
Asymptotically Optimal
Message Dissemination with
Applications to Blockchains
Chen-Da Liu-Zhang, Lucerne University of Applied Sciences and Arts & Web3 Foundation
Christian Matt, Primev
Søren Eller Thomsen,

1

The flooding functionality

2

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

time

The flooding functionality

3

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

message input
to sender

t

time

4

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

message input
to sender

t t + Δ

message delivered
to all parties

time

The flooding functionality

5

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Probability that not all
parties have received the

message by time t + Δ must
be negligible in security

parameter

message input
to sender

t t + Δ

message delivered
to all parties

time

The flooding functionality

6

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Probability that not all
parties have received the

message by time t + Δ must
be negligible in security

parameter

message input
to sender

t t + Δ

message delivered
to all parties

does not need
to be known

time

The flooding functionality

Adversary

7

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Adversary

8

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Corrupt set C s.t.
|C| ≤ n * (1 - 𝛾).

Flooding protocols

9

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

State of the art

Each party forwards the message to a
random subset of parties of (expected)
size 𝜅.

10

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

State of the art

Each party forwards the message to a
random subset of parties of (expected)
size 𝜅.

Flooding protocols

11

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

State of the art

Each party forwards the message to a
random subset of parties of (expected)
size 𝜅.

Flooding protocols

12

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

State of the art

Each party forwards the message to a
random subset of parties of (expected)
size 𝜅.

Flooding protocols

13

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

State of the art

Each party forwards the message to a
random subset of parties of (expected)
size 𝜅.

Flooding protocols

KPIs for a flooding protocol

1. Max number of neighbors

2. Diameter

3. Max per party communication

14

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

1. Max number of neighbors
2. Diameter

3. Max per party communication

15

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

KPIs for a flooding protocol

1. Max number of neighbors

2. Diameter
3. Max per party communication

16

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

KPIs for a flooding protocol

1. Max number of neighbors

2. Diameter

3. Max per-party communication

17

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

KPIs for a flooding protocol

State of the art flooding (in presence of)

18

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Each party forwards the message to a
random subset of parties of (expected)
size 𝜅. [MNT22, LMMRT22]

19

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Sender forwards the message to all

parties.

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Each party forwards the message to a
random subset of parties of (expected)
size 𝜅. [MNT22, LMMRT22]

State of the art flooding (in presence of)

20

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Sender forwards the message to all

parties.

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Each party forwards the message to a
random subset of parties of (expected)
size 𝜅. [MNT22, LMMRT22]

State of the art flooding (in presence of)

21

Protocol Max neighbors Max per-party
communication Diameter

[MNT22, LMMRT22] O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1 ∙(log(n) + 𝜅)) O(log(n))

n = number of parties.
𝜅 = security parameter.
𝛾 = minimum fraction of honest parties.
l = length of message.

Our results: Two asymptotically optimal protocols

22

Protocol Max neighbors Max per-party
communication Diameter

[MNT22, LMMRT22] O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1 ∙(log(n) + 𝜅)) O(log(n))

ECFlood O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1) O(log(n))

n = number of parties.
𝜅 = security parameter.
𝛾 = minimum fraction of honest parties.
l = length of message.

Our results: Two asymptotically optimal protocols

Our results: Two asymptotically optimal protocols

23

Protocol Max neighbors Max per-party
communication Diameter

[MNT22, LMMRT22] O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1 ∙(log(n) + 𝜅)) O(log(n))

ECFlood O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1) O(log(n))

Naive n - 1 l ∙ (n - 1) 1

n = number of parties.
𝜅 = security parameter.
𝛾 = minimum fraction of honest parties.
l = length of message.

Our results: Two asymptotically optimal protocols

24

Protocol Max neighbors Max per-party
communication Diameter

[MNT22, LMMRT22] O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1 ∙(log(n) + 𝜅)) O(log(n))

ECFlood O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1) O(log(n))

Naive n - 1 l ∙ (n - 1) 1

ECCast n - 1 O(l ∙ 𝛾-1) 2

n = number of parties.
𝜅 = security parameter.
𝛾 = minimum fraction of honest parties.
l = length of message.

Efficiency evaluation of ECFlood

25

n = number of parties.
FFlood = Send to k random parties with increasing k to
reduce error rate.
ECFlood (x) = Our new protocol with parameter x.

Our asymptotically optimal protocol

26

Protocol Max neighbors Max per-party
communication Diameter

[MNT22, LMMRT22] O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1 ∙(log(n) + 𝜅)) O(log(n))

ECFlood O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1) O(log(n))

n = number of parties.
𝜅 = security parameter.
𝛾 = minimum fraction of honest parties.
l = length of message.

Our asymptotically optimal protocol

27

Protocol Max neighbors Max per-party
communication Diameter

[MNT22, LMMRT22] O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1 ∙(log(n) + 𝜅)) O(log(n))

ECFlood O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1) O(log(n))

Necessary for Erdős–Rényi
flooding protocols shown in
[KMG03] and necessary for

fanout type flooding shown in
[LMMRT22]

n = number of parties.
𝜅 = security parameter.
𝛾 = minimum fraction of honest parties.
l = length of message.

Meet ECFlood

? ?

P
1

P
2

P
n

28

Meet ECFlood

29

? ?

P
1

P
2

P
n

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

Meet ECFlood

30

Erasure
Correctin
g Codes

?

P
1

P
2

P
n

l

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

For example:
Reed-Solomon codes

[RS60]

Meet ECFlood

31

Erasure
Correctin
g Codes

?

P
1

P
2

P
n

l

𝜇

l’ = l ∙ (𝜇 ∙ 𝜃)-1

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

For example:
Reed-Solomon codes

[RS60]

Meet ECFlood

32

Erasure
Correctin
g Codes

𝜃-
WeakFloo

ding

P
1

P
2

P
n

l

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

𝜃-
WeakFloo

ding

𝜉-
WeakFloo

ding

l’ = l ∙ (𝜇 ∙ 𝜃)-1

For example:
Reed-Solomon codes

[RS60]

Meet ECFlood

33

Erasure
Correctin
g Codes

𝜃-
WeakFloo

ding

P
1

P
2

P
n

l

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

𝜃-
WeakFloo

ding

𝜉-
WeakFloo

ding

Must ensure delivery
to each party with a

constant probability 𝜉
with diameter O(log(n))

l’ = l ∙ (𝜇 ∙ 𝜃)-1

For example:
Reed-Solomon codes

[RS60]

𝛺 (log(n) + 𝜅)

Meet ECFlood

34

Erasure
Correctin
g Codes

𝜃-
WeakFloo

ding

P
1

P
2

P
n

l

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

𝜃-
WeakFloo

ding

𝜉-
WeakFloo

ding

Must ensure delivery
to each party with a

constant probability 𝜉
with diameter O(log(n))

Per party communication and neighborhood of 𝜇 times per party
communication/neighborhood of WeakFlood.

l’ = l ∙ (𝜇 ∙ 𝜃)-1

For example:
Reed-Solomon codes

[RS60]

𝛺 (log(n) + 𝜅)

Meet ECFlood

35

Erasure
Correctin
g Codes

𝜃-
WeakFloo

ding

P
1

P
2

P
n

l

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

𝜃-
WeakFloo

ding

𝜉-
WeakFloo

ding

Must ensure delivery
to each party with a

constant probability 𝜉
with diameter O(log(n))

... and must have pr. party
communication O(l’ ∙ 𝛾-1) and

neighborhood of O(𝛾-1)

Per party communication and neighborhood of 𝜇 times per party
communication/neighborhood of WeakFlood.

l’ = l ∙ (𝜇 ∙ 𝜃)-1

For example:
Reed-Solomon codes

[RS60]

𝛺 (log(n) + 𝜅)

Requirements for a WeakFlooding protocol

1. Must ensure delivery with diameter O(log(n)) to each party with constant probability

2. Must have O(𝛾-1) neighborhoods

3. Must have per party communication of O(l’ ∙ 𝛾-1) for messages of length l’.

36

So… Any candidates for a 𝜉-WeakFlooding protocol?

37

So… Any candidates for a 𝜉-WeakFlooding protocol?

38

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Each party forwards the message to a

random subset of parties of size d.

F
F

lo
o

d
(d

)

So… Any candidates for a 𝜉-WeakFlooding protocol?

For d = O(𝛾-1), FFlood(d):

1. Ensures delivery with diameter O(log(n)) to each

party with constant probability ✅
2. Has d neighborhoods ✅
3. Has per party communication of O(l’ ∙d) for

messages of length l’ ✅

39

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Each party forwards the message to a

random subset of parties of size d.

F
F

lo
o

d
(d

)

ECFlood

40

Erasure
Correctin
g Codes

𝜃-
WeakFloo

ding

P
1

P
2

P
n

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

𝜃-
WeakFloo

ding

𝜉-
WeakFloo

ding

For example
FFlood

41

Erasure
Correctin
g Codes

𝜃-
WeakFloo

ding

P
1

P
2

P
n

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

𝜃-
WeakFloo

ding

FFlood
≥ 𝜇 ∙ 𝜃

ECFlood

𝜉-
WeakFloo

ding

For example
FFlood

42

Erasure
Correctin
g Codes

𝜃-
WeakFloo

ding

P
1

P
2

P
n

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

𝜃-
WeakFloo

ding

FFlood

✅

✅

✅

✅

✅

✅

✅

✅

✅

✅

✅

ECFlood

𝜉-
WeakFloo

ding

For example
FFlood

43

Erasure
Correctin
g Codes

𝜃-
WeakFloo

ding

P
1

P
2

P
n

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

𝜃-
WeakFloo

ding

FFlood

✅

✅

✅

✅

✅

✅

✅

✅

✅

✅

✅

Add membership
for weak

cryptographic
accumulatorECFlood

𝜉-
WeakFloo

ding

For example
FFlood

44

Erasure
Correctin
g Codes

𝜃-
WeakFloo

ding

P
1

P
2

P
n

𝜇

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

≥ 𝜇 ∙ 𝜃

𝜃-
WeakFloo

ding

FFlood

✅

✅

✅

✅

✅

✅

✅

✅

✅

✅

✅

Add membership
for weak

cryptographic
accumulator

For example Merkle
Trees [Mer89]

ECFlood

𝜉-
WeakFloo

ding

For example
FFlood

How long should the message be?

45

n = number of parties.
FFlood = Send to k random parties with
increasing k to reduce error rate.
ECFlood (x) = Our new protocol with
parameter x.

How long should the message be?

46

n = number of parties.
FFlood = Send to k random parties with
increasing k to reduce error rate.
ECFlood (x) = Our new protocol with
parameter x.

Optimal for:
l = Ω((log(n) + 𝜅) ∙ (log(log(n)) + 𝜅))

47

Theorem: Any flooding protocol must have max per party communication 𝛺 (l ∙ 𝛾-1).

Per-party communication lower bound

Per-party communication lower bound

48

Protocol Max neighbors Max per-party
communication Diameter

ECCast n - 1 O(l ∙ 𝛾-1) 2

ECFlood O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1) O(log(n))

Theorem: Any flooding protocol must have max per party communication 𝛺 (l ∙ 𝛾-1).

Optimality of O(l ∙ 𝛾-1) per party communication

49

s

P P P

P P P

P P P

strategy:

Optimality of O(l ∙ 𝛾-1) per party communication

50

s

P P P

P P P

P P P

strategy:

1. Divide parties into sets of size ≈ n ∙ 𝛾.

Optimality of O(l ∙ 𝛾-1) per party communication

51

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

strategy:

1. Divide parties into sets of size ≈ n ∙ 𝛾.
2. Choose random i and corrupt

everyone but sender and Ci.

Optimality of O(l ∙ 𝛾-1) per party communication

52

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

strategy:

1. Divide parties into sets of size ≈ n ∙ 𝛾.
2. Choose random i and corrupt everyone

but sender and Ci.
3. No dishonest cliques communicates

with other cliques.

Optimality of O(l ∙ 𝛾-1) per party communication

53

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

Optimality of O(l ∙ 𝛾-1) per party communication

54

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

Optimality of O(l ∙ 𝛾-1) per party communication

55

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

Optimality of O(l ∙ 𝛾-1) per party communication

56

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

≈

From sender’s
point of view

Optimality of O(l ∙ 𝛾-1) per party communication

57

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

s

P P P

 ≥ n ∙ 𝛾 -1

P P P

P P P

 = C
1

 = C
i

 = C

⌊1/𝛾⌋

≈

From sender’s
point of view

Each Ci must
receive l bits

from the
sender with

overwhelming
probability.

Also in the paper

58

Theorem: Property-based flooding implies UC-flooding.

59

Theorem: Property-based flooding implies UC-flooding.

Because there are no
secrecy requirements
for flooding protocols

they are easy to
simulateAlso in the paper

60

Theorem: Property-based flooding implies UC-flooding.

Theorem: Secure protocol in the non-weighted setting implies another protocol that is
secure in the weighted setting.

Because there are no
secrecy requirements
for flooding protocols

they are easy to
simulateAlso in the paper

61

Theorem: Property-based flooding implies UC-flooding.

Theorem: Secure protocol in the non-weighted setting implies another protocol that is
secure in the weighted setting.

Constructive proof by
emulating parties as

[LMMRT22]

Because there are no
secrecy requirements
for flooding protocols

they are easy to
simulateAlso in the paper

Conclusion

In this talk:

1. Presented ECFlood: A flooding protocol with a logarithmic neighborhood, a logarithmic diameter,

and only O(l ∙ 𝛾-1) per party communication.
2. Presented simulations showing practical advantages over existing approaches.
3. Shown the optimality of a O(l ∙ 𝛾-1) per party communication.

Details and additional results in the full version of the paper: https://eprint.iacr.org/2022/1723

Contact: soren.eller.thomsen@partisia.com

62

https://eprint.iacr.org/2022/1723
mailto:soren.eller.thomsen@partisia.com

References

[MNT22]: Christian Matt, Jesper Buus Nielsen, and Søren Eller Thomsen. Formalizing delayed adaptive corruptions and the security of
flooding networks. In Yevgeniy Dodis and Thomas Shrimpton, editors, advances in Cryptology – CRYPTO 2022, Cham, 2022. Springer
Nature Switzerland.

[LMMRT22]: Liu-Zhang, CD., Matt, C., Maurer, U., Rito, G., Thomsen, S.E. (2022). Practical Provably Secure Flooding for Blockchains. In:
Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. Springer, Cham.

[KMG03]: Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. Probabilistic reliable dissemination in large-scale
systems. IEEE Trans. Parallel Distributed Syst.,14(3):248–258, 2003.

[RS60]: Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of The Society for Industrial and Applied
Mathematics, 8:300–304, 1960.

[Mer89]: Ralph C. Merkle. A certified digital signature. In CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 218–238.
Springer, 1989.

63

