Application to the block cipher CRAFT

Improvements of Differential Meet-in-the-Middle Cryptanalysis

Zahra Ahmadian¹ Akram Khalesi¹ Dounia M'Foukh² Hossein Moghimi¹ María Naya-Plasencia²

¹Shahid Beheshti University

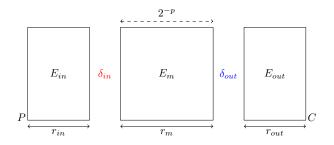
²Inria Paris

European Research Council Established by the European Commission

Ínnía -

Application to the block cipher CRAFT

Table of contents

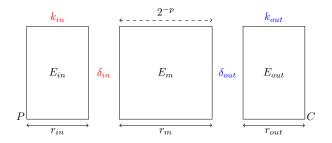

Differential Meet-in-the-Middle (MITM) cryptanalysis

Improvements of the differential MITM cryptanalysis

Application to the block cipher CRAFT

Application to the block cipher CRAFT

Differential Meet-in-the-Middle [BDD⁺23]

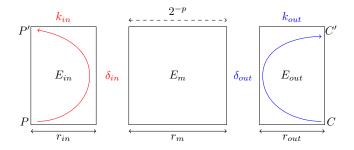

We generate 2^p pairs (P, C).

 $P \rightarrow 2^{|\mathbf{k}_{in}|}P'$ and $C \rightarrow 2^{|\mathbf{k}_{out}|}C'$.

We keep the candidates (P, P', C, C', k_{in} , k_{out}) such that $P' = E^{-1}(C')$.

Application to the block cipher CRAFT

Differential Meet-in-the-Middle [BDD⁺23]


We generate 2^p pairs (P, C).

 $P \rightarrow 2^{|\mathbf{k}_{in}|} P'$ and $C \rightarrow 2^{|\mathbf{k}_{out}|} C'$.

We keep the candidates (P, P', C, C', k_{in} , k_{out}) such that $P' = E^{-1}(C')$.

Application to the block cipher CRAFT

Differential Meet-in-the-Middle [BDD⁺23]

We generate 2^p pairs (P, C).

 $P \rightarrow 2^{|\mathbf{k}_{in}|}P'$ and $C \rightarrow 2^{|\mathbf{k}_{out}|}C'$.

We keep the candidates (P, P', C, C', k_{in} , k_{out}) such that $P' = E^{-1}(C')$.

Application to the block cipher CRAFT 000000

Extensions of the attack in the original paper

Reducing Data complexity :

- \rightsquigarrow Impose x bits conditions on the plaintexts P and P'.
- \rightsquigarrow Useful in the case that the whole codebook is needed.
- \rightsquigarrow The time complexity is compensated :

$$\mathscr{T} = 2^{p} (2^{|k_{in}|} + 2^{|k_{out}|} + 2^{|k_{in}| + |k_{out}| - |k_{in} \cap k_{out}| - n}).$$

The optimal number of bits conditions is given by the following bound :

$$\rightarrow p + x \le n - x$$
 \implies $x = \frac{n - p}{2}.$

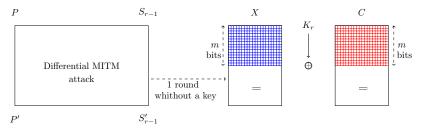
Finally, the Data complexity becomes : $\mathcal{D} = 2^{n-x}$.

Extensions of the attack in the original paper

Reducing Data complexity :

- \rightsquigarrow Impose x bits conditions on the plaintexts P and P'.
- \rightsquigarrow Useful in the case that the whole codebook is needed.
- $\stackrel{\text{$\sim > $}}{ \mathcal{T} = 2^{p+x} (2^{|k_{in}|-x} + 2^{|k_{out}|-x} + 2^{|k_{in}|+|k_{out}|-|k_{in}\cap k_{out}|-(n-x)-2x)}. }$

The optimal number of bits conditions is given by the following bound :


$$\rightarrow p + x \le n - x$$
 \implies $x = \frac{n - p}{2}.$

Finally, the Data complexity becomes : $\mathcal{D} = 2^{n-x}$.

Application to the block cipher CRAFT 000000

Extensions of the attack in the original paper

Parallel Partitions :

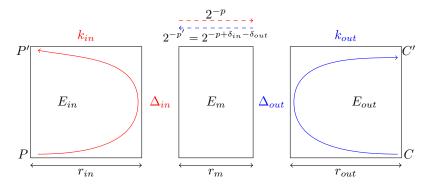
- \rightsquigarrow One round for free in the best case.
- → Round key addition applied on part of the cipher.

Application to the block cipher CRAFT 000000

Our new results

Improvements of the differential MITM attack

- 1. Extension to truncated differential MITM attack,
- 2. State-test technique,
- 3. Probability in the key recovery part,
- 4. Improved structures.

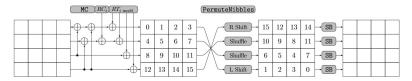

Applications of our improvements

- 1. 23 rounds of SKINNY-64-192,
- 2. 25 rounds of SKINNY-128-384,
- 3. 23 rounds out of 31 rounds of CRAFT.

Improvements of the differential MITM cryptanalysis ••••••• Application to the block cipher CRAFT 000000

Truncated differential MITM

Instead of fixed differences δ_{in} and δ_{out} , we consider sets of differences Δ_{in} and Δ_{out} .

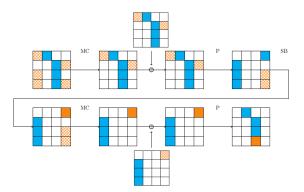


Improvements of the differential MITM cryptanalysis $\bigcirc \bullet \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Application to the block cipher CRAFT 000000

Description of CRAFT

CRAFT [BLMR19], published in ToSC in 2019, is a lightweight tweakable block cipher operating on a 64-bit block, a 128-bit key ($K_0 || K_1$), and a 64-bit tweak T.

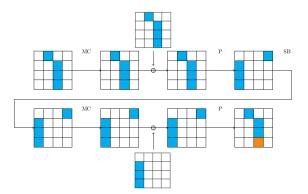


The last round is composed of only the *MixColumn*, *AddConstant* and *AddTweakey* operations.

Improvements of the differential MITM cryptanalysis 000000

Application to the block cipher CRAFT 000000

1. State-test technique

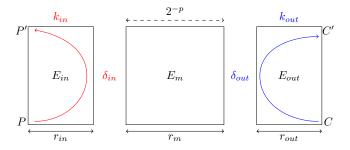


- → Technique used previously in the context of the MITM and impossible differential attacks in [DSP07,BNS14],
- $\rightsquigarrow\,$ Gives non-linear equations over the key bits,
- \rightsquigarrow Reduces the size of k_{in} and k_{out} .

Improvements of the differential MITM cryptanalysis 000000

Application to the block cipher CRAFT 000000

1. State-test technique

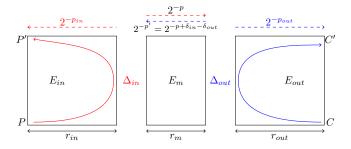

- → Technique used previously in the context of the MITM and impossible differential attacks in [DSP07,BNS14],
- $\rightsquigarrow\,$ Gives non-linear equations over the key bits,
- \rightsquigarrow Reduces the size of k_{in} and k_{out} .

Improvements of the differential MITM cryptanalysis

Application to the block cipher CRAFT

2. Probalistic key recovery

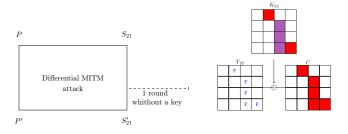
Classical case :


- → Propagate the differences with probability one.
- \rightsquigarrow Usually the whole state is active after a few rounds.

Improvements of the differential MITM cryptanalysis

Application to the block cipher CRAFT

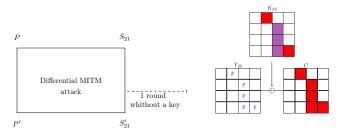
2. Probalistic key recovery


Probabilistic Key Recovery :

- \rightsquigarrow Probability of the overall attack become $2^{-p-p_{in}-p_{out}}$.
- → Higher Data is needed.
- \rightsquigarrow The number of candidate pairs of each side decreases by $2^{p_{in}}$ and $2^{p_{out}}$ respectively thus the time complexity does not increase.
- \sim Limits the propagation of the differences thus the size of k_{in} and k_{out} decreases.

Application to the block cipher CRAFT 000000

3. Example of the improved Parallel Partitioning



Extend the original parallel partitioning from [BBD⁺23]:

- → To 2 rounds for ciphers with partial-state round key addition (SKINNY).
- → To 1 round for ciphers with whole-state round key addition (CRAFT).

Application to the block cipher CRAFT 000000

3. Example of the improved Parallel Partitioning

The \blacksquare are known for both the upper and lower parts. The \blacksquare are only known for the upper part.

- \rightsquigarrow Fix the 5 F nibbles in Y_{22} ..
- \rightsquigarrow Compute the corresponding \blacksquare in C.
- → For all the possible values of the non fixed words, compute the 2^{44} possibles Y_{22} and the 2^{44} possibles C.
- → Proceed to the upper (resp. lower) part of the attack from the structures of C (resp. Y_{22}).

Application to the block cipher CRAFT 000000

Results

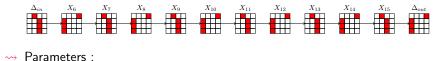
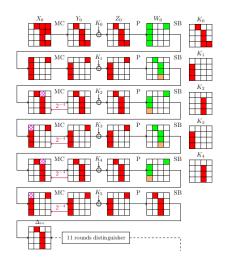

Cipher	Rounds	Time	Data	Memory	Attack	Setting	Ref
	19	2 ^{114.68}	256	2 ¹⁰⁹	DS-MITM	STK,CP	[MLC23]
	19	2 ^{112.61}	2 ^{60.92}	272	Rectangle	SK	[SZY ⁺ 22]
	20	2 ^{126.96}	256	2 ¹⁰⁹	DS-MITM	STK,CP	[MLC23]
CRAFT	21	2 ^{106.53}	2 ^{60.99}	2 ¹⁰⁰	ID	STK,CP	[HSE23]
	23	2 ^{124.58}	2 ⁶⁰	2 ¹⁰¹	Tr-Diff-MITM	STK	New
SKINNY-64-192	23	2 ¹⁸⁸	252	2 ⁴	MITM	STK	[DHS ⁺ 21]
	23	2 ¹⁸⁴	2 ⁶⁰	2 ⁸	MITM	STK	[BGST22]
	23	2 ¹⁸⁸	2 ²⁸	2 ⁴	MITM	STK	[BGST22]
	23	2 ¹⁸⁸	2 ⁵⁶	2 ¹⁰⁴	Tr-Diff-MITM	STK	New
SKINNY-128-384	24	2 ^{372.5}	2122.3	2 ^{123.8}	Diff-MITM	STK	[BDD+23]
	25	2 ^{372.5}	2 ^{122.3}	2 ^{188.3}	Diff-MITM	STK	[BDD ⁺ 23]
	25	2 ^{378.9}	2 ¹¹⁷	2 ¹⁶⁵	Diff-MITM	STK	New
	25	2 ³⁶⁶	2 ^{122.3}	2 ^{188.3}	Diff-MITM	STK	New

Table: Summary of the best known cryptanalyses on CRAFT, SKINNY-64-192 and SKINNY-128-384 in the single-tweak setting.

Application to the block cipher CRAFT •00000

Outline of the attack

- \rightsquigarrow 23-round attack on CRAFT in the single-tweak setting
- We use the following truncated differential distinguisher over 11 rounds found via a MILP program.



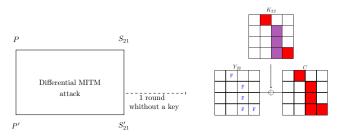
р	p _{in}	<i>p</i> _{out}	Sin	s _{out}	$\delta_{\textit{in}}$	δ_{out}	$ k_{in} $	k _{out}
44	16	12	16	12	16	16	32	32

Application to the block cipher CRAFT 0●0000

Upper part of the key recovery


- $\begin{array}{l} \rightsquigarrow \quad \mathsf{Truncated \ differential} \to \mathsf{No} \ \mathsf{need} \\ \mathsf{to} \ \mathsf{guess} \ \mathcal{K}_5. \end{array}$
- → The are the backward propagation of the differences.
- → Value of and need to be known, ■ depends only on active bits but ■ also depends on non-active bits.
- ✓ In rounds 2,3,4,5 we pay a probability 2⁻⁴ to force the ⊠ to be non active.
- → The are the state test words that makes the value of ⊠ unnecessary to be determined.

Application to the block cipher CRAFT 0●0000


Upper part of the key recovery

- → The are the backward propagation of the differences.
- ✓ Value of and need to be known, ■ depends only on active bits but ■ also depends on non-active bits.
- ✓ In rounds 2,3,4,5 we pay a probability 2⁻⁴ to force the ⊠ to be non active.
- → The are the state test words that makes the value of ⊠ unnecessary to be determined.

Application to the block cipher CRAFT 000000

Extension of one round

The \blacksquare are known for both the upper and lower parts. The \blacksquare are only known for the upper part.

- \rightsquigarrow Fix the 5 F nibbles in Y_{22} ..
- \rightsquigarrow Compute the corresponding \blacksquare in C.
- → For all the possible values of the non fixed words, compute the 2^{44} possibles Y_{22} and the 2^{44} possibles C.
- → Proceed to the upper (resp. lower) part of the attack from the structures of C (resp. Y_{22}).

Recovering the whole key

We have recovered 2^{108} candidates for 112 bits of information of the master key, including K_0 and 7 non-linear equations over the bits of K_1 .

How to recover the rest of the key ?

First we can rewrite the equations given on rounds 4 and 18 as a function of 24 variables x_1, \ldots, x_{24} which depend only on known information.

- 1. Store up to a table of size 2^s the solutions at a time.
- 2. Sort the table based on x_1, \ldots, x_{24} ; we get 2^{96} groups of size $2^{s-96} = 2^y$ with the same solutions for equations 4 and 18.
- For each candidate in each group, get the 2¹⁶ solutions for equations 3 and 19.
- 4. For each of the 2¹⁶ solutions we get only one match with solutions from equation 4 and 18.

Improvements of the differential MITM cryptanalysis 000000

Application to the block cipher CRAFT 000000

Complexities

→ Time complexity to recover 2¹⁰⁸ candidates for 112 bits of the master key

$$\begin{aligned} \mathscr{T} &= 2^{12} \times 2^{24} (2^{44} \times 2^{24} \times 2^{16-16} + 2^{44} \times 2^{20} \times 2^{16-12} + 2^{68+68-20-44}) \\ &= 2^{108}. \end{aligned}$$

 \rightsquigarrow Time complexity to recover the whole key

The time complexity to recover the whole key is finally

$$\mathscr{T} = 2^{108-s} 2^{96} \left(2^{20} + 2^{y} 2^{16} \right).$$

Improvements of the differential MITM cryptanalysis 000000 Application to the block cipher CRAFT 000000

Complexities

→ Time complexity to recover 2¹⁰⁸ candidates for 112 bits of the master key

$$\begin{aligned} \mathscr{T} &= 2^{12} \times 2^{24} (2^{44} \times 2^{24} \times 2^{16-16} + 2^{44} \times 2^{20} \times 2^{16-12} + 2^{68+68-20-44}) \\ &= 2^{108}. \end{aligned}$$

 \rightsquigarrow Time complexity to recover the whole key

The time complexity to recover the whole key is finally

$$\mathscr{T} = 2^{108-s} 2^{96} \left(2^{20} + 2^{y} 2^{16} \right).$$

→ Memory and data complexities $\mathcal{M} = 2^s$ to stock the list of solutions and $\mathcal{D} = 2^{60}$.

For s = 101 :

$$\mathscr{T}=2^{124.58},\ \mathscr{M}=2^{101}$$
 and $\mathscr{D}=2^{60}.$

Application to the block cipher CRAFT 000000

Conclusion

Conclusion

- \rightsquigarrow New techniques which improve some best known attacks.
- → Improved Differential MITM cryptanalysis.

Open questions and future works

- → What are the limits of the state-test technique and the setting in which it is the most efficient.
- \rightsquigarrow To automatise the parallel partitioning technique.

Application to the block cipher CRAFT 000000

Conclusion

Conclusion

- \rightsquigarrow New techniques which improve some best known attacks.
- → Improved Differential MITM cryptanalysis.

Open questions and future works

- → What are the limits of the state-test technique and the setting in which it is the most efficient.
- \rightsquigarrow To automatise the parallel partitioning technique.

Thank you for your attention !