Time-Lock Puzzles
with Efficient Batch Solving

X

Jesko Rachit . Giulio
Dujmovic Garg Malavolta
CISPA UT Austin Bocconi
and Saarland University
University and MPI-SP

Date: May 29, 2024

Time-Lock Puzzles [May93, RSW906]

Time-Lock Puzzles [May93, RSW906]

g =T

Takes time T

Time-Lock Puzzles [May93, RSW906]

g =T

Takes time T

» Fast puzzle generation - Time to generate = 772 is much shorter than time T.

Time-Lock Puzzles [May93, RSW906]

g =T

Takes time T

» Fast puzzle generation - Time to generate = 772 is much shorter than time T.

* Puzzle opening takes a long time - The circuit that opens = 772 has depth at
least T. Parallelism shouldn’t help.

Applications

Sealed Bid Auctions

Sealed Bid Auctions Non-Malleable Commitments

O

&

Sealed Bid Auctions Non-Malleable Commitments Miner extractable value prevention

Applications

Encrypt to the future!

r

Sealed Bid Auctions Non-Malleable Commitments Miner extractable value prevention

Blockchain front running prevention, fair contract signing, cryptocurrency payments, distributed consensus, more!

Applications - Batch Solving

Applications - Batch Solving
O
@
5y
=

= =

Applications - Batch Solving

O Decrypt all transactions!
Solve all puzzles

—
RN X
e =& &

Applications - Batch Solving

O Decrypt all transactions!
i Solve all puzzles

RN X
e =& &
-

Blockchains, byzantine broadcast

Scalability - Millions of users need solving

Applications - Batch Solving

O Decrypt all transactions!
i Solve all puzzles

RN X
e = = "
7 &

Denial of service attacks

Blockchains, byzantine broadcast

Scalability - Millions of users need solving

Batching Complexity

e /
 Fast batch solving - Time to solve E.j , multiple puzzles,

grows with the time to solve a “single” puzzle.

Batching Complexity

e /
 Fast batch solving - Time to solve E.j , multiple puzzles,

grows with the time to solve a “single” puzzle.

N - poly(T)

Trivial solution

Batching Complexity

e /
 Fast batch solving - Time to solve E.j , multiple puzzles,

grows with the time to solve a “single” puzzle.

N - poly(T') o(N) - poly(T) + poly(log T, N)

Trivial solution

Batching Complexity

e /
 Fast batch solving - Time to solve E.j , multiple puzzles,

grows with the time to solve a “single” puzzle.

N - poly(T) o(N) - poly(T') + poly(log T, N)
Trivial solution pon(T) + pOly(IOg T, N)

This work

Our Result

Our Result

» Generic template for constructing batchable TLPs.

m Only prior solution was based on iO [SLM+23].

Our Result

» Generic template for constructing batchable TLPs.
m Only prior solution was based on iO [SLM+23].

» We give two concrete constructions and an
implementation.

Our Result

» Generic template for constructing batchable TLPs.
m Only prior solution was based on iO [SLM+23].

» We give two concrete constructions and an
implementation.

* Introduce the notion of rogue batch solving.

Roadmap

Roadmap

Batched TLP

Roadmap

Coordinated Batched TLP Batched TLP

Roadmap

Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

Roadmap

Coordinated Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

Batched TLP

—

Repeated Squaring

[MT19, TCLM21]

Roadmap

Coordinated Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

—

Batched TLP

Repeated Squaring

[MT19, TCLM21] ;12 44 — (x2)2 48 (2

Roadmap

Coordinated Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

—

Batched TLP

LWE

Repeated Squaring

[MT19, TCLM21] ;12 44 — (x2)2 48 (2

Roadmap

Coordinated Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

—

Batched TLP

LWE

Pairings

Repeated Squaring

[MT19, TCLM21] ;12 44 — (x2)2 48 (2

Roadmap

Coordinated Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

S —

Batched TLP

LWE

Pairings

Repeated Squaring

[MT19, TCLM21] ;12 14 — (x2)2 48 (2

Roadmap

Coordinated Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

S —

Batched TLP

LWE

Pairings

Repeated Squaring

[MT19, TCLM21] ;12 44 — (x2)2 48 (2

Linearly Homomorphic TLP

Linearly Homomorphic TLP

»y
e

m m,

Linearly Homomorphic TLP

»y , y
e 3

nmy m- pOIY(lOg T) my + m-

Linearly Homomorphic TLP

»y , »y
e 3

nmy m- pOIY(lOg T) my + m-

Linearly Homomorphic TLP

$ad R e /

R)
m, My poly(log T') m; + m,
‘ﬁ >

m, m, My poly(log T')

Linearly Homomorphic TLP

#
e

my my poly(log T')

‘ﬁ p

m; m, M, poly(log 7') m, +m, - 2* + my - 2%

Linearly Homomorphic TLP

#
h

>
my my poly(log T')
;ﬁ D>
bl
m, m, My poly(log T')

Bounded Batching only

Linearly Homomorphic TLP

»y
h

>
my my poly(log T')
;ﬁ D>
bl
m, m, My poly(log T')

Bounded Batching only

Homomorphism over {0,1}>*

Linearly Homomorphic TLP

»y
h

=
my my poly(log T')
;ﬁ >
=]
m; m, M, poly(log 7') m, +m, - 2* + my - 2%
Bounded Batching only
O(N
Homomorphism over {0,1}3* § (V)

Key Homomorphic PRFs

Key Homomorphic PRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — .

Key Homomorphic PRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — .

Security

Key Homomorphic PRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — .

Security Eval(k,, x)

Eval(k,, x)

Xi Vi

)

Key Homomorphic PRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — .

Security Eval(k,, x)

— Eval(k; + ky, x)
Eval(k,, x)

Xi Vi

)

Key Homomorphic PPRFs

Key Homomorphic PPRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — .

* PRF key homomorphism.

Key Homomorphic PPRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — .

* PRF key homomorphism.

* PRF puncturing

10

Key Homomorphic PPRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — .

* PRF key homomorphism.

* PRF puncturing

10

Key Homomorphic PPRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — y. Eval(, X) = Eval(s X)

_ X # x*
* PRF key homomorphism.

* PRF puncturing

10

Key Homomorphic PPRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — y. Eval(, X) = Eval(s X)
_ X # x*
* PRF key homomorphism.
« PRF puncturing Security
Eval(, X¥) random

vy
®

10

Construction

Construction

Party i m;

Construction

S .
U5 PRF_Eval(k;, i) + m,

Party i m k;

Party i

Construction

$ad

U5 PRF_Eval(k;, i) + m,

ki

Y

Puncture k; at i

11

Construction

$ad

U5 PRF_Eval(k;, i) + m,

k.

1

Y

Puncture k; at i

11

Construction

$ad

U5 PRF_Eval(k;, i) + m,

k.

1

Y

Puncture k; at i

11

Construction

$ad

U5 PRF_Eval(k;, i) + m,

ki

Y

Puncture k; at i

Construction

S .
U5 PRF_Eval(k;, i) + m,
ki

Y

Puncture k; at i

N N N »y
B Sh 54 — b

k, ks ki +ky + ky

11

Construction

S .
U5 PRF_Eval(k;, i) + m,
k.

1

Y

Puncture k; at i

N N xN »y
i 5 53— &b
k, ks ki + ky + ks

@

Takes time T

11

Construction

S .
U5 PRF_Eval(k;, i) + m,
k.

1

Y

Puncture k; at i
N N N e
Bh A A —
ky ks ky + ky + k3

AN
— Eval(k, + ky + k3, 1) Q

Takes time T

11

Construction

S .
U5 PRF_Eval(k;, i) + m,
k.

1

Y

Puncture k; at i
N N N e
Bh A A —
ky ks ky + ky + k3

AN
— Eval(k, + ky + k3, 1) Q

Takes time T

11

Construction

S .
U5 PRF_Eval(k;, i) + m,
k.

1

Y

Puncture k; at i
N N N e
Bh A A —
ky ks ky + ky + k3

@

— Eval(k, + k, + k1)

+ Eval(/2 .1)+Eval(J® 1) fakes time T
§ - § -

11

Roadmap

Coordinated Batched TLP

Batched TLP

Key-Homomorphic PRFs

LWE

Pairings

Linearly Homomorphic TLPs

Repeated Squaring

12

Roadmap

Coordinated Batched TLP

Batched TLP

Key-Homomorphic PRFs

LWE

Pairings

Linearly Homomorphic TLPs

Repeated Squaring

12

Transformation

Transformation

M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

13

Transformation

M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

Setup(1%, T,1*) — pp

13

Transformation

M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

Setup(1%, T,1*) — pp

13

Transformation

M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

Setup(1%, T,1*) — pp

13

Transformation

M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

Setup(1%, T,1*) — pp

13

Transformation

M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

Setup(1%, T,1*) — pp

13

Transformation

M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

Setup(1%, T,1*) — pp

13

Transformation

M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

Setup(1%, T,1*) — pp

14

M - 5 - number of users

Transformation

N - 3 - Batch to at-most 3 puzzles Setu P(lﬂ, T,14) — Pp

D - 2 - degree

ON NO

Users

14

M - 5 - number of users

Transformation

N - 3 - Batch to at-most 3 puzzles Setu P(lﬂ, T,14) — Pp

D - 2 - degree

1 2 3 4 Perform a matching

ON NO

Users

14

M - 5 - number of users

Transformation

4
N - 3 - Batch to at-most 3 puzzles Setup(lﬁ, T,1*) — pp

D - 2 - degree

1 2 3 4 Perform a matching

15

ozzZ
N 0

Transformation

- number of users
A 4
- Batch to at-most 3 puzzles Setup(l ,T,17) — PP
- degree
1 2 3 4 Perform a matching

O NOR N
Users

_ w(log A)
Theorem (informal) - Set slots > 2e - N, degree > oo N then we
0g

can build an uncoordinated batch TLP.
15

Rogue puzzles

Rogue puzzles

re
o

my m, M

]

Rogue puzzles

re
o >

BatchSolve
m; m, ms

]

Rogue puzzles

> 100
BatchSolve

i

Party 2

1 million

Party 3

Rogue puzzles

lf" > 100 1 million

BatchSolve

my m, M ‘
7<) 0

Party 2 Party 3

E. PRF_Eval(k;, i) + m,
k.

®

Punctured at i

l

0

g

Rogue puzzles

F'" > 100

BatchSolve

m, ms ‘

Party 2

PRF_Eval(k;, i) + m,

®

Punctured at i

1 million

Party 3

16

0

g

Rogue puzzles

Lo / >
Nk
BatchSolve
m n3
PRF_Eval(k;, i) + m,
O

Punctured at i

100 1 million

Party 2 Party 3

Validity Check procedure

16

Prototype Evaluation

Prototype Evaluation

« For T = 50 million sequential computations*, and batching 500
puzzles, the batching time trivially would take 15 hours, while our
solution takes close to 6 minutes (we did not use any parallelism for
our experiments).

*the time to do 50 million sequential computations on the test machine is 5 minutes

17

Prototype Evaluation

« For T = 50 million sequential computations*, and batching 500
puzzles, the batching time trivially would take 15 hours, while our
solution takes close to 6 minutes (we did not use any parallelism for
our experiments).

* For T = 50 million computations, and batching 7000 puzzles, the size
of a single puzzle is 8 MB trivially, 37 MB using our solution and would
be 790 MB using the linearly homomorphic solution.

*the time to do 50 million sequential computations on the test machine is 5 minutes

17

Conclusion!

18

Conclusion!

» We gave a solution template for batch solving of
time-lock puzzles.

18

Conclusion!

» We gave a solution template for batch solving of
time-lock puzzles.

* Introduction of rogue puzzle attacks. #
V5

18

Conclusion!

» We gave a solution template for batch solving of
time-lock puzzles.

* Introduction of rogue puzzle attacks. #
V5

» Give a concrete implementation and numbers.

18

