND-CPA secure or not correct.

Even Non-Negligible Correctness is not allowed.

Lemma

Let SKE=(Enc, Dec) be an SKE scheme for messages $x \in \mathbb{Z}_p$. If

- each ciphertext ct_x lies in \mathbb{Z}_q^m ,
- Enc is *offline / online of constant depth,*
- each ciphertext ct_x has a *short norm* $||ct_r|| < B \in o(q),$

then SKE is either not IND-CPA secure or not correct.

Even Non-Negligible Correctness is not allowed.

Dec does not even need to be computable.

Lemma

If

Let SKE=(Enc, Dec) be an SKE scheme for s massages $x \in \mathbb{Z}_p$.

- each ciphertext ct_x lies in \mathbb{Z}_q^m *,*
- Enc is *offline* / *online of constant* depth,
- each ciphertext ct_x has **be** *shorm*

 $\lt B \in o(q)$

then SKE is either not IND-CPA secure or not correct.

Even Non-Negligible Correctness is not allowed.

Dec does not even need to be computable.

Our Proof Strategy

- lattice-based
- linearly compact
- deg-2 Secret keys

We want to show that these cannot exist.

SKE

- offline / online encryption
- short ciphertexts

We know that this cannot exist.

Our Proof Strategy

FE=(Setup, KeyGen, Enc, Dec) Compact Quadratic FE

FE=(Setup, KeyGen, Enc, Dec) Compact Quadratic FE For $1 \leq i < j \leq n$, set

$$
f_{i,j}(X) := X_i \cdot X_j
$$

FE=(Setup, KeyGen, Enc, Dec) Compact Quadratic FE For $1 \leq i < j \leq n$, set $f_{i,j}(X) \coloneqq X_i \cdot X_j$

Each secret key

$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$
is a deg-2 polynomial in $\mathbb{Z}_q[C_1, ..., C_m]$

FE=(Setup, KeyGen, Enc, Dec) Compact Quadratic FE For $1 \leq i < j \leq n$, set $f_{i,j}(X) \coloneqq X_i \cdot X_j$

Each secret key

We

$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

is a deg-2 polynomial in $\mathbb{Z}_q[C_1, ..., C_m]$
We have for all $x \in \mathbb{Z}_p$

$$
f_{i,j}(x, 1, 0, ..., 0) = \begin{cases} x, & \text{if } (i,j) = (1,2) \\ 0, & \text{if } (i,j) \neq (1,2) \end{cases}
$$

SKE Scheme SKE' = (Enc', Dec')

SKE Scheme SKE' = (Enc', Dec') $Enc'(msk, x):$

Draw
$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

Sample $ct \leftarrow \text{Enc}(msk, (x, 1, 0, ..., 0))$
Output $ct' := (sk_{2,3}(ct), ..., sk_{n-1,n}(ct)) \in \mathbb{Z}_q^{n-1}$

Draw
$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

\nSample $ct \leftarrow \text{Enc}(msk, (x, 1, 0, ..., 0))$
\nOutput $ct' := (sk_{2,3}(ct), ..., sk_{n-1,n}(ct)) \in \mathbb{Z}_q^{n-1}$

SKE' is secure, because FE is secure and $f_{i,j}(x, 1, 0, \ldots, 0) = 0$ for all $(i, j) \neq (1, 2)$.

Draw
$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

\nSample $ct \leftarrow \text{Enc}(msk, (x, 1, 0, ..., 0))$
\nOutput $ct' := (sk_{2,3}(ct), ..., sk_{n-1,n}(ct)) \in \mathbb{Z}_q^{n-1}$

SKE' is secure, because FE is secure and $f_{i,j}(x, 1, 0, \ldots, 0) = 0$ for all $(i, j) \neq (1, 2)$.

 $\|\overline{c}\overline{t}'\|$ is short, because $\overline{0} = f_{i,j}(x, 1,0, ... 0) =$ $\text{Dec}(sk_{i,j}, ct) = | sk_{i,j}(ct) \cdot$ \overline{p} \overline{q} for $(i, j) \neq (1,2)$.

Draw
$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

Sample $ct \leftarrow \text{Enc}(msk, (x, 1, 0, ..., 0))$
Output $ct' := (sk_{2,3}(ct), ..., sk_{n-1,n}(ct)) \in \mathbb{Z}_q^{n-1}$

Dec'(msk, ct'):

Draw
$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

\nSample $ct \leftarrow \text{Enc}(\text{msk}, (x, 1, 0, ..., 0))$
\nOutput $ct' := (sk_{2,3}(ct), ..., sk_{n-1,n}(ct)) \in \mathbb{Z}_q^{\binom{n}{2}-1}$
\nDec'(msk, ct'): How do we compute $sk_{1,2}(ct)$ from $sk_{2,3}(ct), ..., sk_{n-1,n}(ct)$?

 $S_{\rm eff}$, $S_{\rm eff}$,

 $\mathcal{L}^{\text{max}}_{\text{max}}$

er
E

Draw
$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

\nSample $ct \leftarrow \text{Enc}(\text{msk}, (x, 1, 0, ..., 0))$
\nOutput $ct' := (sk_{2,3}(ct), ..., sk_{n-1,n}(ct)) \in \mathbb{Z}_q^{n-1}$
\nDec'(msk, ct'): How do we compute $sk_{1,2}(ct)$ from $sk_{2,3}(ct), ..., sk_{n-1,n}(ct)$?

l, SC an Aigebran Use an Algebraic Relationship!

Algebraic Relations

- We have $\binom{n}{2}$ $\mathfrak{S} = \Theta \big(n^2 \big)$ many polynomials $sk_{i,j} \in \mathbb{Z}_q[\mathcal{C}_1, ..., \mathcal{C}_m]$
- of degree 2
- over $m = O(n)$ variables.

Algebraic Relations

- We have $\binom{n}{2}$ $\mathfrak{S} = \Theta \big(n^2 \big)$ many polynomials $sk_{i,j} \in \mathbb{Z}_q[\mathcal{C}_1, ..., \mathcal{C}_m]$
- of degree 2
- over $m = O(n)$ variables.

Theorem $\overline{[}$ Una23 $\overline{]} \Rightarrow$ $sk_{1,2}, ..., sk_{n-1,n}$ admit an *algebraic relationship* h of constant degree.

Algebraic Relations

- We have $\binom{n}{2}$ $\mathfrak{S} = \Theta \big(n^2 \big)$ many polynomials $sk_{i,j} \in \mathbb{Z}_q[\mathcal{C}_1, ..., \mathcal{C}_m]$
- of degree 2
- over $m = O(n)$ variables.

Theorem $\overline{[}$ Una23 $\overline{]} \Rightarrow$ $sk_{1,2}, ..., sk_{n-1,n}$ admit an *algebraic relationship* h of constant degree. I.e., there exists $h \in \mathbb{Z}_q[Y_{1,2},...,Y_{n-1,n}]$ s.t.

$$
h \neq 0,
$$

$$
h\left(sk_{1,2}(C), \ldots, sk_{n-1,n}(C)\right) = 0,
$$

$$
\deg h \in O(1).
$$

Draw
$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

Sample $ct \leftarrow \text{Enc}(msk, (x, 1, 0, ..., 0))$
Output $ct' := (sk_{2,3}(ct), ..., sk_{n-1,n}(ct)) \in \mathbb{Z}_q^{n-1}$

Dec'(msk, ct'):

Compute relationship
$$
h(S_{1,2}, ..., S_{n-1,n})
$$
 among $sk_{i,j}$
Set $g(S_{1,2}) \coloneqq h(S_{1,2}, sk_{2,3}(ct), ..., sk_{n-1,n}(ct))$
Output $\left[r \cdot \frac{p}{q} \right]$ for $r \leftarrow g^{-1}(0)$.

Output $|r \cdot$

 \overline{p}

for $r \leftarrow g^{-1}(0)$.

 \overline{q}

Draw
$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

\nSample $ct \leftarrow \text{Enc}(msk, (x, 1, 0, ..., 0))$
\nOutput $ct' := (sk_{2,3}(ct), ..., sk_{n-1,n}(ct)) \in \mathbb{Z}_q^{\binom{n}{2}-1}$
\nDec'(msk, ct'):
\nCompute relationship $h(S_{1,2}, ..., S_{n-1,n})$ among $sk_{i,j}$
\nSet $g(S_{1,2}) := h(S_{1,2}, sk_{2,3}(ct), ..., sk_{n-1,n}(ct))$

Draw
$$
sk_{i,j} \leftarrow \text{KeyGen}(msk, f_{i,j})
$$

\nSample $ct \leftarrow \text{Enc}(msk, (x, 1, 0, ..., 0))$
\nOutput $ct' := (sk_{2,3}(ct), ..., sk_{n-1,n}(ct)) \in \mathbb{Z}_q^{\binom{n}{2}-1}$
\nDec'(msk, ct'):
$$
g(s_{k_{1,2}(ct)}) = h(s_{k_{1,2}(ct), ..., sk_{n-1,n}(ct)}) = 0
$$
\nCompute relationship $h(S_{1,2}, ..., S_{n-1,n})$ among $sk_{i,j}$
\nSet $g(S_{1,2}) := h(S_{1,2}, sk_{2,3}(ct), ..., sk_{n-1,n}(ct))$
\nOutput $\left| r \cdot \frac{p}{q} \right|$ for $r \leftarrow g^{-1}(0)$.
$$
\left[\text{Dec}(sk_{1,2}, ct) = \left| \frac{p}{q} \cdot sk_{1,2}(ct) \right| = f_{1,2}(x, 1, 0, ...) = x \right]
$$

SKE Scheme SKE' = (Enc', Dec')

 $\mathbf{F}^{\mathbf{r}}(\cdot)$

• Has Secret Keys of *Minimal* Degree 2 $\frac{ct)}{2} = 0$ Compute relationship ℎ 1,2, … , −1, among , cannot Exist!Draw , ← KeyGen , , Quadratic FE, which is Output ′ ≔ 2,3 , … , −1, ∈ ℤ **Result** • *Lattice-Based* • Linearly *Compact* $m ∈ O(n)$

Set (1,2) ≔ ℎ 1,2, 2,3 , … , −1,

$$
ct)\Big)=0
$$

Output
$$
\left[r \cdot \frac{p}{q} \right]
$$
 for $r \leftarrow g^{-1}(0)$. $\left[\text{Dec}(sk_{1,2}, ct) = \left| \frac{p}{q} \cdot sk_{1,2}(ct) \right| = f_{1,2}(x, 1, 0, ...) = x \right]$

Open Questions & Limits

What about relaxed Parameters?

- (Relaxed) Compactness $m \in O(n^{2-\epsilon})$
- Secret Keys of Any Constant Degree
- ⇒ New Methods necessary…

Open Questions & Limits

What about relaxed Parameters?

- (Relaxed) Compactness $m \in O(n^{2-\epsilon})$
- Secret Keys of Any Constant Degree

⇒ New Methods necessary…

How can we cirumvent this result?

- Use FHE (Bit-Decomposition)
- What about $p = 2$?

Function-Hiding IPE for $p = 2$???

Can we have a *Binary Multiplication Scheme*?

- Keyed Distributions $Enc_0({msk}), Enc_1({msk})$ over \mathbb{Z}_q^m
- Keyed Distributions $\mathit{SK}_0(msk)$, $\mathit{SK}_1(msk)$ over \mathbb{Z}_q^m Such that
- Given $Enc_0(msk)$, $SK_0(msk) \approx_c SK_1(msk)$
- Given $SK_0(msk)$, $Enc_0(msk) \approx_c Enc_1(msk)$
- For all $a, b \in \{0,1\}$, $ct \leftarrow Enc_{a}(msk)$, $sk \leftarrow SK_{b}(msk)$ $ct|sk\rangle = \{$ small if $a \cdot b = 0$ large if $a \cdot b = 1$

Thank you for your Attention!!

https://ia.cr/2023/719

(also, my phd thesis sooooooooon………)

Offline / Online Encryption

- Messages are integer vectors $\{0, ..., p-1\}^n$.
- Enc(msk, x) has complex offline phase $Enc_{off}(msk)$, and a simple online phase (where it sees x and output of offline phase).

Black and White Boxes

More Limits on Lower Bounds for FE

- Time complexity of attack lies in $poly\left(\frac{q}{n}\right)$ \overline{p} .
- \bullet q needs to be prime.
- $p \in \omega(1)$ needs to be larger than some constant.
- Bit-decomposition / inverse gadget-sampling is not covered by our model of *lattice-based* FE.
- Double Modulus at Decryption is not covered: $Dec(sk, ct) = ((sk(ct) mod q) mod p') mod p$

The Ugly Details

- What if the algebraic relationship h among the secret keys is (almost) always zero?
- Homogeneity among Ciphertexts: For each message pair x , y : each low-degree polynomial q vanishes on $ct_x \leftarrow$ Enc(*msk*, x) with owp iff it vanishes on ct_v with owp.
- For Homogeneity, we need that $\deg h$ is constant.
- For that, we need linear compactness + minimal sk degree.

Can we do better?

Yes, but we need more polynomials $h_1, ..., h_\ell$ and better handling of probablities….

Algebraic Relationships [Üna23,myPhdThesis]

Does there exist $(x, y) \in \mathbb{R}^2$ s.t.

$$
f_1(x, y) = 1\n f_2(x, y) = 1\n f_3(x, y) = 2 ?
$$

No, because $h(1,1,2) = 1^2 - 1 \cdot 2 = -1 \neq 0$!

Refutation **Prediction**

What values for $f_1(x, y)$ are possible if

$$
f_2(x, y) = 2f_3(x, y) = 2 ?
$$

 $f_1(x, y) = \pm 2$, because $h(f_1(x, y), 2, 2) = 0$.

Algebraic Relationships [Üna23,myPhdThesis]

Intuition for Lower Bounds for FE

• We ask for keys for a lot of *useless* functions $f_{i,j}$. ⇒ Noise of *useless* functions leaks *useful* information. Example: $f_1 = X_1$, $f_2 = X_2$, $f_3 = X_1 \cdot X_2$. We have $f_1 =$ f_3 f_2 . $f\mapsto sk_f$ is somewhat homomorphic. $\Rightarrow sk_{f_1}=$ sk_{f_3} sk_{f_2} . Not a problem if decryption is noise-free: $ct \leftarrow \text{Enc}(\textit{msk}, (1,0))$ $sk_{f_2}(ct) = 0$, $sk_{f_3}(ct) = 0 \Rightarrow sk_{f_1}(ct) = 0$ 0 0 In lattice-Setting, decryption is noisy: ε_3

$$
sk_{f_2}(ct) = \varepsilon_2 \neq 0, sk_{f_3}(ct) = \varepsilon_3 \neq 0 \Rightarrow sk_{f_1}(ct) = \frac{\varepsilon_3}{\varepsilon_2}
$$

Example: Function-Hiding IPE [Üna20]

• *Function-Hiding:* $s k_f$ hides the function f it evaluates.

• Use embedding
$$
v: \mathbb{Z}_p \to \mathbb{Z}_p^n
$$

 $v(x') = (x', 0, ..., 0)$

- Use function collection $f_1, ..., f_O, f_*$ $f_1(X) = \cdots = f_0(X) = 0$ $f_{*}(X) = X_1$
- For $sk_1, ..., sk_0 \leftarrow$ KeyGen $(msk, 0)$ and Q large enough, we have Pr $\begin{aligned} sk_*{\leftarrow} KeyGen(msk,f_* \end{aligned}$ s $k_* \in span(s k_1, ... , s k_Q)$ \approx Pr sk₀←KeyGen(msk,0 $sk_0 \in span\left(sk_1, ..., sk_Q \right) \leq 1 - o(1)$

Example: Function-Hiding IPE [Üna20]

