Asymptotically Optimal Message Dissemination with Applications to Blockchains

Chen-Da Liu-Zhang, Lucerne University of Applied Sciences and Arts & Web3 Foundation Christian Matt, Primev Søren Eller Thomsen, **Partisia**

time

≻

State of the art

- 1. Max number of neighbors
- 2. Diameter
- 3. Max per party communication

- 1. Max number of neighbors
- 2. Diameter
- 3. Max per party communication

- 1. Max number of neighbors
- 2. Diameter
- 3. Max per party communication

- 1. Max number of neighbors
- 2. Diameter
- 3. Max per-party communication

State of the art flooding (in presence of 😈)

State of the art flooding (in presence of $\overline{100}$)

Sender forwards the message to all parties.

State of the art flooding (in presence of $\overline{100}$)

Sender forwards the message to all parties.

Protocol	Max neighbors	Max per-party communication	Diameter
[MNT22, LMMRT22]	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	$O(I \cdot \gamma^{-1} \cdot (\log(n) + \kappa))$	O(log(n))

n = number of parties.

 κ = security parameter.

 γ = minimum fraction of honest parties.

Protocol	Max neighbors	Max per-party communication	Diameter
[MNT22, LMMRT22]	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	$O(I \cdot \gamma^{-1} \cdot (\log(n) + \kappa))$	O(log(n))
ECFlood	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	Ο(I · γ ⁻¹)	O(log(n))

n = number of parties.

 κ = security parameter.

 γ = minimum fraction of honest parties.

Protocol	Max neighbors	Max per-party communication	Diameter
[MNT22, LMMRT22]	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	$O(I \cdot \gamma^{-1} \cdot (log(n) + \kappa))$	O(log(n))
ECFlood	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	Ο(I · γ ⁻¹)	O(log(n))
Naive	n - 1	l · (n - 1)	1

n = number of parties.

 κ = security parameter.

 γ = minimum fraction of honest parties.

Protocol	Max neighbors	Max per-party communication	Diameter
[MNT22, LMMRT22]	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	$O(I \cdot \gamma^{-1} \cdot (log(n) + \kappa))$	O(log(n))
ECFlood	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	Ο(I · γ ⁻¹)	O(log(n))
Naive	n - 1	l · (n - 1)	1
ECCast	n - 1	Ο(I · γ ⁻¹)	2

n = number of parties.

 κ = security parameter.

 γ = minimum fraction of honest parties.

Efficiency evaluation of ECFlood

Our asymptotically optimal protocol

Protocol	Max neighbors	Max per-party communication	Diameter
[MNT22, LMMRT22]	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	$O(I \cdot \gamma^{-1} \cdot (log(n) + \kappa))$	O(log(n))
ECFlood	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	Ο(I · γ ⁻¹)	O(log(n))

n = number of parties.

 κ = security parameter.

 γ = minimum fraction of honest parties.

C	Dur asymptoi Necessary for Erdős–Rényi flooding protocols shown in [KMG03] and necessary for		Rényi wn in Iry for	tocol	
	Protocol	fanout type flooding she [LMMRT22]	own in	ax per-party nmunication	Diameter
	[MNT22, LMMRT22]	$O(\gamma^{-1} \cdot (log(n) + \kappa))$	O(I ·)	$v^{-1} \cdot \frac{(\log(n) + \kappa)}{(\log(n) + \kappa)}$	O(log(n))
	ECFlood	$O(\gamma^{-1} \cdot (log(n) + \kappa))$		$O(l \cdot \gamma^{-1})$	O(log(n))

n = number of parties. $\kappa = security parameter.$ $\gamma = minimum fraction of honest parties.$ I = length of message.

Requirements for a WeakFlooding protocol

- 1. Must ensure delivery with diameter O(log(n)) to each party with constant probability
- 2. Must have $O(\gamma^{-1})$ neighborhoods
- 3. Must have per party communication of $O(l' \cdot \gamma^{-1})$ for messages of length *l*'.

So... Any candidates for a ξ -WeakFlooding protocol?

So... Any candidates for a ξ -WeakFlooding protocol?

So... Any candidates for a ξ -WeakFlooding protocol?

For $d = O(\gamma^{-1})$, FFlood(d):

- Ensures delivery with diameter O(log(n)) to each party with constant probability
- 2. Has d neighborhoods \checkmark
- 3. Has per party communication of $O(l' \cdot d)$ for messages of length l'

Each party forwards the message to a random subset of parties of size d.

n = number of parties. FFlood = Send to k random parties with increasing k to reduce error rate. ECFlood (x) = Our new protocol with parameter x.

How long should the message be?

n = number of parties. FFlood = Send to k random parties with increasing k to reduce error rate. ECFlood (x) = Our new protocol with parameter x.

How long should the message be?

Per-party communication lower bound

Theorem: Any flooding protocol must have max per party communication $\Omega(l \cdot \gamma^{-1})$.

Per-party communication lower bound

Theorem: Any flooding protocol must have max per party communication $\Omega(l \cdot \gamma^{-1})$.

Protocol	Max neighbors	Max per-party communication	Diameter
ECCast	n - 1	Ο(I · γ ⁻¹)	2
ECFlood	$O(\gamma^{-1} \cdot (\log(n) + \kappa))$	Ο(I · γ ⁻¹)	O(log(n))

strategy:

- 1. Divide parties into sets of size $\approx n \cdot \gamma$.
- 2. Choose random *i* and corrupt everyone but sender and *C*_{*i*}.
- 3. No dishonest cliques communicates with other cliques.

Also in the paper

Theorem: Property-based flooding implies UC-flooding.

A

Theorem: Secure protocol in the non-weighted setting *implies* another protocol that is secure in the weighted setting.

Conclusion

In this talk:

- 1. Presented ECFlood: A flooding protocol with a logarithmic neighborhood, a logarithmic diameter, and only $O(l \cdot \gamma^{-1})$ per party communication.
- 2. Presented simulations showing practical advantages over existing approaches.
- 3. Shown the optimality of a $O(I \cdot \gamma^{-1})$ per party communication.

Details and additional results in the full version of the paper: https://eprint.iacr.org/2022/1723

Contact: soren.eller.thomsen@partisia.com

References

[MNT22]: Christian Matt, Jesper Buus Nielsen, and Søren Eller Thomsen. Formalizing delayed adaptive corruptions and the security of flooding networks. In Yevgeniy Dodis and Thomas Shrimpton, editors, advances in Cryptology – CRYPTO 2022, Cham, 2022. Springer Nature Switzerland.

[LMMRT22]: Liu-Zhang, CD., Matt, C., Maurer, U., Rito, G., Thomsen, S.E. (2022). Practical Provably Secure Flooding for Blockchains. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. Springer, Cham.

[KMG03]: Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. Probabilistic reliable dissemination in large-scale systems. IEEE Trans. Parallel Distributed Syst., 14(3):248–258, 2003.

[RS60]: Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of The Society for Industrial and Applied Mathematics, 8:300–304, 1960.

[Mer89]: Ralph C. Merkle. A certified digital signature. In CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer, 1989.