Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields

[G. Mureau](mailto:guilhem.mureau@math.u-bordeaux.fr), A. Pellet-Mary, H. Pliatsok, A. Wallet

Eurocrypt 2024, Zurich, May 30th

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)¹

- **1** NIST submission (additional call for signatures)
- 2 based on module-LIP over cyclotomic fields
- 3 efficient / compact

 1 [Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple](https://eprint.iacr.org/2022/1155)

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)¹

- **1** NIST submission (additional call for signatures)
- 2 based on module-LIP over cyclotomic fields
- 3 efficient / compact

This talk: Heuristic polynomial time (in many cases) algorithm solving module-LIP for rank-2 modules when *K* is **totally real**.

 $^{\rm 1}$ [Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple](https://eprint.iacr.org/2022/1155)

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)¹

- **1** NIST submission (additional call for signatures)
- 2 based on module-LIP over cyclotomic fields
- 3 efficient / compact

This talk: Heuristic polynomial time (in many cases) algorithm solving module-LIP for rank-2 modules when *K* is **totally real**.

Does not break Hawk!

 $^{\rm 1}$ [Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple](https://eprint.iacr.org/2022/1155)

• LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .

• LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .

State of the art: need to compute many short vectors in \mathcal{L}_1 and \mathcal{L}_2 (SVP, hard problem)

- LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .
- **module lattices** are finitely generated modules over \mathcal{O}_K (*K* a number field).

Examples. $K = \mathbb{Q}[X]/(X^{2^k} + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^{2^k} + 1)$ (or $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$).

- LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .
- **module lattices** are finitely generated modules over \mathcal{O}_K (*K* a number field).

Examples. $K = \mathbb{Q}[X]/(X^{2^k} + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^{2^k} + 1)$ (or $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$). **1** fractional ideals of *K* (rank one) **2** \mathcal{O}_K ⊕ \mathcal{O}_K (rank two)

 \bullet in general: $M = \mathfrak{a}_1 \mathfrak{v}_1 \oplus \cdots \oplus \mathfrak{a}_\ell \mathfrak{v}_\ell$ (rank ℓ , $\mathfrak{v}_i \in \mathcal{K}^\ell$, $\mathfrak{a}_i \subset \mathcal{K})$

- LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .
- **module lattices** are finitely generated modules over \mathcal{O}_K (*K* a number field).

Examples. $K = \mathbb{Q}[X]/(X^{2^k} + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^{2^k} + 1)$ (or $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$). **1** fractional ideals of *K* (rank one)

- **2** \mathcal{O}_K ⊕ \mathcal{O}_K (rank two)
- \bullet in general: $M = \mathfrak{a}_1 \mathfrak{v}_1 \oplus \cdots \oplus \mathfrak{a}_\ell \mathfrak{v}_\ell$ (rank ℓ , $\mathfrak{v}_i \in \mathcal{K}^\ell$, $\mathfrak{a}_i \subset \mathcal{K})$

• module-LIP: Same as LIP but \mathcal{L}_1 and \mathcal{L}_2 are module lattices and seek for isometry preserving the **module structure**.

- LIP: Find an isometry (distance preserving map) sending \mathcal{L}_1 on \mathcal{L}_2 .
- **module lattices** are finitely generated modules over \mathcal{O}_K (*K* a number field).

Examples. $K = \mathbb{Q}[X]/(X^{2^k} + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^{2^k} + 1)$ (or $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$). **1** fractional ideals of *K* (rank one)

- **2** \mathcal{O}_K ⊕ \mathcal{O}_K (rank two)
- \bullet in general: $M = \mathfrak{a}_1 \mathfrak{v}_1 \oplus \cdots \oplus \mathfrak{a}_\ell \mathfrak{v}_\ell$ (rank ℓ , $\mathfrak{v}_i \in \mathcal{K}^\ell$, $\mathfrak{a}_i \subset \mathcal{K})$

• module-LIP: Same as LIP but \mathcal{L}_1 and \mathcal{L}_2 are module lattices and seek for isometry preserving the **module structure**.

State of the art: embed module lattices to lattices $\subset \mathbb{R}^{d\ell}$ and solve LIP instance.

Motivating example. *K* any number field and $M = \mathcal{O}_K \oplus \mathcal{O}_K$ (as in Hawk). Notation: $X^*:=\overline{X}^T,$ for any $X\in M_2(K).$

Motivating example. *K* any number field and $M = O_K \oplus O_K$ (as in Hawk). Notation: $X^*:=\overline{X}^T,$ for any $X\in M_2(K).$

M′ is **isomorphic** to *M* iff ∃ *O* : *O*∗*O* = *Id* and *M*′ = *O* · *M*.

Motivating example. *K* any number field and $M = \mathcal{O}_K \oplus \mathcal{O}_K$ (as in Hawk). Notation: $X^*:=\overline{X}^T,$ for any $X\in M_2(K).$

M′ is **isomorphic** to *M* iff ∃ *O* : *O*∗*O* = *Id* and *M*′ = *O* · *M*. $\mathcal{M}' = \mathcal{M}'(B')$ is isomorphic to $\mathcal{M} = \mathcal{M}(B)$ iff $\exists \; \mathcal{U} \in \mathrm{GL}_2(\mathcal{O}_\mathcal{K})$: $B' = OBU.$

Motivating example. *K* any number field and $M = \mathcal{O}_K \oplus \mathcal{O}_K$ (as in Hawk). Notation: $X^*:=\overline{X}^T,$ for any $X\in M_2(K).$

M′ is **isomorphic** to *M* iff ∃ *O* : *O*∗*O* = *Id* and *M*′ = *O* · *M*. $\mathcal{M}' = \mathcal{M}'(B')$ is isomorphic to $\mathcal{M} = \mathcal{M}(B)$ iff $\exists \; \mathcal{U} \in \mathrm{GL}_2(\mathcal{O}_\mathcal{K})$: $B' = OBU.$ Move to **quadratic forms**:

> $B \longmapsto G = B^*B \; \; ; \; \; B' \longmapsto G' = B'^*B', \quad \text{Gram matrix / Humbert form.}$ $B' = OBU \implies G' = U^*GU$, congruent to *G*.

Motivating example. *K* any number field and $M = \mathcal{O}_K \oplus \mathcal{O}_K$ (as in Hawk). Notation: $X^*:=\overline{X}^T,$ for any $X\in M_2(K).$

M′ is **isomorphic** to *M* iff ∃ *O* : *O*∗*O* = *Id* and *M*′ = *O* · *M*. $\mathcal{M}' = \mathcal{M}'(B')$ is isomorphic to $\mathcal{M} = \mathcal{M}(B)$ iff $\exists \; \mathcal{U} \in \mathrm{GL}_2(\mathcal{O}_\mathcal{K})$: $B' = OBU.$ Move to **quadratic forms**:

> $B \longmapsto G = B^*B \; \; ; \; \; B' \longmapsto G' = B'^*B', \quad \text{Gram matrix / Humbert form.}$ $B' = OBU \implies G' = U^*GU$, congruent to *G*.

Taking $B = G = I_2$, module-LIP with parameter *K* and *I₂* is

module-LIP*^I*² *K*

Input: *G*^{\prime} Gram matrix congruent to *l*₂ **Goal:** Compute **all** $U \in GL_2(\mathcal{O}_K)$ s.t. $G' = U^* I_2 U = U^* U$.

Guilhem Mureau [Cryptanalysis of rank-2 module-LIP](#page-0-0) May 30th, 2024 5/15

$\textsf{Hawk}: K=\mathbb{Q}(\zeta_{2^k})$ cyclotomic number field (not totally real) $U \in GL_2(\mathcal{O}_K)$ (secret basis of $\mathcal{O}_K \oplus \mathcal{O}_K$) *G* = *U* [∗]*U* (public Gram matrix).

$\textsf{Hawk}: K=\mathbb{Q}(\zeta_{2^k})$ cyclotomic number field (not totally real) *U* ∈ GL₂(\mathcal{O}_K) (secret basis of $\mathcal{O}_K \oplus \mathcal{O}_K$) *G* = *U* [∗]*U* (public Gram matrix).

 \bullet Recovering U from G is a module-LIP $_K^b$ instance.

$\textsf{Hawk}: K=\mathbb{Q}(\zeta_{2^k})$ cyclotomic number field (not totally real) *U* ∈ GL₂(\mathcal{O}_K) (secret basis of $\mathcal{O}_K \oplus \mathcal{O}_K$) *G* = *U* [∗]*U* (public Gram matrix).

- \bullet Recovering U from G is a module-LIP $_K^b$ instance.
- Any solution *V* [∗]*V* = *G* is a **key recovering** (up to automorphism).

The attack over totally real fields

$$
G = U^*U = \begin{pmatrix} a\overline{a} + b\overline{b} & \overline{c} \\ \overline{c} & \overline{c} + d\overline{d} \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & \overline{c} \\ \overline{c} & \overline{c} + d^2 \end{pmatrix}
$$

because *K* is **totally real**! Diagonal elements are **sums of two squares** in O*^K* .

$$
G = U^*U = \begin{pmatrix} a\overline{a} + b\overline{b} & \star \\ \star & c\overline{c} + d\overline{d} \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & \star \\ \star & c^2 + d^2 \end{pmatrix}
$$

because *K* is **totally real**! Diagonal elements are **sums of two squares** in O*^K* .

$$
a^2 + b^2 = (a + ib)(a - ib) =: N_{L/K}(a + ib)
$$
 relative norm of $a + ib \in K(i) = L$.

$$
G = U^*U = \begin{pmatrix} a\overline{a} + b\overline{b} & \star \\ \star & c\overline{c} + d\overline{d} \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & \star \\ \star & c^2 + d^2 \end{pmatrix}
$$

because *K* is **totally real**! Diagonal elements are **sums of two squares** in O*^K* .

 $a^2 + b^2 = (a + ib)(a - ib) =: N_{L/K}(a + ib)$ relative norm of $a + ib \in K(i) = L$.

Main idea: Solve relative norm equations to reconstruct *U*.

Guilhem Mureau [Cryptanalysis of rank-2 module-LIP](#page-0-0) May 30th, 2024 8/15

\bullet Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f \star \bar f''$

NormEquation

Input: $q \in \mathcal{O}_K$, prime factorization of $|N_{K/\mathbb{Q}}(q)| \in \mathbb{N}$. **Output:** all pairs $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ such that $N_{L/K}(x + iy) = x^2 + y^2 = q$.

\bullet Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f \star \bar f''$

NormEquation

Input: $q \in \mathcal{O}_K$, prime factorization of $|N_{K/\mathbb{O}}(q)| \in \mathbb{N}$. **Output:** all pairs $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ such that $N_{L/K}(x + iy) = x^2 + y^2 = q$.

It runs in time

 $\mathsf{poly}\big(\textit{deg}(K),\allowbreak (\log |N_{K/{\mathbb Q}}(q)|)^{\mathsf{r}}\big),$

where **r** is the number of distinct prime factors of $q \cdot \mathcal{O}_K$.

\bullet Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f \star \bar f''$

NormEquation

Input: $q \in \mathcal{O}_K$, prime factorization of $|N_{K/\mathbb{O}}(q)| \in \mathbb{N}$. **Output:** all pairs $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ such that $N_{L/K}(x + iy) = x^2 + y^2 = q$.

It runs in time

 $\mathsf{poly}\big(\textit{deg}(K),\allowbreak (\log |N_{K/{\mathbb Q}}(q)|)^{\mathsf{r}}\big),$

where **r** is the number of distinct prime factors of $q \cdot \mathcal{O}_K$.

• Randomization of the input to guarantee $r = 1$. $|N_{K/\mathbb{Q}}(q)|$ prime power \mathbb{Z} expression Heuristic \mathbb{X}

\bullet Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f \star \bar f''$

NormEquation

Input: $q \in \mathcal{O}_K$, prime factorization of $|N_{K/\mathbb{O}}(q)| \in \mathbb{N}$. **Output:** all pairs $(x, y) \in \mathcal{O}_K \times \mathcal{O}_K$ such that $N_{L/K}(x + iy) = x^2 + y^2 = q$.

It runs in time

 $\mathsf{poly}\big(\textit{deg}(K),\allowbreak (\log |N_{K/{\mathbb Q}}(q)|)^{\mathsf{r}}\big),$

where **r** is the number of distinct prime factors of $q \cdot \mathcal{O}_K$.

• Randomization of the input to guarantee $r = 1$. $|N_{K/\mathbb{Q}}(q)|$ prime power \checkmark Heuristic $\mathbin{\textbf{X}}$

 \Rightarrow Get norm equations easy to solve.

GaussianGram

Input : *G* matrix, *s* > 0 sampling parameter. **Output :** $(u, v) \in \mathcal{O}_K \oplus \mathcal{O}_K$ follows a discrete Gaussian distribution.

1 Sample $V \in M_2(\mathcal{O}_K)$ invertible, using two calls to GaussianGram(*G*, *s*)

GaussianGram

Input : *G* matrix, *s* > 0 sampling parameter. **Output :** $(u, v) \in O_K \oplus O_K$ follows a discrete Gaussian distribution.

1 Sample $V \in M_2(\mathcal{O}_K)$ invertible, using two calls to GaussianGram(*G*, *s*)

$$
\bullet \text{ Compute } G_V = V^T G V = \begin{pmatrix} q_1 & \star \\ \star & q_2 \end{pmatrix}
$$

3 Repeat untill $q_1 \cdot \mathcal{O}_K$ and $q_2 \cdot \mathcal{O}_K$ are **prime ideals**

GaussianGram

Input : *G* matrix, *s* > 0 sampling parameter. **Output :** $(u, v) \in \mathcal{O}_K \oplus \mathcal{O}_K$ follows a discrete Gaussian distribution.

1 Sample $V \in M_2(\mathcal{O}_K)$ invertible, using two calls to GaussianGram(*G*, *s*)

2 Compute
$$
G_V = V^T G V = \begin{pmatrix} q_1 & \star \\ \star & q_2 \end{pmatrix}
$$

3 Repeat untill $q_1 \cdot \mathcal{O}_K$ and $q_2 \cdot \mathcal{O}_K$ are **prime ideals**

Heuristic for the probability of success.

Numerical experiments + theoretical results (distribution of prime ideals, involves ρ_K , residue of ζ*^K* at 1).

Solving module-LIP for $\mathcal{O}_K \oplus \mathcal{O}_K$.

Suppose $K=\mathbb{Q}(\zeta_{2^k}+\zeta_{2^k}^{-1})$ $\mathcal{C}_2^{(-1)}$) and G a Gram matrix. \exists heuristic algorithm solving module-LIP $_K^b$ on input G in expected time

poly(ρ*^K* , *deg*(*K*), *size*(*G*)),

 $ρ$ _K residue of $ζ$ _K at 1 (small in our experiments).

Full attack here: <https://gitlab.inria.fr/capsule/code-for-module-lip>

$(m, 2d)$	$(64, 32)$	$(128, 64)$	$(256, 128)$			
Time	2	25	850			
$(m, 2d)$	$(228, 72)$	$(276, 88)$	$(260, 96)$	$(232, 112)$	$(340, 128)$	$(296, 144)$
Time (s)	74	195	434	652	2980	4205

Table: Times in seconds for attacks over various maximal totally real subfields *K* of cyclotomic fields with conductors $m = 4k$, averaged over 5 instances. The degree d of K is $\varphi(m)/2$, and the lattices involved have dimension 2*d*. The upper table are powers-of-two. Experiments performed on a MacBook Pro (Apple M2), with Sagemath 10.2 and Pari/GP 2.15.5.

\bullet module-LIP defined for any number field, any module lattice $M\subset \mathcal{K}^\ell.$

Find all "congruence matrices" *U* s.t. *G*′ = *U* [∗]*GU*

 \bullet module-LIP defined for any number field, any module lattice $M\subset \mathcal{K}^\ell.$

Find all "congruence matrices" *U* s.t. *G*′ = *U* [∗]*GU*

• Attack for **any totally real number field** *K*, **any module lattice** *M* ⊂ *K* 2 .

 \bullet module-LIP defined for any number field, any module lattice $M\subset \mathcal{K}^\ell.$

Find all "congruence matrices" *U* s.t. *G*′ = *U* [∗]*GU*

- Attack for **any totally real number field** *K*, **any module lattice** *M* ⊂ *K* 2 .
- In general, can't hope for polynomial time complexity. Depends on the "Gram ideal" $\mathcal{G}(\pmb{M}) = \langle ||\pmb{\nu}||^2 \, | \, \pmb{\nu} \in \pmb{M} \rangle$. $\pmb{e}.\pmb{g}, \mathcal{G}(\mathcal{O}_\pmb{K} \oplus \mathcal{O}_\pmb{K}) = \mathcal{O}_\pmb{K}.$

 \bullet module-LIP defined for any number field, any module lattice $M\subset \mathcal{K}^\ell.$

Find all "congruence matrices" *U* s.t. *G*′ = *U* [∗]*GU*

- Attack for **any totally real number field** *K*, **any module lattice** *M* ⊂ *K* 2 .
- In general, can't hope for polynomial time complexity. Depends on the "Gram ideal" $\mathcal{G}(\pmb{M}) = \langle ||\pmb{\nu}||^2 \, | \, \pmb{\nu} \in \pmb{M} \rangle$. $\pmb{e}.\pmb{g}, \mathcal{G}(\mathcal{O}_\pmb{K} \oplus \mathcal{O}_\pmb{K}) = \mathcal{O}_\pmb{K}.$

Solving module-LIP for rank-2 modules in totally real number fields.

Parameters: K totally real, $M \subset K^2,$ with (pseudo-)basis B and $G = B^*B.$ **Input:** *G*′ (pseudo-)Gram matrix congruent to *G*.

 \bullet module-LIP defined for any number field, any module lattice $M\subset \mathcal{K}^\ell.$

Find all "congruence matrices" *U* s.t. *G*′ = *U* [∗]*GU*

- Attack for **any totally real number field** *K*, **any module lattice** *M* ⊂ *K* 2 .
- In general, can't hope for polynomial time complexity. Depends on the "Gram ideal" $\mathcal{G}(\pmb{M}) = \langle ||\pmb{\nu}||^2 \, | \, \pmb{\nu} \in \pmb{M} \rangle$. $\pmb{e}.\pmb{g}, \mathcal{G}(\mathcal{O}_\pmb{K} \oplus \mathcal{O}_\pmb{K}) = \mathcal{O}_\pmb{K}.$

Solving module-LIP for rank-2 modules in totally real number fields.

Parameters: K totally real, $M \subset K^2,$ with (pseudo-)basis B and $G = B^*B.$ **Input:** *G*′ (pseudo-)Gram matrix congruent to *G*. ∃ heuristic algorithm finding all conguence matrices in expected time

$$
\left(\textnormal{poly}(\rho_K,\log \Delta_K,\textnormal{size}(\mathbf{G}'))\right)^{\mathbf{r}+1}+\textnormal{T}_{\textnormal{factor}}(\textnormal{N}_{\textnormal{K}/\mathbb{Q}}(\mathcal{G}(M)),
$$

where **r** is the number of distinct prime factors of $G(M)$.

• When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.

• When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.

• Classical problem. We randomize to have easy instances.

- When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.
- Classical problem. We randomize to have easy instances.
- Under some heuristic for the randomization, polynomial time (in many cases) algorithm solving module-LIP.

• When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.

- Classical problem. We randomize to have easy instances.
- Under some heuristic for the randomization, polynomial time (in many cases) algorithm solving module-LIP.

Open questions. • For modules with rank $\ell > 2$? • Rank 2 over *K* cyclotomic ?

Thanks for your attention!

Full article here!

Guilhem Mureau **[Cryptanalysis of rank-2 module-LIP](#page-0-0)** May 30th, 2024 15/15