Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields

G. Mureau, A. Pellet-Marv, H. Pliatsok, A. Wallet

Eurocrypt 2024, Zurich, May 30th

Introduction

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)¹

- 1 NIST submission (additional call for signatures)
- based on module-LIP over cyclotomic fields
- efficient / compact

¹Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple

Introduction

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)¹

- 1 NIST submission (additional call for signatures)
- based on module-LIP over cyclotomic fields
- efficient / compact

This talk: Heuristic polynomial time (in many cases) algorithm solving module-LIP for rank-2 modules when K is **totally real**.

¹Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple

Introduction

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)¹

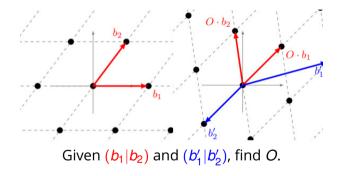
- 1 NIST submission (additional call for signatures)
- based on module-LIP over cyclotomic fields
- g efficient / compact

This talk: Heuristic polynomial time (in many cases) algorithm solving module-LIP for rank-2 modules when K is **totally real**.

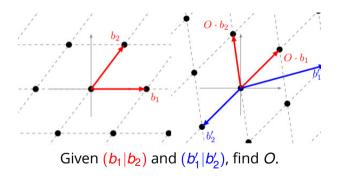
Does not break Hawk!

¹Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple

• LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .



• LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .



State of the art: need to compute many short vectors in \mathcal{L}_1 and \mathcal{L}_2 (SVP, hard problem)

- LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .
- **module lattices** are finitely generated modules over \mathcal{O}_K (K a number field).

Examples.
$$K = \mathbb{Q}[X]/(X^{2^k} + 1)$$
 and $\mathcal{O}_K = \mathbb{Z}[X]/(X^{2^k} + 1)$ (or $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$).

- LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .
- **module lattices** are finitely generated modules over \mathcal{O}_K (K a number field).

Examples.
$$K = \mathbb{Q}[X]/(X^{2^k} + 1)$$
 and $\mathcal{O}_K = \mathbb{Z}[X]/(X^{2^k} + 1)$ (or $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$).

- fractional ideals of *K* (rank one)
- 2 $\mathcal{O}_K \oplus \mathcal{O}_K$ (rank two)
- 3 in general: $M = \mathfrak{a}_1 v_1 \oplus \cdots \oplus \mathfrak{a}_\ell v_\ell$ (rank ℓ , $v_i \in K^\ell$, $\mathfrak{a}_i \subset K$)

- LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .
- **module lattices** are finitely generated modules over \mathcal{O}_K (K a number field).

Examples.
$$K = \mathbb{Q}[X]/(X^{2^k} + 1)$$
 and $\mathcal{O}_K = \mathbb{Z}[X]/(X^{2^k} + 1)$ (or $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$).

- fractional ideals of *K* (rank one)
- 2 $\mathcal{O}_K \oplus \mathcal{O}_K$ (rank two)
- 3 in general: $M = \mathfrak{a}_1 v_1 \oplus \cdots \oplus \mathfrak{a}_\ell v_\ell$ (rank ℓ , $v_i \in K^\ell$, $\mathfrak{a}_i \subset K$)
- ullet module-LIP: Same as LIP but \mathcal{L}_1 and \mathcal{L}_2 are module lattices and seek for isometry preserving the **module structure**.

- LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .
- **module lattices** are finitely generated modules over \mathcal{O}_K (K a number field).

Examples.
$$K = \mathbb{Q}[X]/(X^{2^k} + 1)$$
 and $\mathcal{O}_K = \mathbb{Z}[X]/(X^{2^k} + 1)$ (or $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$).

- fractional ideals of *K* (rank one)
- 2 $\mathcal{O}_K \oplus \mathcal{O}_K$ (rank two)
- 3 in general: $M = \mathfrak{a}_1 v_1 \oplus \cdots \oplus \mathfrak{a}_\ell v_\ell$ (rank ℓ , $v_i \in K^\ell$, $\mathfrak{a}_i \subset K$)
- module-LIP: Same as LIP but \mathcal{L}_1 and \mathcal{L}_2 are module lattices and seek for isometry preserving the **module structure**.

State of the art: embed module lattices to lattices $\subset \mathbb{R}^{d\ell}$ and solve LIP instance.

Motivating example. K any number field and $M = \mathcal{O}_K \oplus \mathcal{O}_K$ (as in Hawk).

Notation: $X^* := \overline{X}^T$, for any $X \in M_2(K)$.

Motivating example. K any number field and $M = \mathcal{O}_K \oplus \mathcal{O}_K$ (as in Hawk).

Notation: $X^* := \overline{X}^T$, for any $X \in M_2(K)$.

M' is **isomorphic** to M iff $\exists O : O^*O = Id$ and $M' = O \cdot M$.

Motivating example. K any number field and $M = \mathcal{O}_K \oplus \mathcal{O}_K$ (as in Hawk).

Notation: $X^* := \overline{X}^T$, for any $X \in M_2(K)$.

M' is **isomorphic** to M iff $\exists O : O^*O = Id$ and $M' = O \cdot M$. M' = M'(B') is isomorphic to M = M(B) iff $\exists U \in GL_2(\mathcal{O}_K) : B' = OBU$.

Motivating example. K any number field and $M = \mathcal{O}_K \oplus \mathcal{O}_K$ (as in Hawk). Notation: $X^* := \overline{X}^T$, for any $X \in M_2(K)$.

M' is **isomorphic** to M iff $\exists O : O^*O = Id$ and $M' = O \cdot M$. M' = M'(B') is isomorphic to M = M(B) iff $\exists U \in GL_2(\mathcal{O}_K) : B' = OBU$. Move to **quadratic forms**:

$$B \longmapsto G = B^*B$$
; $B' \longmapsto G' = B'^*B'$, Gram matrix / Humbert form. $B' = OBU \implies G' = U^*GU$, **congruent** to G .

Motivating example. K any number field and $M = \mathcal{O}_K \oplus \mathcal{O}_K$ (as in Hawk).

Notation: $X^* := \overline{X}^T$, for any $X \in M_2(K)$.

M' is **isomorphic** to M iff $\exists O : O^*O = Id$ and $M' = O \cdot M$. M' = M'(B') is isomorphic to M = M(B) iff $\exists U \in GL_2(\mathcal{O}_K) : B' = OBU$. Move to **quadratic forms**:

$$B \longmapsto G = B^*B$$
; $B' \longmapsto G' = B'^*B'$, Gram matrix / Humbert form. $B' = OBU \implies G' = U^*GU$, **congruent** to G .

Taking $B = G = I_2$, module-LIP with parameter K and I_2 is

module-LIP $_{K}^{l_{2}}$

Input: G' Gram matrix congruent to I_2

Goal: Compute **all** $U \in GL_2(\mathcal{O}_K)$ s.t. $G' = U^*I_2U = U^*U$.

Link with Hawk

```
Hawk: K = \mathbb{Q}(\zeta_{2^k}) cyclotomic number field (not totally real) U \in \mathrm{GL}_2(\mathcal{O}_K) (secret basis of \mathcal{O}_K \oplus \mathcal{O}_K) G = U^*U (public Gram matrix).
```

Link with Hawk

```
Hawk : K = \mathbb{Q}(\zeta_{2^k}) cyclotomic number field (not totally real) U \in \mathrm{GL}_2(\mathcal{O}_K) (secret basis of \mathcal{O}_K \oplus \mathcal{O}_K) G = U^*U (public Gram matrix).
```

• Recovering *U* from *G* is a module-LIP $_K^{l_2}$ instance.

Link with Hawk

```
Hawk: K = \mathbb{Q}(\zeta_{2^k}) cyclotomic number field (not totally real) U \in GL_2(\mathcal{O}_K) (secret basis of \mathcal{O}_K \oplus \mathcal{O}_K) G = U^*U (public Gram matrix).
```

- Recovering *U* from *G* is a module-LIP $_K^{l_2}$ instance.
- Any solution $V^*V = G$ is a **key recovering** (up to automorphism).

The attack over totally real fields

From now on
$$K$$
 is **totally real** $(e.g., K = \mathbb{Q}(\zeta + \zeta^{-1}))$ and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$

From now on
$$K$$
 is **totally real** $(e.g., K = \mathbb{Q}(\zeta + \zeta^{-1}))$ and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$
Goal: Recover U from $G = U^*U$.

From now on K is **totally real** $(e.g., K = \mathbb{Q}(\zeta + \zeta^{-1}))$ and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$ **Goal**: Recover U from $G = U^*U$.

$$G = U^*U = egin{pmatrix} a\overline{a} + b\overline{b} & \star \ \star & c\overline{c} + d\overline{d} \end{pmatrix} = egin{pmatrix} a^2 + b^2 & \star \ \star & c^2 + d^2 \end{pmatrix}$$

because K is **totally real**! Diagonal elements are **sums of two squares** in \mathcal{O}_K .

From now on K is **totally real** $(e.g., K = \mathbb{Q}(\zeta + \zeta^{-1}))$ and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$ **Goal**: Recover U from $G = U^*U$.

$$G = U^*U = egin{pmatrix} a\overline{a} + b\overline{b} & \star \ \star & c\overline{c} + d\overline{d} \end{pmatrix} = egin{pmatrix} a^2 + b^2 & \star \ \star & c^2 + d^2 \end{pmatrix}$$

because K is **totally real**! Diagonal elements are **sums of two squares** in \mathcal{O}_K .

$$a^2 + b^2 = (a+ib)(a-ib) =: N_{L/K}(a+ib)$$
 relative norm of $a+ib \in K(i) = L$.

From now on K is **totally real** $(e.g., K = \mathbb{Q}(\zeta + \zeta^{-1}))$ and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$ **Goal**: Recover U from $G = U^*U$.

$$G = U^*U = \begin{pmatrix} a\overline{a} + b\overline{b} & \star \\ \star & c\overline{c} + d\overline{d} \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & \star \\ \star & c^2 + d^2 \end{pmatrix}$$

because K is **totally real**! Diagonal elements are **sums of two squares** in \mathcal{O}_K .

$$a^2 + b^2 = (a+ib)(a-ib) =: N_{L/K}(a+ib)$$
 relative norm of $a+ib \in K(i) = L$.

Main idea: Solve relative norm equations to reconstruct U.

ullet Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f\star ar f''$

NormEquation

Input: $q \in \mathcal{O}_K$, prime factorization of $|N_{K/\mathbb{Q}}(q)| \in \mathbb{N}$.

Output: all pairs $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ such that $N_{L/K}(x + iy) = x^2 + y^2 = q$.

ullet Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f\star ar f''$

NormEquation

Input: $q \in \mathcal{O}_K$, prime factorization of $|N_{K/\mathbb{Q}}(q)| \in \mathbb{N}$.

Output: all pairs $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ such that $N_{L/K}(x + iy) = x^2 + y^2 = q$.

It runs in time

$$\operatorname{poly}(\operatorname{deg}(K), (\log |N_{K/\mathbb{Q}}(q)|)^{\mathbf{r}}),$$

where **r** is the number of distinct prime factors of $q \cdot \mathcal{O}_K$.

ullet Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f\star ar f$ "

NormEquation

Input: $q \in \mathcal{O}_K$, prime factorization of $|N_{K/\mathbb{Q}}(q)| \in \mathbb{N}$.

Output: all pairs $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ such that $N_{L/K}(x + iy) = x^2 + y^2 = q$.

It runs in time

$$\mathsf{poly} \big(\mathsf{deg}(K), (\log |\mathcal{N}_{K/\mathbb{Q}}(q)|)^{\mathbf{r}} \big),$$

where **r** is the number of distinct prime factors of $q \cdot \mathcal{O}_K$.

ullet Randomization of the input to guarantee ${f r}={f 1}.$

$$|N_{K/\mathbb{Q}}(q)|$$
 prime power \checkmark

ullet Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f\star ar f$ "

NormEquation

Input: $q \in \mathcal{O}_K$, prime factorization of $|N_{K/\mathbb{Q}}(q)| \in \mathbb{N}$.

Output: all pairs $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ such that $N_{L/K}(x + iy) = x^2 + y^2 = q$.

It runs in time

$$\mathsf{poly} \big(\mathsf{deg}(K), (\log |\mathcal{N}_{K/\mathbb{Q}}(q)|)^{\mathbf{r}} \big),$$

where **r** is the number of distinct prime factors of $q \cdot \mathcal{O}_K$.

ullet Randomization of the input to guarantee ${f r}={f 1}.$

$$|N_{K/\mathbb{O}}(q)|$$
 prime power \checkmark

Heuristic X

 \Rightarrow Get norm equations easy to solve.

Attack: Randomization step

GaussianGram

Input: G matrix, s > 0 sampling parameter.

Output : $(u, v) \in \mathcal{O}_K \oplus \mathcal{O}_K$ follows a discrete Gaussian distribution.

1 Sample $V \in M_2(\mathcal{O}_K)$ invertible, using two calls to GaussianGram(G, s)

Attack: Randomization step

GaussianGram

Input: G matrix, s > 0 sampling parameter.

Output : $(u, v) \in \mathcal{O}_K \oplus \mathcal{O}_K$ follows a discrete Gaussian distribution.

- **1** Sample $V \in M_2(\mathcal{O}_K)$ invertible, using two calls to GaussianGram(G, s)
- **2** Compute $G_V = V^T G V = \begin{pmatrix} q_1 & \star \\ \star & q_2 \end{pmatrix}$
- **3** Repeat untill $q_1 \cdot \mathcal{O}_K$ and $q_2 \cdot \mathcal{O}_K$ are **prime ideals**

Attack: Randomization step

GaussianGram

Input: G matrix, s > 0 sampling parameter.

Output : $(u, v) \in \mathcal{O}_K \oplus \mathcal{O}_K$ follows a discrete Gaussian distribution.

- **1** Sample $V \in M_2(\mathcal{O}_K)$ invertible, using two calls to GaussianGram(G, s)
- **2** Compute $G_V = V^T G V = \begin{pmatrix} q_1 & \star \\ \star & q_2 \end{pmatrix}$
- **3** Repeat untill $q_1 \cdot \mathcal{O}_K$ and $q_2 \cdot \mathcal{O}_K$ are **prime ideals**

Heuristic for the probability of success.

Numerical experiments + theoretical results (distribution of prime ideals, involves ρ_K , residue of ζ_K at 1).

Attack: Statement

Solving module-LIP for $\mathcal{O}_K \oplus \mathcal{O}_K$.

Suppose $K = \mathbb{Q}(\zeta_{2^k} + \zeta_{2^k}^{-1})$ and G a Gram matrix.

 \exists heuristic algorithm solving module-LIP $_K^{l_2}$ on input G in expected time

$$poly(\rho_K, deg(K), size(G)),$$

 ρ_K residue of ζ_K at 1 (small in our experiments).

Numerical experiments

Full attack here: https://gitlab.inria.fr/capsule/code-for-module-lip

Table: Times in seconds for attacks over various maximal totally real subfields K of cyclotomic fields with conductors m=4k, averaged over 5 instances. The degree d of K is $\varphi(m)/2$, and the lattices involved have dimension 2d. The upper table are powers-of-two. Experiments performed on a MacBook Pro (Apple M2), with Sagemath 10.2 and Pari/GP 2.15.5.

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^*GU$

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^*GU$

• Attack for any totally real number field K, any module lattice $M \subset K^2$.

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^*GU$

- Attack for any totally real number field K, any module lattice $M \subset K^2$.
- In general, can't hope for polynomial time complexity. Depends on the "Gram ideal" $\mathcal{G}(M) = \langle ||v||^2 | v \in M \rangle$. e.g., $\mathcal{G}(\mathcal{O}_K \oplus \mathcal{O}_K) = \mathcal{O}_K$.

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^*GU$

- Attack for any totally real number field K, any module lattice $M \subset K^2$.
- In general, can't hope for polynomial time complexity. Depends on the "Gram ideal" $\mathcal{G}(M) = \langle ||v||^2 | v \in M \rangle$. e.g., $\mathcal{G}(\mathcal{O}_K \oplus \mathcal{O}_K) = \mathcal{O}_K$.

Solving module-LIP for rank-2 modules in totally real number fields.

Parameters: K totally real, $M \subset K^2$, with (pseudo-)basis B and $G = B^*B$.

Input: G' (pseudo-)Gram matrix congruent to G.

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^*GU$

- Attack for any totally real number field K, any module lattice $M \subset K^2$.
- In general, can't hope for polynomial time complexity. Depends on the "Gram ideal" $\mathcal{G}(M) = \langle ||v||^2 | v \in M \rangle$. e.g., $\mathcal{G}(\mathcal{O}_K \oplus \mathcal{O}_K) = \mathcal{O}_K$.

Solving module-LIP for rank-2 modules in totally real number fields.

Parameters: K totally real, $M \subset K^2$, with (pseudo-)basis B and $G = B^*B$.

Input: G' (pseudo-)Gram matrix congruent to G.

∃ heuristic algorithm finding all conguence matrices in expected time

$$\Big(poly(\rho_K, \log \Delta_K, size(\mathbf{G'})) \Big)^{\mathbf{r}+1} + T_{factor}(N_{K/\mathbb{Q}}(\mathcal{G}(M)),$$

where **r** is the number of distinct prime factors of $\mathcal{G}(M)$.

• When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.

- When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.
- Classical problem. We randomize to have easy instances.

- When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.
- Classical problem. We randomize to have easy instances.
- Under some heuristic for the randomization, polynomial time (in many cases) algorithm solving module-LIP.

- When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.
- Classical problem. We randomize to have easy instances.
- Under some heuristic for the randomization, polynomial time (in many cases) algorithm solving module-LIP.

Open questions. • For modules with rank $\ell > 2$?

• Rank 2 over *K* cyclotomic?

Thanks for your attention!

Full article here!