Strong Batching for Non-Interactive Statistical Zero-Knowledge

<u>Mu Changrui (NUS)</u>, Shafik Nassar (UT Austin), Ron D. Rothblum (Technion), Prashant Nalini Vasudevan (NUS)

May 29, 2024

くロン 人間と 人間と 人間と 一間。

ୢୄ୶ୡ୲ୖ

Non-Interactive Statistical Zero-Knowledge Proof

Zero-knowledge proofs [<u>GMR89</u>] are amazing

• Prove without revealing additional information beyond validity.

□ Non-interactive Zero-knowledge proofs [BFM88]

- Common Random String (CRS model)
- Non-interactive (Prover sends one message)

Non-Interactive Statistical Zero-Knowledge Proof

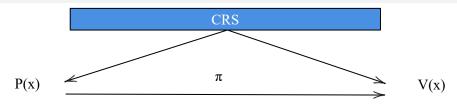


- □ Completeness: if $x \in YES \Rightarrow Pr[V Accepts] \ge 1 negl$
- □ Soundness: if $x \in NO \Rightarrow \forall P^*, Pr[V Accepts] \le negl$

□ Zero-knowledge: $\exists PPT Sim s.t. \text{ for any } x \in YES$ $(CRS, \pi) \approx Sim(x)$

イロト イポト イヨト イヨト

Non-Interactive Statistical Zero-Knowledge Proof



- □ Completeness: if $x \in YES \Rightarrow Pr[V Accepts] \ge 1 negl$
- □ Soundness: if $x \in NO \Rightarrow \forall P^*$, $Pr[V Accepts] \le negl$

□ Statistical Zero-knowledge:

```
∃ PPT Sim s.t. fo
```

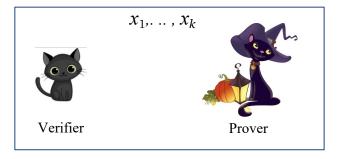
 $(CRS, \pi) \approx Sim(x)$

NISZK: Problems that have NISZK protocol

200

э

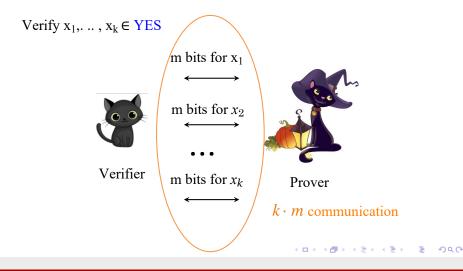
Batch Verification: Check k instances



Check x_1, \ldots, x_k are <u>all YES</u> instances

- \Box Accept if x_1, \ldots, x_k are <u>all</u> YES instances
- \square Reject if at least one x_i is NO instance

Batch Verification: Naive Solution



Non-Trivial Batch Verification

Communication and Round Complexity

- Verify one instance:
 - m Communication
 - □ r Randomness (CRS)
 - t Rounds

- Verify k instances:
 - \Box less than m \cdot k Communication
 - \Box less than $r \cdot k$ Randomness (CRS)

イロト イアト イヨト イ

less than t · k Rounds

Which classes of problems have non-trivial batching?

Which class of problems have non-trivial batching?

ୢୄ୶ୡ୲ୖ

□ Batching for **IP** via IP = PSPACE [LFKN92; Sha92]

- Lose efficiency of prover.
- Lose zero-knowledge.

Which class of problems have non-trivial batching?

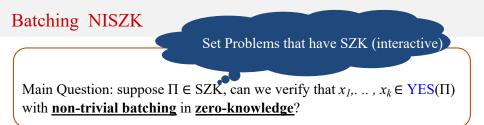
- □ Batching for **IP** via IP = PSPACE [LFKN92; Sha92]
 - Lose efficiency of prover.
 - Lose zero-knowledge.
- □ Preserve prover efficiency.
 - Batching for UP with efficient prover [RRR16; RRR18; RR20]
 - Batching for NP with computational soundness [BHK17; CJJ21a; CJJ21b,...]

イロト イヨト イヨト イヨト 一日 一のりの

Which class of problems have non-trivial batching?

- □ Batching for **IP** via IP = PSPACE [LFKN92; Sha92]
 - Lose efficiency of prover.
 - Lose zero-knowledge.
- □ Preserve prover efficiency.
 - Batching for UP with efficient prover [RRR16; RRR18; RR20]
 - Batching for NP with computational soundness [BHK17; CJJ21a; CJJ21b,...]

This work: Preserve zero-knowledge.



□ [<u>KRRSV20][KRV21]</u>:

 $\Pi \in \text{NISZK} \Rightarrow \text{Batching SZK}$ (interactive), k + poly(n) communication

• Our result:

 $\Pi \in \text{NISZK} \Rightarrow \text{Batching NISZK (non-interactive)},$

poly(log k, n) communication and CRS length

Our Result

Main Theorem:

Every problem $\Pi \in \text{NISZK}$ has a non-interactive-SZK batch verification protocol with $poly(n, \log k)$ communication and CRS length.

イロン (語) (注) (注) (日) (の)

Overview

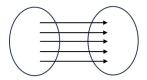
□ Background and Bottlenecks.

イロン (語) (注) (注) (日) (の)

- Our Solution:
 - Key Observation.
 - New Protocol.
- Open Questions.

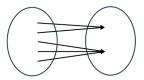
Warm-up: Batching for Permutation (PERM)

□ Input: length-preserving circuit $C: \{0,1\}^n \to \{0,1\}^n$



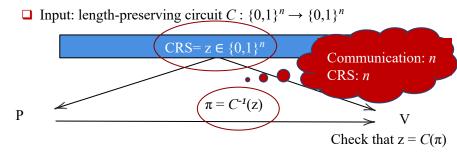
YES case: *C* defines a Permutation.

PERM has NISZK protocol.



NO case: every image has at least two preimages.

Warm-up: NISZK for Permutation (PERM)

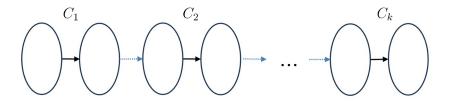


- Completeness: perfect!
- □ Soundness: NO case, random z doesn't have a preimage with probability at least ½.

ZK: simulator samples x and output (crs = C(x), $\pi = x$).

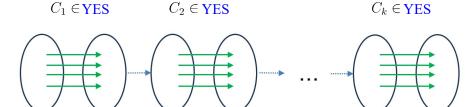
• Perfect Zero-Knowledge.

NISZK Batching for PERM



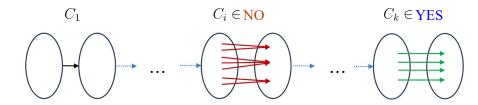
 $\bar{C}_k = C_k \circ \cdots \circ C_2 \circ C_1 \in \text{PERM}$

Yes Cases: NISZK Batching for PERM



 $\bar{C}_k = C_k \circ \cdots \circ C_2 \circ C_1 \in \underline{\text{YES}}(PERM)$

No Cases: NISZK Batch Verification for PERM



 $\bar{C}_k = C_k \circ \cdots \circ C_2 \circ C_1 \in \operatorname{NO}(\operatorname{PERM})$

Batching NISZK for PERM

Are we done? :) thank you! PERM is not known to be **NISZK-hard**

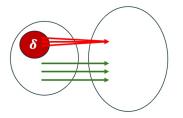
조西區 조國區 조절區 조절區

- □ CRS : [CRS for NISZK of PERM]
- Protocol:
 - 1. Construct $\bar{C}_k = C_k \circ \cdots \circ C_2 \circ C_1$
 - 2. Runs NISZK protocol for one instance of PERM

Communication: *n* CRS Length: *n*

NISZK-Complete: Approximate Injectivity $(AI_{\delta,L})$

Input: circuit $C: \{0,1\}^n \to \{0,1\}^t$ $t \ge n$



C is **YES**(AI_{δ,L}) if it is injective on all but δ -fraction of inputs C is NO(AI_{δ,L}) if it is L-to-1 on all but δ -fraction of inputs

・ロト ・西ト ・ヨト ・ ヨト ・ ヨ

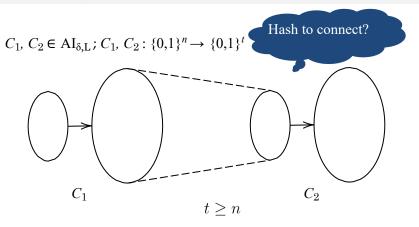
200

[KRRSV20]: AI_{δ,L} is NISZK-complete for $L(n) < 2^{n^{0.1}}, \delta > 2^{-n^{0.1}}$

Distinguish almost injective from very non-injective

Bird's Eye View k instances in NISZK Can we reduce k instances of $AI_{\delta,L}$ to one? Π_1 $AI_{\boldsymbol{\delta},L}$ Reduction Like What we did for PERM $AI_{\delta,L}$ is NISZK-COMPLETE $AI_{\delta,L}$ Reduction $AI_{\delta,L}$ Reduction Reduction $AI_{\delta,L}$ 200 3

Batching $AI_{\delta,L}$



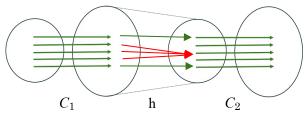
(日本)(四本)(日本)(日本)(日本)

200

Circuit is not length-preserving

Batching $AI_{\delta,L}$

C_1 , C_2 ∈ **YES**(AI_{0,L})



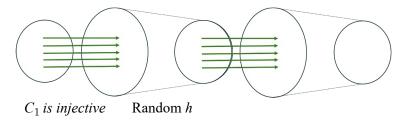
Compose with hash.

□ Injectivity will not maintain even after one composition:(

• [KRRSV20][KRV21]: resolve collision through interaction (Linearly dependent on *k*; and is interactive).

This work: Collision Probability is preserved!

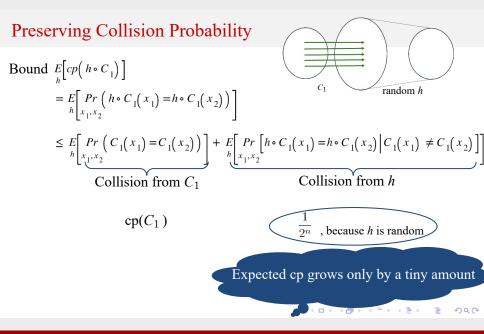
Preserving Collision Probability



D The distribution defined by C_1 has low collision probability:

$$cp(C_1) = \Pr_{x_1, x_2 \leftarrow \{0,1\}n} [C_1(x_1) = C_1(x_2)] = \frac{1}{2^n}$$

$$\square \quad Will \ cp(h \circ C_1) \ be \ much \ larger?$$



Preserving Collision Probability

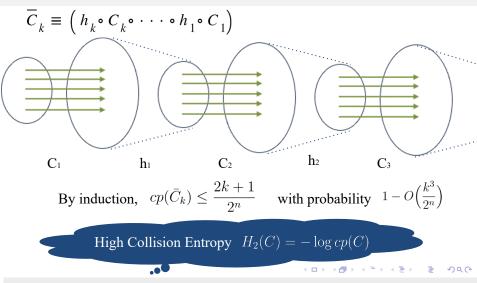
$$E_{h}^{c} [cp(h \circ C_{1})] \leq cp(C_{1}) + \frac{1}{2^{n}}$$
Similarly, bound

$$Var_{h}^{c} [cp(h \circ C_{1})] \leq o\left(\frac{cp(C_{1})^{2}}{2^{n}}\right)$$
Apply Chebyshev

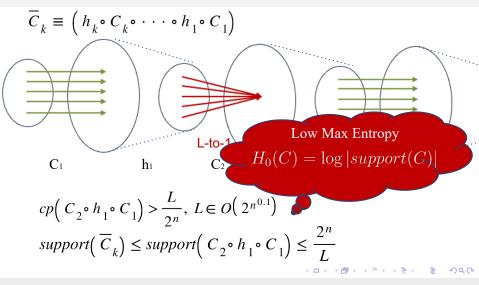
$$cp(h \circ C_{1}) \leq cp(C_{1}) + \frac{2}{2^{n}}$$
with probability $1 - O(\frac{1}{2^{n}})$
Collision probability only increases slightly w.h.p

P

Preserving Collision Probability



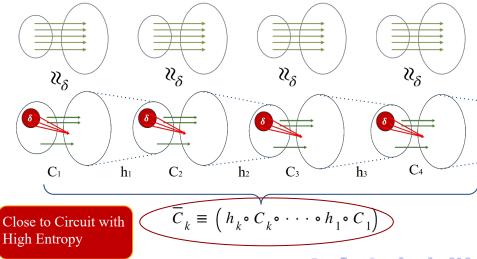
No Case



Hash Composition

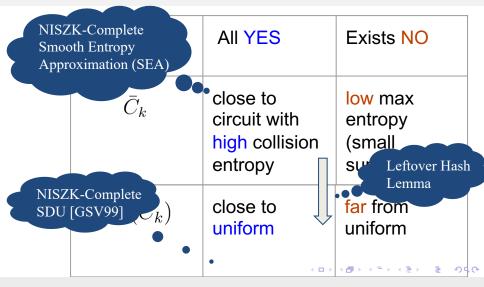
C_1, \ldots, C_k	All Injective	Exists L-to-1
$ar{C}_k$	Circuit with high collision entropy	low max entropy (small support)

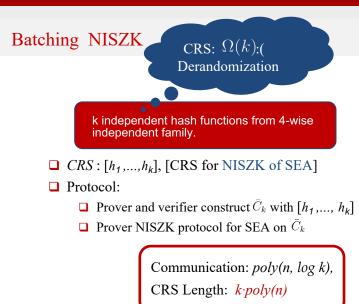
Approximate Injectivity



- * ロ > - * 個 > - * 注 > - 注 - - の Q @

Summary: AI Hash Composition





() > () < () > ()

Derandomizing the Hash Functions

$$\bar{C}_k \equiv \bar{C}_{h_1,\dots,h_k} \equiv (h_k \circ C_k \circ \dots \circ h_1 \circ C_1)$$

 $cp(C_{h_1,...,h_k}(x))$ can be computed using a read-once branching program (width 2^{2n} ; depth k) that takes h_i as the randomness in layer i

イロト イプト 不良ト 不良ト 一直

Using Nisan ε-PRG [Nis92]

• Choose
$$\varepsilon = 2^{(-\Omega(n))}$$

• Seed length = poly(n, log k)

Batching NISZK

- □ CRS : [Seed for *PRG*], [CRS for NISZK of SEA]
- □ Protocol:
 - 1. Construct \overline{C}_k with [Seed for *PRG*]
 - 2. Runs NISZK protocol for SEA on \bar{C}_k

Communication: *poly(n, log k)* CRS Length: *poly(n, log k)*

イロト イポト イヨト イヨト

Summary and Open Problems

Main Theorem:

Every problem $\Pi \in \text{NISZK}$ has a non-interactive-SZK batch protocol with *poly*(n, log k) communication and CRS length for $k \in O(2^{n^{0.01}})$

Open problems:

- Batch verification for SZK
- Batch verification NISZK \cap NP with efficient prover
- [KRV24] Doubly Efficient NISZK Batching for NISZK ∩ UP
- O(m) + polylog(n, k) communication? where *m* is commu for one instance.
- Efficient Batching for More Expressive Policies (beyond conjunction)?

Thank You

[BBKLP23]	Zvika Brakerski et al. dzSNARGs for Monotone Policy Batch NPG. In: <u>Advances in Cryptology - CRYPTO 2023 - 43rd Annual</u> Vol. 14082. Lecture Notes in Computer Science. Springer, 2023, pp. 252–283. DOI: 10.1007/978-3-031-38545-2_9.
[BFM88]	Manuel Blum, Paul Feldman, and Silvio Micali. dzNon-Interactive Zero-Knowledge and Its Applications (Extended Abstract)Ġ. In: <u>Proceedings of the 20th Annual ACM Symposium on T</u> ACM, 1988, pp. 103–112. DOI: <u>10.1145/62212.62222</u> .
[BHK17]	Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. dzNon-interactive delegation and batch NP verification from standard computational assumptionsG. In:

<u>Proceedings of the 49th Annual ACM SIGACT Sympos</u> ACM, 2017, pp. 474–482. DOI: <u>10.1145/3055399.3055497</u>.

 [CGJJZ23] Arka Rai Choudhuri et al. dzCorrelation Intractability and SNARGs from Sub-exponential DDHG. In: <u>Advances in Cryptology - CRYPTO 2023 - 43rd Annual</u> Vol. 14084. Lecture Notes in Computer Science. Springer, 2023, pp. 635–668. DOI: 10.1007/978-3-031-38551-3_20.
 [CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. dzNon-interactive Batch

Arguments for NP from Standard AssumptionsG. In:

	Springer, 2021, pp. 394–423. DOI: 10.1007/978-3-030-84259-8_14.
[CJJ21b]	Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. dzSNARGs for P from LWEG. In: <u>62nd IEEE Annual Symposium on Foundations of Com</u> IEEE, 2021, pp. 68–79. DOI: <u>10.1109/FOCS52979.2021.00016</u> .
[DGKV22]	Lalita Devadas et al. dzRate-1 Non-Interactive Arguments for Batch-NP and ApplicationsG. In: <u>63rd IEEE Annual Symposium on Foundations of Comp</u> IEEE, 2022, pp. 1057–1068. DOI: <u>10.1109/FOCS54457.2022.00103</u> .
[GHKS23]	Aarushi Goel et al. dzSpeed-Stacking: Fast Sub- linear Zero-Knowledge Proofs for DisjunctionsG. In:

Springer, 2023, pp. 347–378. DOI: 10.1007/978-3-031-30617-4_12.

Shafi Goldwasser, Silvio Micali, and

[GMR89]

[GSV99]

18.1 (1989), pp. 186–208. DOI: <u>10.1137/0218012</u>.
Oded Goldreich, Amit Sahai, and Salil Vadhan.
dzCan Statistical Zero Knowledge Be Made
Non-interactive? or On the Relationship of SZK
and NISZKG. In:
<u>Advances in Cryptology</u> — <u>CRYPTO' 99</u>. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 467–484. ISBN: 978-3-540-48405-9.

Charles Rackoff. dzThe Knowledge Complexity of Interactive Proof SystemsG. In: SIAM J. Comput.

[KLVW23]

Yael Kalai et al. dzBoosting Batch Arguments and RAM DelegationG. In:

Proceedings of the 55th Annual ACM Symposium on T

ACM, 2023, pp. 1545–1552. DOI: 10.1145/3564246.3585200.

[KRRSV20] Inbar Kaslasi et al. dzBatch Verification for Statistical Zero Knowledge ProofsG. In: <u>Theory</u> <u>of Cryptography - 18th International Conferenc</u> Vol. 12551. Lecture Notes in Computer Science. Springer, 2020, pp. 139–167. DOI: 10.1007/978-3-030-64378-2_6.

[KRV21] Inbar Kaslasi, Ron D. Rothblum, and Prashant Nalini Vasudevan. dzPublic-Coin Statistical Zero-Knowledge Batch Verification Against Malicious VerifiersG. In: <u>Advances in Cryptology - EUROCRYPT 2021 - 40th A</u> Vol. 12698. Lecture Notes in Computer Science. Springer, 2021, pp. 219–246. DOI: 10.1007/978-3-030-77883-5_8.

[KVZ21]	Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. dzSomewhere Statistical Soundness, Post-Quantum Security, and SNARGsG.
	In:
	Theory of Cryptography - 19th International Conferenc Vol.
	13042. Lecture Notes in Computer Science.
	Springer, 2021, pp. 330–368. DOI:
	10.1007/978-3-030-90459-3_12.
[LFKN92]	Carsten Lund et al. dzAlgebraic Methods for Interactive Proof SystemsG. In: J. ACM 39.4 (1992),
	pp. 859–868. DOI: <u>10.1145/146585.146605</u> .
[NWW23]	Shafik Nassar, Brent Waters, and David J. Wu.
	dzMonotone Policy BARGs from BARGs and
	Additively Homomorphic EncryptionG. In: IACR
	Cryptol. ePrint Arch. (2023).

[PP22]

,

Omer Paneth and Rafael Pass. dzIncrementally Verifiable Computation via Rate-1 Batch ArgumentsG. In: 63rd IEEE Annual Symposium on Foundations of Comp

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Comb. 12(4):449–461, 1992.

[RR20] Guy N. Rothblum and Ron D. Rothblum. dzBatch Verification and Proofs of Proximity with Polylog OverheadG. In: <u>Theory of Cryptography - 18th</u> <u>International Conferenc</u>

[RRR16]	Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. dzConstant-round interactive proofs for delegating computationĠ. In: <u>Proceedings of the Forty-Eighth Annual ACM Symposiu</u> STOC '16. Cambridge, MA, USA: Association for Computing Machinery, 2016, pp. 49–62. ISBN: 9781450341325. DOI: <u>10.1145/2897518.2897652</u> .
[RRR18]	Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. dzEfficient Batch Verification for UPG. In: <u>33rd Computational Complexity Conference, CCC 2018</u> Vol. 102. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 22:1–22:23. DOI: <u>10.4230/LIPIcs.CCC.2018.22</u> .
[Sha92]	Adi Shamir. dzIP = PSPACEĠ. In: J. ACM 39.4 (1992), pp. 869–877. DOI: <u>10.1145/146585.146609</u> .

[WW22]

Brent Waters and David J. Wu. dzBatch Arguments for NP and More from Standard Bilinear Group AssumptionsĠ. In: <u>Advances in Cryptology - CRYPTO 2022 - 42nd Annua</u> Vol. 13508. Lecture Notes in Computer Science. Springer, 2022, pp. 433–463. DOI: 10.1007/978-3-031-15979-4_15.

~~~~~