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g =T

Takes time T

» Fast puzzle generation - Time to generate = 772 is much shorter than time T.

* Puzzle opening takes a long time - The circuit that opens = 772 has depth at
least T. Parallelism shouldn’t help.
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Applications

Encrypt to the future!

r

Sealed Bid Auctions Non-Malleable Commitments Miner extractable value prevention

Blockchain front running prevention, fair contract signing, cryptocurrency payments, distributed consensus, more!
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Denial of service attacks

Blockchains, byzantine broadcast

Scalability - Millions of users need solving
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Batching Complexity

e /
 Fast batch solving - Time to solve E.j , multiple puzzles,

grows with the time to solve a “single” puzzle.

N - poly(T) o(N) - poly(T') + poly(log T, N)
Trivial solution pon(T) + pOly(IOg T, N)

This work
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Our Result

» Generic template for constructing batchable TLPs.
m Only prior solution was based on iO [SLM+23].

» We give two concrete constructions and an
implementation.

* Introduce the notion of rogue batch solving.
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Key Homomorphic PPRFs

- PRF Setup - Setup(1*) — k.

« PRF Evaluation - Eval(k, x) — y. Eval( , X) = Eval( s X)
_ X # x*
* PRF key homomorphism.
« PRF puncturing Security
Eval( , X¥) random
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Transformation

- number of users
A 4
- Batch to at-most 3 puzzles Setup(l ,T,17) — PP
- degree
1 2 3 4 Perform a matching

O NOR N
Users

_ w(log A)
Theorem (informal) - Set slots > 2e - N, degree > oo N then we
0g

can build an uncoordinated batch TLP.
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Prototype Evaluation

« For T = 50 million sequential computations*, and batching 500
puzzles, the batching time trivially would take 15 hours, while our
solution takes close to 6 minutes (we did not use any parallelism for
our experiments).

* For T = 50 million computations, and batching 7000 puzzles, the size
of a single puzzle is 8 MB trivially, 37 MB using our solution and would
be 790 MB using the linearly homomorphic solution.

*the time to do 50 million sequential computations on the test machine is 5 minutes
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Conclusion!

» We gave a solution template for batch solving of
time-lock puzzles.

* Introduction of rogue puzzle attacks. #
V5

» Give a concrete implementation and numbers.
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