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Overview

• Motivation

• Our Framework: Lattice-Based FE

• Our Lower Bound

• Our Tool and Proof Strategy

• Open Questions & Limits
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Compact FE

Weak Equivalence:
Compact FE ≈ Multilinear Maps ≈ iO+OWFs

[BV15;AJ15;KNT18;Gar+13; Wat15;AFHLP16; FHHL18; Alb+20]
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Function-Hiding FE

Compact Quadratic FE
Inner-Product FE

LWE ?

?
[AFV11;ABDP15;ALS16]

Pairings

[AFV11;ABDP15;ALS16]

[BJK15; DDM16; BCFG17; 
Lin17; ACFGU18] [AS17; Lin17; BCFG17; Gay20]

What are inherit limits to the power of LWE and other
lattice-based Assumptions?
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• Revisit a Framework [Üna20] for Lattice-Based FE

• Prove Lower Bounds for Lattice-Based Quadratic Compact FE
• Lower Bound is Not Black-Box
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Our Theorem

Let FE=(Setup, KeyGen, Enc, Dec) be a Quadratic FE Scheme s.t.

• FE is lattice-based

• Ciphertexts are linearly compact, i.e., 𝑚 ∈ 𝑂 𝑛

• Secret Keys are of minimal degree 2

Then, FE is either not IND-CPA secure or not correct.
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We have for all 𝑥 ∈ ℤ𝑝
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𝑥, if 𝑖, 𝑗 = 1,2
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SKE Scheme SKE‘ = (Enc‘, Dec‘)



Enc′(𝑚𝑠𝑘, 𝑥):

Draw 𝑠𝑘𝑖,𝑗 ← KeyGen 𝑚𝑠𝑘, 𝑓𝑖,𝑗

Sample 𝑐𝑡 ← Enc 𝑚𝑠𝑘, 𝑥, 1,0, … , 0

Output 𝑐𝑡′ ≔ 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ∈ ℤ𝑞

𝑛
2 −1

𝑐𝑡′ is short, because
0 = 𝑓𝑖,𝑗 𝑥, 1,0,…0 =

Dec 𝑠𝑘𝑖,𝑗 , 𝑐𝑡 = 𝑠𝑘𝑖,𝑗 𝑐𝑡 ⋅
𝑝

𝑞
for 𝑖, 𝑗 ≠ 1,2 .

SKE Scheme SKE‘ = (Enc‘, Dec‘)

SKE’ is secure, 
because FE is secure and

𝑓𝑖,𝑗 𝑥, 1,0,… , 0 = 0

for all 𝑖, 𝑗 ≠ 1,2 .



Dec′ 𝑚𝑠𝑘, 𝑐𝑡′ :

Compute relationship ℎ 𝑆1,2, … , 𝑆𝑛−1,𝑛 among 𝑠𝑘𝑖,𝑗

Set 𝑔(𝑆1,2) ≔ ℎ 𝑆1,2, 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡

Output 𝑟 ⋅
𝑝

𝑞
for 𝑟 ← 𝑔−1 0 .

Enc′(𝑚𝑠𝑘, 𝑥):

Draw 𝑠𝑘𝑖,𝑗 ← KeyGen 𝑚𝑠𝑘, 𝑓𝑖,𝑗

Sample 𝑐𝑡 ← Enc 𝑚𝑠𝑘, 𝑥, 1,0, … , 0

Output 𝑐𝑡′ ≔ 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ∈ ℤ𝑞

𝑛
2 −1

SKE Scheme SKE‘ = (Enc‘, Dec‘)



Dec′ 𝑚𝑠𝑘, 𝑐𝑡′ :

Compute relationship ℎ 𝑆1,2, … , 𝑆𝑛−1,𝑛 among 𝑠𝑘𝑖,𝑗

Set 𝑔(𝑆1,2) ≔ ℎ 𝑆1,2, 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡

Output 𝑟 ⋅
𝑝

𝑞
for 𝑟 ← 𝑔−1 0 .

Enc′(𝑚𝑠𝑘, 𝑥):

Draw 𝑠𝑘𝑖,𝑗 ← KeyGen 𝑚𝑠𝑘, 𝑓𝑖,𝑗

Sample 𝑐𝑡 ← Enc 𝑚𝑠𝑘, 𝑥, 1,0, … , 0

Output 𝑐𝑡′ ≔ 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ∈ ℤ𝑞

𝑛
2 −1

SKE Scheme SKE‘ = (Enc‘, Dec‘)

How do we compute 𝑠𝑘1,2(𝑐𝑡) from

𝑠𝑘2,3 𝑐𝑡 ,…, 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ?



Dec′ 𝑚𝑠𝑘, 𝑐𝑡′ :

Compute relationship ℎ 𝑆1,2, … , 𝑆𝑛−1,𝑛 among 𝑠𝑘𝑖,𝑗

Set 𝑔(𝑆1,2) ≔ ℎ 𝑆1,2, 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡

Output 𝑟 ⋅
𝑝

𝑞
for 𝑟 ← 𝑔−1 0 .

Enc′(𝑚𝑠𝑘, 𝑥):

Draw 𝑠𝑘𝑖,𝑗 ← KeyGen 𝑚𝑠𝑘, 𝑓𝑖,𝑗

Sample 𝑐𝑡 ← Enc 𝑚𝑠𝑘, 𝑥, 1,0, … , 0

Output 𝑐𝑡′ ≔ 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ∈ ℤ𝑞

𝑛
2 −1

SKE Scheme SKE‘ = (Enc‘, Dec‘)

How do we compute 𝑠𝑘1,2(𝑐𝑡) from

𝑠𝑘2,3 𝑐𝑡 ,…, 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ?

Use an Algebraic Relationship!



Algebraic Relations

• We have 𝑛
2

= Θ 𝑛2 many polynomials 𝑠𝑘𝑖,𝑗 ∈ ℤ𝑞 𝐶1, … , 𝐶𝑚
• of degree 2

• over 𝑚 = 𝑂 𝑛 variables.

Theorem [Üna23] ⇒
𝑠𝑘1,2, … , 𝑠𝑘𝑛−1,𝑛 admit an algebraic relationship ℎ of constant degree.

I.e., there exists ℎ ∈ ℤ𝑞 𝑌1,2, … , 𝑌𝑛−1,𝑛 s.t.

ℎ ≠ 0,

ℎ 𝑠𝑘1,2 𝐶 ,… , 𝑠𝑘𝑛−1,𝑛 𝐶 = 0,

deg ℎ ∈ 𝑂 1 .
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Theorem [Üna23] ⇒
𝑠𝑘1,2, … , 𝑠𝑘𝑛−1,𝑛 admit an algebraic relationship ℎ of constant degree.

I.e., there exists ℎ ∈ ℤ𝑞 𝑌1,2, … , 𝑌𝑛−1,𝑛 s.t.

ℎ ≠ 0,

ℎ 𝑠𝑘1,2 𝐶 ,… , 𝑠𝑘𝑛−1,𝑛 𝐶 = 0,

deg ℎ ∈ 𝑂 1 .



Algebraic Relations

• We have 𝑛
2

= Θ 𝑛2 many polynomials 𝑠𝑘𝑖,𝑗 ∈ ℤ𝑞 𝐶1, … , 𝐶𝑚
• of degree 2

• over 𝑚 = 𝑂 𝑛 variables.

Theorem [Üna23] ⇒
𝑠𝑘1,2, … , 𝑠𝑘𝑛−1,𝑛 admit an algebraic relationship ℎ of constant degree.

I.e., there exists ℎ ∈ ℤ𝑞 𝑌1,2, … , 𝑌𝑛−1,𝑛 s.t.

ℎ ≠ 0,

ℎ 𝑠𝑘1,2 𝐶 ,… , 𝑠𝑘𝑛−1,𝑛 𝐶 = 0,

deg ℎ ∈ 𝑂 1 .



Dec′ 𝑚𝑠𝑘, 𝑐𝑡′ :

Compute relationship ℎ 𝑆1,2, … , 𝑆𝑛−1,𝑛 among 𝑠𝑘𝑖,𝑗

Set 𝑔(𝑆1,2) ≔ ℎ 𝑆1,2, 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡

Output 𝑟 ⋅
𝑝

𝑞
for 𝑟 ← 𝑔−1 0 .

Enc′(𝑚𝑠𝑘, 𝑥):

Draw 𝑠𝑘𝑖,𝑗 ← KeyGen 𝑚𝑠𝑘, 𝑓𝑖,𝑗

Sample 𝑐𝑡 ← Enc 𝑚𝑠𝑘, 𝑥, 1,0, … , 0

Output 𝑐𝑡′ ≔ 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ∈ ℤ𝑞

𝑛
2 −1

SKE Scheme SKE‘ = (Enc‘, Dec‘)



Dec′ 𝑚𝑠𝑘, 𝑐𝑡′ :

Compute relationship ℎ 𝑆1,2, … , 𝑆𝑛−1,𝑛 among 𝑠𝑘𝑖,𝑗

Set 𝑔(𝑆1,2) ≔ ℎ 𝑆1,2, 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡

Output 𝑟 ⋅
𝑝

𝑞
for 𝑟 ← 𝑔−1 0 .

Enc′(𝑚𝑠𝑘, 𝑥):

Draw 𝑠𝑘𝑖,𝑗 ← KeyGen 𝑚𝑠𝑘, 𝑓𝑖,𝑗

Sample 𝑐𝑡 ← Enc 𝑚𝑠𝑘, 𝑥, 1,0, … , 0

Output 𝑐𝑡′ ≔ 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ∈ ℤ𝑞

𝑛
2 −1

SKE Scheme SKE‘ = (Enc‘, Dec‘)

𝑔 𝑠𝑘1,2 𝑐𝑡 = ℎ 𝑠𝑘1,2 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 = 0



Dec′ 𝑚𝑠𝑘, 𝑐𝑡′ :

Compute relationship ℎ 𝑆1,2, … , 𝑆𝑛−1,𝑛 among 𝑠𝑘𝑖,𝑗

Set 𝑔(𝑆1,2) ≔ ℎ 𝑆1,2, 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡

Output 𝑟 ⋅
𝑝

𝑞
for 𝑟 ← 𝑔−1 0 .

𝑔 𝑠𝑘1,2 𝑐𝑡 = ℎ 𝑠𝑘1,2 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 = 0

Enc′(𝑚𝑠𝑘, 𝑥):

Draw 𝑠𝑘𝑖,𝑗 ← KeyGen 𝑚𝑠𝑘, 𝑓𝑖,𝑗

Sample 𝑐𝑡 ← Enc 𝑚𝑠𝑘, 𝑥, 1,0, … , 0

Output 𝑐𝑡′ ≔ 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ∈ ℤ𝑞

𝑛
2 −1

SKE Scheme SKE‘ = (Enc‘, Dec‘)

Dec 𝑠𝑘1,2, 𝑐𝑡 =
𝑝

𝑞
⋅ 𝑠𝑘1,2 𝑐𝑡 = 𝑓1,2 𝑥, 1,0, … = 𝑥



Dec′ 𝑚𝑠𝑘, 𝑐𝑡′ :

Compute relationship ℎ 𝑆1,2, … , 𝑆𝑛−1,𝑛 among 𝑠𝑘𝑖,𝑗

Set 𝑔(𝑆1,2) ≔ ℎ 𝑆1,2, 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡

Output 𝑟 ⋅
𝑝

𝑞
for 𝑟 ← 𝑔−1 0 .

𝑔 𝑠𝑘1,2 𝑐𝑡 = ℎ 𝑠𝑘1,2 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 = 0

Enc′(𝑚𝑠𝑘, 𝑥):

Draw 𝑠𝑘𝑖,𝑗 ← KeyGen 𝑚𝑠𝑘, 𝑓𝑖,𝑗

Sample 𝑐𝑡 ← Enc 𝑚𝑠𝑘, 𝑥, 1,0, … , 0

Output 𝑐𝑡′ ≔ 𝑠𝑘2,3 𝑐𝑡 , … , 𝑠𝑘𝑛−1,𝑛 𝑐𝑡 ∈ ℤ𝑞

𝑛
2 −1

SKE Scheme SKE‘ = (Enc‘, Dec‘)

Dec 𝑠𝑘1,2, 𝑐𝑡 =
𝑝

𝑞
⋅ 𝑠𝑘1,2 𝑐𝑡 = 𝑓1,2 𝑥, 1,0, … = 𝑥

Result
Quadratic FE, which is
• Lattice-Based
• Linearly Compact 𝑚 ∈ 𝑂 𝑛
• Has Secret Keys of Minimal Degree 2
cannot Exist!



Open Questions & Limits

What about relaxed Parameters?

• (Relaxed) Compactness 𝑚 ∈ 𝑂 𝑛2−𝜖

• Secret Keys of Any Constant Degree

⇒ New Methods necessary…

How can we cirumvent this result?

• Use FHE (Bit-Decomposition)

• What about 𝑝 = 2?
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What about relaxed Parameters?

• (Relaxed) Compactness 𝑚 ∈ 𝑂 𝑛2−𝜖

• Secret Keys of Any Constant Degree

⇒ New Methods necessary…

How can we cirumvent this result?

• Use FHE (Bit-Decomposition)

• What about 𝑝 = 2?



Function-Hiding IPE for 𝑝 = 2 ???

Can we have a Binary Multiplication Scheme?

• Keyed Distributions 𝐸𝑛𝑐0 𝑚𝑠𝑘 , 𝐸𝑛𝑐1 𝑚𝑠𝑘 over ℤ𝑞
𝑚

• Keyed Distributions 𝑆𝐾0 𝑚𝑠𝑘 , 𝑆𝐾1 𝑚𝑠𝑘 over ℤ𝑞
𝑚

Such that

• Given 𝐸𝑛𝑐0 𝑚𝑠𝑘 ,      𝑆𝐾0 𝑚𝑠𝑘 ≈𝑐 𝑆𝐾1 𝑚𝑠𝑘

• Given 𝑆𝐾0 𝑚𝑠𝑘 ,      𝐸𝑛𝑐0 𝑚𝑠𝑘 ≈𝑐 𝐸𝑛𝑐1 𝑚𝑠𝑘

• For all 𝑎, 𝑏 ∈ 0,1 , 𝑐𝑡 ← 𝐸𝑛𝑐𝑎 𝑚𝑠𝑘 , 𝑠𝑘 ← 𝑆𝐾𝑏 𝑚𝑠𝑘

𝑐𝑡|𝑠𝑘 = ቊ
small if 𝑎 ⋅ 𝑏 = 0
large if 𝑎 ⋅ 𝑏 = 1



Thank you for
your Attention!!

https://ia.cr/2023/719

(also, my phd thesis sooooooooon………)



Offline / Online Encryption

• Messages are integer vectors 0,… , 𝑝 − 1 𝑛.

• Enc 𝑚𝑠𝑘, 𝑥 has complex offline phase Encoff 𝑚𝑠𝑘 , and a simple 
online phase (where it sees 𝑥 and output of offline phase).

Enc

𝑚𝑠𝑘 𝑥 ∈ ℤ𝑝
𝑛

Encoff

𝑟1, … , 𝑟𝑚

𝑟1, … , 𝑟𝑚 ∈ ℤ𝑞 𝑋1, … , 𝑋𝑛
are polynomials of
constant degree 𝑑.
𝑑 is the depth of Enc.

𝑐𝑡 = 𝑟1 𝑥 , … , 𝑟𝑚 𝑥 ∈ ℤ𝑞
𝑚



𝑆𝑒𝑡𝑢𝑝

1𝜆

𝑚𝑠𝑘
𝐸𝑛𝑐

𝐸𝑛𝑐𝑜𝑓𝑓

𝑥

𝑐𝑡

𝐾𝑒𝑦𝐺𝑒𝑛

𝑓

𝑠𝑘𝑓𝐷𝑒𝑐

𝑓 𝑥

Black and White Boxes



More Limits on Lower Bounds for FE

• Time complexity of attack lies in 𝑝𝑜𝑙𝑦
𝑞

𝑝
.

• 𝑞 needs to be prime.

• 𝑝 ∈ 𝜔 1 needs to be larger than some constant.

• Bit-decomposition / inverse gadget-sampling is not covered by our
model of lattice-based FE.

• Double Modulus at Decryption is not covered:
𝐷𝑒𝑐 𝑠𝑘, 𝑐𝑡 = 𝑠𝑘 𝑐𝑡 𝑚𝑜𝑑 𝑞 𝑚𝑜𝑑 𝑝′ 𝑚𝑜𝑑 𝑝



The Ugly Details

• What if the algebraic relationship ℎ among the secret keys is (almost) 
always zero?

• Homogeneity among Ciphertexts: 
For each message pair 𝑥, 𝑦: each low-degree polynomial 𝑔 vanishes
on 𝑐𝑡𝑥 ←Enc(𝑚𝑠𝑘, 𝑥) with owp iff it vanishes on 𝑐𝑡𝑦 with owp.

• For Homogeneity, we need that deg ℎ is constant.

• For that, we need linear compactness + minimal sk degree.

Can we do better?
Yes, but we need more polynomials
ℎ1, … , ℎℓ and better handling of

probablities….



Algebraic Relationships [Üna23,myPhdThesis]

𝑓1 𝑋, 𝑌 = 𝑋 ⋅ 𝑌 𝑓2 𝑋, 𝑌 = 𝑋2 𝑓3 𝑋, 𝑌 = 𝑌2

ℎ 𝑇1, 𝑇2, 𝑇3 = 𝑇1
2 − 𝑇2 ⋅ 𝑇3

ℎ 𝑓1 𝑋, 𝑌 , 𝑓2 𝑋, 𝑌 , 𝑓3 𝑋, 𝑌 = 0

Does there exist 𝑥, 𝑦 ∈ ℝ2 s.t.

𝑓1 𝑥, 𝑦 = 1
𝑓2 𝑥, 𝑦 = 1
𝑓3 𝑥, 𝑦 = 2 ?

No, because ℎ 1,1,2 = 12 − 1 ⋅ 2 = −1 ≠ 0 !

Refutation Prediction

What values for 𝑓1 𝑥, 𝑦 are possible if

𝑓2 𝑥, 𝑦 = 2
𝑓3 𝑥, 𝑦 = 2 ?

𝑓1 𝑥, 𝑦 = ±2, because ℎ 𝑓1 𝑥, 𝑦 , 2,2 = 0.



Algebraic Relationships [Üna23,myPhdThesis]

𝑓1 𝑋, 𝑌 = 𝑋 ⋅ 𝑌 𝑓2 𝑋, 𝑌 = 𝑋2 𝑓3 𝑋, 𝑌 = 𝑌2

ℎ 𝑇1, 𝑇2, 𝑇3 = 𝑇1
2 − 𝑇2 ⋅ 𝑇3

ℎ 𝑓1 𝑋, 𝑌 , 𝑓2 𝑋, 𝑌 , 𝑓3 𝑋, 𝑌 = 0

Does there exist 𝑥, 𝑦 ∈ ℝ2 s.t.

𝑓1 𝑥, 𝑦 = 1
𝑓2 𝑥, 𝑦 = 1
𝑓3 𝑥, 𝑦 = 2 ?

No, because ℎ 1,1,2 = 12 − 1 ⋅ 2 = −1 ≠ 0 !

Refutation Prediction

What values for 𝑓1 𝑥, 𝑦 are possible if

𝑓2 𝑥, 𝑦 = 2
𝑓3 𝑥, 𝑦 = 2 ?

𝑓1 𝑥, 𝑦 = ±2, because ℎ 𝑓1 𝑥, 𝑦 , 2,2 = 0.

Theorem
If 𝑚 ≥ 𝑛1+𝑒 and deg 𝑓1 , … , deg 𝑓𝑚 ≤ 𝑑, 

then an algebraic relationship ℎ of degree 𝑂 𝑛1−
𝑒

𝑑−1 exists.



Intuition for Lower Bounds for FE

• We ask for keys for a lot of useless functions 𝑓𝑖,𝑗.
⇒ Noise of useless functions leaks useful information.

Example: 𝑓1 = 𝑋1, 𝑓2 = 𝑋2, 𝑓3 = 𝑋1 ⋅ 𝑋2. We have 𝑓1 =
𝑓3

𝑓2
.

𝑓 ↦ 𝑠𝑘𝑓 is somewhat homomorphic. ⇒ 𝑠𝑘𝑓1 =
𝑠𝑘𝑓3
𝑠𝑘𝑓2

. 

Not a problem if decryption is noise-free: 𝑐𝑡 ← Enc 𝑚𝑠𝑘, 1,0

𝑠𝑘𝑓2 𝑐𝑡 = 0, 𝑠𝑘𝑓3 𝑐𝑡 = 0 ⇒ 𝑠𝑘𝑓1 𝑐𝑡 =
0

0

In lattice-Setting, decryption is noisy:

𝑠𝑘𝑓2 𝑐𝑡 = 𝜀2 ≠ 0, 𝑠𝑘𝑓3 𝑐𝑡 = 𝜀3 ≠ 0⇒ 𝑠𝑘𝑓1 𝑐𝑡 =
𝜀3

𝜀2



Example: Function-Hiding IPE [Üna20]

• Function-Hiding: 𝑠𝑘𝑓 hides the function 𝑓 it evaluates.

• Use embedding 𝜈: ℤ𝑝 → ℤ𝑝
𝑛

𝜈 𝑥′ = 𝑥′, 0, … , 0

• Use function collection 𝑓1, … , 𝑓𝑄 , 𝑓∗
𝑓1 𝑋 = ⋯ = 𝑓𝑄 𝑋 = 0

𝑓∗ 𝑋 = 𝑋1
• For 𝑠𝑘1, … , 𝑠𝑘𝑄 ←KeyGen 𝑚𝑠𝑘, 0 and 𝑄 large enough, we have

Pr
𝑠𝑘∗←𝐾𝑒𝑦𝐺𝑒𝑛 𝑚𝑠𝑘,𝑓∗

𝑠𝑘∗ ∈ 𝑠𝑝𝑎𝑛 𝑠𝑘1, … , 𝑠𝑘𝑄

≈ Pr
𝑠𝑘0←𝐾𝑒𝑦𝐺𝑒𝑛 𝑚𝑠𝑘,0

𝑠𝑘0 ∈ 𝑠𝑝𝑎𝑛 𝑠𝑘1, … , 𝑠𝑘𝑄 ≥ 1 − 𝑜(1)
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Reconstruction
𝑠𝑘∗ = 𝛼1 ⋅ 𝑠𝑘1 +⋯+ 𝛼𝑄 ⋅ 𝑠𝑘𝑄

⇒
𝑠𝑘∗ 𝑐𝑡 = 𝛼1 ⋅ 𝑠𝑘1 𝑐𝑡 + ⋯+ 𝛼𝑄 ⋅ 𝑠𝑘𝑄 𝑐𝑡


