
Time-Lock Puzzles
with Efficient Batch Solving

Rachit
Garg

UT Austin

Date: May 29, 2024

Jesko
Dujmovic

CISPA
and Saarland

University

Giulio
Malavolta
Bocconi

University
and MPI-SP

2

Time-Lock Puzzles [May93, RSW96]

2

Time-Lock Puzzles [May93, RSW96]

m m
Takes time T

2

Time-Lock Puzzles [May93, RSW96]

m m
Takes time T

• Fast puzzle generation - Time to generate is much shorter than time T.

m

2

Time-Lock Puzzles [May93, RSW96]

m m
Takes time T

• Fast puzzle generation - Time to generate is much shorter than time T.

• Puzzle opening takes a long time - The circuit that opens has depth at
least T. Parallelism shouldn’t help.

m

m

3

Applications

3

Applications

Encrypt to the future!

3

Applications

Sealed Bid Auctions

Encrypt to the future!

3

Applications

Sealed Bid Auctions Non-Malleable Commitments

Encrypt to the future!

3

Applications

Sealed Bid Auctions Non-Malleable Commitments Miner extractable value prevention

Encrypt to the future!

3

Applications

Sealed Bid Auctions Non-Malleable Commitments Miner extractable value prevention

Encrypt to the future!

Blockchain front running prevention, fair contract signing, cryptocurrency payments, distributed consensus, more!

4

Applications - Batch Solving

4

Applications - Batch Solving

m1 m3m2

4

Applications - Batch Solving

m1 m3m2

Decrypt all transactions!
Solve all puzzles

4

Applications - Batch Solving

m1 m3m2

Blockchains, byzantine broadcast

Scalability - Millions of users need solving

Decrypt all transactions!
Solve all puzzles

4

Applications - Batch Solving

m1 m3m2

Blockchains, byzantine broadcast

Scalability - Millions of users need solving
Denial of service attacks

Decrypt all transactions!
Solve all puzzles

5

Batching Complexity
• Fast batch solving - Time to solve , multiple puzzles,

grows with the time to solve a “single” puzzle.

5

Batching Complexity
• Fast batch solving - Time to solve , multiple puzzles,

grows with the time to solve a “single” puzzle.

N ⋅ 𝗉𝗈𝗅𝗒(T)
Trivial solution

5

Batching Complexity
• Fast batch solving - Time to solve , multiple puzzles,

grows with the time to solve a “single” puzzle.

N ⋅ 𝗉𝗈𝗅𝗒(T)
Trivial solution

o(N) ⋅ 𝗉𝗈𝗅𝗒(T) + 𝗉𝗈𝗅𝗒(log T, N)

5

Batching Complexity
• Fast batch solving - Time to solve , multiple puzzles,

grows with the time to solve a “single” puzzle.

N ⋅ 𝗉𝗈𝗅𝗒(T)

𝗉𝗈𝗅𝗒(T) + 𝗉𝗈𝗅𝗒(log T, N)Trivial solution

This work

o(N) ⋅ 𝗉𝗈𝗅𝗒(T) + 𝗉𝗈𝗅𝗒(log T, N)

6

Our Result

m

6

Our Result

m
• Generic template for constructing batchable TLPs.

Only prior solution was based on iO [SLM+23].

6

Our Result

m
• Generic template for constructing batchable TLPs.

Only prior solution was based on iO [SLM+23].

• We give two concrete constructions and an
implementation.

6

Our Result

m
• Generic template for constructing batchable TLPs.

Only prior solution was based on iO [SLM+23].

• We give two concrete constructions and an
implementation.

• Introduce the notion of rogue batch solving.

7

Roadmap

7

Roadmap
Batched TLP

7

Roadmap
Coordinated Batched TLP Batched TLP

7

Roadmap
Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

7

Roadmap
Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs Repeated Squaring

[MT19, TCLM21]

7

Roadmap
Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs Repeated Squaring

[MT19, TCLM21] x, x2, x4 = (x2)2, x8, …, x2T

7

Roadmap
Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

LWE

Repeated Squaring

[MT19, TCLM21] x, x2, x4 = (x2)2, x8, …, x2T

7

Roadmap
Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

LWE

Pairings

Repeated Squaring

[MT19, TCLM21] x, x2, x4 = (x2)2, x8, …, x2T

7

Roadmap
Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

LWE

Pairings

Repeated Squaring

[MT19, TCLM21] x, x2, x4 = (x2)2, x8, …, x2T

7

Roadmap
Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

LWE

Pairings

Repeated Squaring

[MT19, TCLM21] x, x2, x4 = (x2)2, x8, …, x2T

8

Linearly Homomorphic TLP

8

Linearly Homomorphic TLP

m1 m2

8

Linearly Homomorphic TLP

m1 m2 m1 + m2𝗉𝗈𝗅𝗒(log T)

8

Linearly Homomorphic TLP

m1 m2 m1 + m2𝗉𝗈𝗅𝗒(log T)

m1 m2 m3

8

Linearly Homomorphic TLP

m1 m2 m1 + m2𝗉𝗈𝗅𝗒(log T)

m1 m2 m3 𝗉𝗈𝗅𝗒(log T)

8

Linearly Homomorphic TLP

m1 m2 m1 + m2𝗉𝗈𝗅𝗒(log T)

m1 m2 m3 𝗉𝗈𝗅𝗒(log T) m1 + m2 ⋅ 2λ + m3 ⋅ 22λ

8

Linearly Homomorphic TLP

m1 m2 m1 + m2𝗉𝗈𝗅𝗒(log T)

m1 m2 m3 𝗉𝗈𝗅𝗒(log T) m1 + m2 ⋅ 2λ + m3 ⋅ 22λ

Bounded Batching only

8

Linearly Homomorphic TLP

m1 m2 m1 + m2𝗉𝗈𝗅𝗒(log T)

m1 m2 m3 𝗉𝗈𝗅𝗒(log T) m1 + m2 ⋅ 2λ + m3 ⋅ 22λ

Bounded Batching only

Homomorphism over {0,1}3λ

8

Linearly Homomorphic TLP

m1 m2 m1 + m2𝗉𝗈𝗅𝗒(log T)

m1 m2 m3 𝗉𝗈𝗅𝗒(log T) m1 + m2 ⋅ 2λ + m3 ⋅ 22λ

Bounded Batching only

m1

O(N)
Homomorphism over {0,1}3λ

9

Key Homomorphic PRFs

9

Key Homomorphic PRFs
• PRF Setup - .𝖲𝖾𝗍𝗎𝗉(1λ) → k

• PRF Evaluation - .𝖤𝗏𝖺𝗅(k, x) → y

9

Key Homomorphic PRFs
• PRF Setup - .𝖲𝖾𝗍𝗎𝗉(1λ) → k

• PRF Evaluation - .𝖤𝗏𝖺𝗅(k, x) → y

Security

TRF PRF

xi yi

9

Key Homomorphic PRFs
• PRF Setup - .𝖲𝖾𝗍𝗎𝗉(1λ) → k

• PRF Evaluation - .𝖤𝗏𝖺𝗅(k, x) → y

Security

TRF PRF

xi yi

𝖤𝗏𝖺𝗅(k1, x)

𝖤𝗏𝖺𝗅(k2, x)

9

Key Homomorphic PRFs
• PRF Setup - .𝖲𝖾𝗍𝗎𝗉(1λ) → k

• PRF Evaluation - .𝖤𝗏𝖺𝗅(k, x) → y

Security

TRF PRF

xi yi

𝖤𝗏𝖺𝗅(k1, x)

𝖤𝗏𝖺𝗅(k2, x)
𝖤𝗏𝖺𝗅(k1 + k2, x)

10

Key Homomorphic PPRFs

10

Key Homomorphic PPRFs
• PRF Setup - .𝖲𝖾𝗍𝗎𝗉(1λ) → k

• PRF Evaluation - .𝖤𝗏𝖺𝗅(k, x) → y

• PRF key homomorphism.

10

Key Homomorphic PPRFs
• PRF Setup - .𝖲𝖾𝗍𝗎𝗉(1λ) → k

• PRF Evaluation - .𝖤𝗏𝖺𝗅(k, x) → y

• PRF key homomorphism.

• PRF puncturing

10

Key Homomorphic PPRFs
• PRF Setup - .𝖲𝖾𝗍𝗎𝗉(1λ) → k

• PRF Evaluation - .𝖤𝗏𝖺𝗅(k, x) → y

• PRF key homomorphism.

• PRF puncturing

x*

10

Key Homomorphic PPRFs
• PRF Setup - .𝖲𝖾𝗍𝗎𝗉(1λ) → k

• PRF Evaluation - .𝖤𝗏𝖺𝗅(k, x) → y

• PRF key homomorphism.

• PRF puncturing

x*

𝖤𝗏𝖺𝗅(, x) = 𝖤𝗏𝖺𝗅(, x)
x ≠ x*

𝖤𝗏𝖺𝗅(, x*) 𝗋𝖺𝗇𝖽𝗈𝗆

10

Key Homomorphic PPRFs
• PRF Setup - .𝖲𝖾𝗍𝗎𝗉(1λ) → k

• PRF Evaluation - .𝖤𝗏𝖺𝗅(k, x) → y

• PRF key homomorphism.

• PRF puncturing Security

x*

𝖤𝗏𝖺𝗅(, x) = 𝖤𝗏𝖺𝗅(, x)

x*

x ≠ x*

11

Construction

11

Construction

miParty i

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i
Puncture at ki i

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i
Puncture at ki i

m1 m2 m3

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i
Puncture at ki i

m1 m2 m3

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(k1,1) + m1

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i
Puncture at ki i

m1 m2 m3
k1 k2 k3

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(k1,1) + m1

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i
Puncture at ki i

m1 m2 m3
k1 k2 k3 k1 + k2 + k3

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(k1,1) + m1

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i
Puncture at ki i

m1 m2 m3
k1 k2 k3 k1 + k2 + k3

Takes time T
𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(k1,1) + m1

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i
Puncture at ki i

m1 m2 m3
k1 k2 k3 k1 + k2 + k3

Takes time T
𝖤𝗏𝖺𝗅(k1 + k2 + k3,1)𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(k1,1) + m1 −

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i
Puncture at ki i

m1 m2 m3
k1 k2 k3 k1 + k2 + k3

Takes time T
𝖤𝗏𝖺𝗅(k1 + k2 + k3,1)𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(k1,1) + m1 −

+

11

Construction

mi ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Party i
Puncture at ki i

m1 m2 m3
k1 k2 k3 k1 + k2 + k3

Takes time T
𝖤𝗏𝖺𝗅(k1 + k2 + k3,1)𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(k1,1) + m1 −
𝖤𝗏𝖺𝗅(,1) + 𝖤𝗏𝖺𝗅(,1)+

12

Roadmap
Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

LWE

Pairings

Repeated Squaring

12

Roadmap
Coordinated Batched TLP Batched TLP

Key-Homomorphic PRFs

Linearly Homomorphic TLPs

LWE

Pairings

Repeated Squaring

13

Transformation

13

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

13

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

13

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

13

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A B

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

13

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A B C

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

13

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A B C D

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

13

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A B C D E

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

14

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A B C D E

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

14

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A B C D E

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

14

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A B C D E

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

15

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A B C D E

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

15

Transformation
M - 5 - number of users
N - 3 - Batch to at-most 3 puzzles
D - 2 - degree

1 2 3 4

A B C D E

Slots

Users

𝖲𝖾𝗍𝗎𝗉(1λ, T,14) → 𝗉𝗉

Theorem (informal) - Set slots , degree , then we

can build an uncoordinated batch TLP.

≥ 2e ⋅ N ≥
ω(log λ)

log N

16

Rogue puzzles

16

Rogue puzzles

m1 m2 m3

16

Rogue puzzles

m1 m2 m3
BatchSolve

16

Rogue puzzles

m1 m2 m3
BatchSolve

100 1 million

Party 2 Party 3

16

Rogue puzzles

m1 m2 m3

ki

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Punctured at i

BatchSolve

100 1 million

Party 2 Party 3

16

Rogue puzzles

m1 m2 m3

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Punctured at i

BatchSolve

100 1 million

Party 2 Party 3

0

16

Rogue puzzles

m1 m2 m3

𝖯𝖱𝖥_𝖤𝗏𝖺𝗅(ki, i) + mi

Punctured at i

BatchSolve

100 1 million

Party 2 Party 3

0

Validity Check procedure

17

Prototype Evaluation

17

Prototype Evaluation
• For T = 50 million sequential computations*, and batching 500

puzzles, the batching time trivially would take 15 hours, while our
solution takes close to 6 minutes (we did not use any parallelism for
our experiments).

*the time to do 50 million sequential computations on the test machine is 5 minutes

17

Prototype Evaluation
• For T = 50 million sequential computations*, and batching 500

puzzles, the batching time trivially would take 15 hours, while our
solution takes close to 6 minutes (we did not use any parallelism for
our experiments).

• For T = 50 million computations, and batching 7000 puzzles, the size
of a single puzzle is 8 MB trivially, 37 MB using our solution and would
be 790 MB using the linearly homomorphic solution.

*the time to do 50 million sequential computations on the test machine is 5 minutes

18

Conclusion!

m

18

Conclusion!

m
• We gave a solution template for batch solving of

time-lock puzzles.

18

Conclusion!

m
• We gave a solution template for batch solving of

time-lock puzzles.

• Introduction of rogue puzzle attacks.

18

Conclusion!

m
• We gave a solution template for batch solving of

time-lock puzzles.

• Introduction of rogue puzzle attacks.

• Give a concrete implementation and numbers.

