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KPIs for a flooding protocol

1. Max number of neighbors

2. Diameter

3. Max per party communication
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2. Diameter

3. Max per-party communication

17

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

KPIs for a flooding protocol



State of the art flooding (in presence of       )

18

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Each party forwards the message to a 
random subset of parties of (expected) 
size 𝜅. [MNT22, LMMRT22]



19

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Sender forwards the message to all 

parties.

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Each party forwards the message to a 
random subset of parties of (expected) 
size 𝜅. [MNT22, LMMRT22]

State of the art flooding (in presence of       )



20

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Sender forwards the message to all 

parties.

P
1

P
2

P
3

P
4

P
7

P
6

P
8

P
5

P
9

Each party forwards the message to a 
random subset of parties of (expected) 
size 𝜅. [MNT22, LMMRT22]

State of the art flooding (in presence of       )



21

Protocol Max neighbors Max per-party 
communication Diameter

[MNT22, LMMRT22] O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1 ∙(log(n) + 𝜅)) O(log(n))

n = number of parties.
𝜅 = security parameter.
𝛾 = minimum fraction of honest parties.
l = length of message. 

Our results: Two asymptotically optimal protocols
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n = number of parties.
FFlood = Send to k random parties with increasing k to 
reduce error rate.
ECFlood (x) = Our new protocol with parameter x.
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Protocol Max neighbors Max per-party 
communication Diameter

[MNT22, LMMRT22] O(𝛾-1 ∙(log(n) + 𝜅)) O(l ∙ 𝛾-1 ∙(log(n) + 𝜅)) O(log(n))
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n = number of parties.
𝜅 = security parameter.
𝛾 = minimum fraction of honest parties.
l = length of message. 
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Requirements for a WeakFlooding protocol

1. Must ensure delivery with diameter O(log(n)) to each party with constant probability

2. Must have O(𝛾-1) neighborhoods

3. Must have per party communication of O(l’ ∙ 𝛾-1) for messages of length l’.
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So… Any candidates for a 𝜉-WeakFlooding protocol?

For d = O(𝛾-1), FFlood(d): 

1. Ensures delivery with diameter O(log(n)) to each 

party with constant probability ✅
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3. Has per party communication of O(l’ ∙d) for 

messages of length l’ ✅
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n = number of parties.
FFlood = Send to k random parties with 
increasing k to reduce error rate.
ECFlood (x) = Our new protocol with 
parameter x.

Optimal for: 
l = Ω((log(n) + 𝜅) ∙ (log(log(n)) + 𝜅))
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strategy: 

1. Divide parties into sets of size ≈ n ∙ 𝛾.
2. Choose random i and corrupt everyone 
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with other cliques.
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Theorem: Property-based flooding implies UC-flooding.

Because there are no 
secrecy requirements 
for flooding protocols 

they are easy to 
simulateAlso in the paper
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Theorem: Property-based flooding implies UC-flooding.

Theorem: Secure protocol in the non-weighted setting implies another protocol that is 
secure in the weighted setting.

Constructive proof by 
emulating parties as  

[LMMRT22]

Because there are no 
secrecy requirements 
for flooding protocols 

they are easy to 
simulateAlso in the paper



Conclusion

In this talk: 

1. Presented ECFlood: A flooding protocol with a logarithmic neighborhood, a logarithmic diameter, 

and only O(l ∙ 𝛾-1) per party communication. 
2. Presented simulations showing practical advantages over existing approaches.
3. Shown the optimality of a O(l ∙ 𝛾-1) per party communication. 

Details and additional results in the full version of the paper: https://eprint.iacr.org/2022/1723 

Contact: soren.eller.thomsen@partisia.com 
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https://eprint.iacr.org/2022/1723
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