Probabilistic Extensions: A One-Step Framework for Finding Rectangle Attacks and Beyond

Ling Song, Qianqian Yang, Yincen Chen, Lei Hu, Jian Weng

EUROCRYPT 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Preliminaries

Probabilistic Extensions

The Split-and-Bunch Technique

Comparison and Application

Preliminaries

Probabilistic Extensions

Basic idea Framework for finding the best attack

The Split-and-Bunch Technique

Comparison and Application

Preliminaries

Differential attack

To exploit the non-random relation between input difference and output difference.

Boomerang attack

To construct a long differential utilizing two short ones of high probability.

Rectangle attack (Chosen-plaintext variant of boomerang attack)

More common for key recovery attacks.

Preliminaries

Outline and notations for classical rectangle key recovery attacks

k'_f: Part of k_f to be guessed;

-
$$m'_f = |k'_f|;$$

 r'_f: The condition can be verified under the guess of k'_f for a ciphertext;

-
$$m_f^* = m_f - m_f';$$

- $r_f^* = r_f - r_f'$

イロト イヨト イヨト イヨト

5 / 28

3

Preliminaries

Basic ideas and intuitions

Classical rectangle attack

Inner part Search for a distinguisher with a high probability Outer part Probability-1 extension and key recovery attacks

- * The inner and outer parts are treated separately
- Generalized rectangle attack
 - $\star\,$ Treat the inner and outer parts as a whole
 - A unified key recovery algorithm
 - Take the minimum time complexity as the search target

Preliminaries

Probabilistic Extensions Basic idea Framework for finding the best attack

The Split-and-Bunch Technique

Comparison and Application

Basic idea

Question 1: Can the differential propagate in the outer part with probability $< 1 \Rightarrow$ Probabilistic extension?

- ▲ Benefits?
- Obstacles?

Example 1: A toy example of classical differential attack in the related-key model ($P_f = 1$)

Basic idea

Table: Precomputation hash tables for Example 1

Tables	Involved key	Filters	Remaining pairs
1	eqk[4, 5, 6, 7]	$\Delta Z_{r+2}[6] = 0$	$2^{24} \cdot 2^{-1} \cdot D$
2	eqk[3,9]	$\Delta X_{r+2}[3,9] = \Delta K_{r+1}[3,9]$	$2^{24} \cdot 2^{-1} \cdot D$
3	<i>eqk</i> [0, 1, 2]	$\Delta Z_{r+2}[0,2,3] = 0$	$2^{24} \cdot 2^{-1} \cdot D$
4	eqk[8, 10, 11]	$\Delta Z_{r+2}[8,9,10] = 0$	$2^{24} \cdot 2^{-1} \cdot D$
5	eqk[12, 13, 14, 15]	$\Delta Z_{r+2}[12, 13, 15] = \Delta Z_{r+1}[5] = 0$ $\Delta X_{r+1}[3, 4, 9]$	$2^{-1} \cdot D$

$$D_{Example1} = 2s \cdot P_d^{-1}$$
$$T_{Example1} = 2^{24} \cdot s \cdot P_d^{-1}$$

<ロト < 部ト < 言ト < 言ト 言 の < ③ 10 / 28

Example 2: The toy example of differential attack in the related-key model with probabilistic extension ($P_f = 2^{-16}$)

Basic idea

Table: Precomputation hash tables for Example 2

Tables	Involved key	Filters	Remaining pairs
1	eqk[9]	$\Delta X_{r+3}[9] = \Delta K_{r+2}[9]$	$2^{-57} \cdot D$
2	eqk[0, 1, 2, 3]	$\Delta Z_{r+2}[0,2,3] = 0$	$2^{-49} \cdot D$
3	eqk[4,5,6,7]	$\Delta Z_{r+2}[6] = \Delta Z_{r+1}[6] = 0$ $\Delta X_{r+2}[3, 9] = \Delta K_{r+1}[3, 9]$	$2^{-49} \cdot D$
4	$eqk[8,10\sim15]$	$\frac{\Delta X_{r+1}[3,4,9]}{\Delta X_{r+1}[3,4,9]}$	$2^{-17} \cdot D$

$$D_{Example2} = 2s \cdot (P_d P_f)^{-1} = 2s \cdot P_d^{-1} \cdot 2^{16}$$
$$T_{Example2} = s \cdot P_d^{-1}$$

12 / 28

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

Question 1: Can the differential propagate in the outer part with probability $< 1 \Rightarrow$ Probabilistic extension?

- Benefits
 - Decrease the time complexity

$$T_{Example2}/T_{Example1} = s \cdot P_d^{-1}/2^{24} \cdot s \cdot P_d^{-1} = 2^{-24}$$

- Flexible boundaries

No predefined boundaries between the inner part and outer part

- Increase the number of filters and earlier usage.

- Obstacles
 - Increase the data complexity (not necessarily)

 $Data_{Example2}/Data_{Example1} = 2s \cdot P_d^{-1} \cdot 2^{16}/2s \cdot P_d^{-1} = 2^{16}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Basic idea

Question 2: How do we consider the inner part and outer part together and search for the optimal attack?

- The holistic probabilities $(P = P_b P_d P_f)$
- Boundaries where key recovery starts
- Combine with the unified key recovery algorithm $[SZY^+22]$

• The **new** framework for rectangle attack

Data complexity:

-
$$y \cdot 2^{r_b} = \sqrt{s} 2^{n/2+1}/P$$
, where $P = P_b P_d P_f$

State labels:

- Inactive: (x, y) = (0, 0) \Box
- Active with a fixed difference: (x, y) = (1, 0)
- Active with an arbitrary difference: (x,y) = (1,1)

Framework for finding the best attack

• The **new** framework for rectangle attack

Boundaries and P_b, P_f :

- Non-linear layer (eg. S-box)

case 1: $\blacksquare \rightarrow \blacksquare$ case 2: $\blacksquare \rightarrow \blacksquare$ $\sum_{i} (O_{i}.x - O_{i}.y)$

- Linear layer (eg. Mixcolumn)

$$\begin{cases} T = 1 & \text{if } I_{i}.y = 1 \\ T = 0 & \text{if all } I_{i}.y = 0 \\ \sum_{i}(T - O_{i}.y) \end{cases}$$

Guess-and-determine: guess the key and obtain filters.

Constraints for the complexities: constraints for the data and memory complexities, and minimize the time complexity.

Preliminaries

Probabilistic Extensions

Basic idea Framework for finding the best attack

The Split-and-Bunch Technique

Comparison and Application

Table:	Precomputation	hash	tables	for	Example	2
--------	----------------	------	--------	-----	---------	---

Tables	Involved key	Filters	Remaining pairs
1	eqk[9]	$\Delta X_{r+3}[9] = \Delta K_{r+2}[9]$	$2^{-57} \cdot D$
2	eqk[0, 1, 2, 3]	$\Delta Z_{r+2}[0,2,3]=0$	$2^{-49} \cdot D$
3	<i>eqk</i> [4, 5, 6, 7]	$\Delta Z_{r+2}[6] = \Delta Z_{r+1}[6] = 0$ $\Delta X_{r+2}[3,9] = \Delta K_{r+1}[3,9]$	2 ⁻⁴⁹ · D
4	eqk $[8,10\sim15]$	$\Delta X_{r+1}[3,4,9]$	$2^{-17} \cdot D$

Guess $eqk[8, 10 \sim 15]$ to determine $W_{r+1}[6, 7] \xrightarrow{MC^{-1}} Z_i[4, 5, 7] \xrightarrow{SB^{-1} \circ SR^{-1}}$ determine $X_{r+1}[3, 4, 7]$

 \Rightarrow From hash tables 3 to 4, the time complexity increases by 2^{32}

Question 3: Can filters be obtained with less consumption? \Rightarrow Does the 7-byte key $eqk[8, 10 \sim 15]$ have to be traversed? $\downarrow\downarrow$

Example 3: Traverse $W_{r+1}[6,7]$ instead of $eqk[8,10 \sim 15]$

Observation

Traverse $W_{r+1}[6,7]$ instead of $eqk[8,10 \sim 15]$

• The number of suggestions for the correct key is the same.

For a wrong pair, the number of suggestions for the incorrect key is equal to expanding the number of pairs by a factor of 2¹⁶.

Ensuring the correct key is not overlooked, and the split-and-bunch technique brings **advantages** to attack.

Tables	Involved key	Filters	Remaining pairs	
1	eqk[9]	$\Delta X_{r+3}[9] = \Delta K_{r+2}[9]$	$2^{-57} \cdot D$	
2	eqk[0, 1, 2, 3]	$\Delta Z_{r+2}[0,2,3]=0$	$2^{-49} \cdot D$	
3	eqk[4,5,6,7]	$\Delta Z_{r+2}[6] = \Delta Z_{r+1}[6] = 0$ $\Delta X_{r+2}[3,9] = \Delta K_{r+1}[3,9]$	$2^{-49} \cdot D$	
4	<i>W</i> _{r+1} [6,7]	$\Delta X_{r+1}[3,4,9]$	$2^{-57} \cdot D$	

Table: Precomputation hash tables for Example 3

$$D_{Example3} = 2s \cdot P_d^{-1} \cdot 2^{16}$$
$$T_{Example3} = 2^{-32} \cdot s \cdot P_d^{-1}$$

Advantage: $T_{Example3}/T_{Example2} = 2^{-32}$

21 / 28

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Preliminaries

Probabilistic Extensions

Basic idea Framework for finding the best attack

The Split-and-Bunch Technique

Comparison and Application

Comparison and Application

More compatible

 $\star\,$ Our framework includes the unified key recovery algorithm.

More flexible

 \star No predefined boundaries between the inner and outer parts.

Better attack effects

- * Allow probabilistic extension, set the overall time complexity as the objective function.
- * Previous rectangle attacks can be improved to some extent using our new idea and technique.

Comparison and Application

Cipher	Rounds	Data	Memory	Time	Approach	Setting	Ref.
	14	$2^{125.2}$	2 ¹⁴⁰	2 ²⁶⁰	Rect.	RTK	[DQSW22]
Decessor DC 204	14	2 ^{115.7}	2^{160}	2 ^{260.59}	Rect.	RTK	This work
Deoxys-BC-364	14	$2^{115.7}$	2 ¹²⁸	$2^{242.7}$	Rect.	RTK	This work
	15	2 ^{115.7}	2 ¹²⁸	2 ^{371.7}	Rect.	RTK	This work
	26	$2^{126.53}$	$2^{128.44}$	2 ^{254.4}	Rect.	RTK	[DQSW22]
SKINNY-128-256	26	$2^{126.53}$	2^{136}	$2^{241.38}$	Rect.	RTK	[SZY ⁺ 22]
	26	$2^{121.93}$	2 ¹³⁶	$2^{219.93}$	Rect.	RTK	This work
Forkelinny-108-056	28	$2^{118.88}$	$2^{118.88}$	2 ^{224.76}	Rect.	RTK	[DQSW22]
F01K5K1IIIy=120=250	28	2 ^{123.89}	2 ^{123.89}	2 ^{212.89}	Rect.	RTK	This work
	23	2 ⁷⁴	2 ⁵¹	2 ⁹⁴	D	WK&ST	[LR22]
	26	2 ⁷³	2 ⁶⁰	2^{105}	D	WK&WT	[LR22]
	20	2 ^{62.89}	2 ⁴⁹	2 ^{120.43}	ZC	SK&ST	[HSE23]
CRAFT	21	2 ^{60.99}	2 ¹⁰⁰	$2^{106.53}$	ID	SK&ST	[HSE23]
	19	2 ^{60.99}	2 ⁶⁸	2 ^{94.59}	D	SK&WT	[GSS+20]
	21	2 ^{60.99}	2 ⁹²	2 ^{87.60}	D	SK&WT	This work
	23	2 ^{60.99}	2 ¹²⁰	2 ^{111.46}	D	SK&WT	This work

Table: Summary of the results

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

Preliminaries

Probabilistic Extensions

Basic idea Framework for finding the best attack

The Split-and-Bunch Technique

Comparison and Application

Summary

Probabilistic extension

- \star Allow probabilistic differential propagation in the extended part
 - \Rightarrow Overall considerations for the distinguisher and extended part
 - \Rightarrow More flexible selection for attack parameters
 - \Rightarrow Incorporating the unified key recovery algorithm
- ★ The new framework for automatically finding the best parameters for rectangle attack and beyond

Split-and-bunch technique

- ★ Compress intricate connections between key and state ⇒ Further reducing the time complexity of the attack
- \hookrightarrow A series of improved results

Thank you! Q & A

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

References

- Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang, <u>Key</u> guessing strategies for linear key-schedule algorithms in rectangle <u>attacks</u>, EUROCRYPT (2022).
- Hao Guo, Siwei Sun, Danping Shi, Ling Sun, Yao Sun, Lei Hu, and Meiqin Wang, <u>Differential attacks on CRAFT exploiting the</u> involutory s-boxes and tweak additions, ToSC (2020).
- Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder, Finding the impossible: Automated search for full impossible-differential, zero-correlation, and integral attacks, EUROCRYPT (2023).
- Gregor Leander and Shahram Rasoolzadeh, <u>Weak tweak-keys for the</u> <u>CRAFT block cipher</u>, ToSC (2022).
- Ling Song, Nana Zhang, Qianqian Yang, Danping Shi, Jiahao Zhao, Lei Hu, and Jian Weng, <u>Optimizing rectangle attacks: A unified and</u> generic framework for key recovery, ASIACRYPT (2022).