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Our results: Two asymptotically optimal protocols

Protocol

[MNT22, LMMRT22]

n = number of parties.
K = security parameter.
y = minimum fraction of honest parties.

| = length of message.

Max neighbors

O(y" -(log(n) + ))

Max per-party
communication

O(l -y -(log(n) + x))

Diameter

O(log(n))
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Max per-party
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Our results: Two asymptotically optimal protocols

Max per-party

Protocol Max neighbors communication Diameter
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Efficiency evaluation of ECFlood
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Our asymptotically optimal protocol

Max per-party

Protocol Max neighbors o
communication
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Our asympto tocol

Protocol X BRI Diameter
munication

[MNT22, LMMRT22] | O(y"- o(l - " G O(log(n))

ECFlood O(¥" -(log(n) + x)) o(l - ) O(log(n))

y = minimum fraction of honest parties.

(n =number of parties.
K = security parameter.

¢= length of message.
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Requirements for a WeakFlooding protocol

1. Must ensure delivery with diameter O(log(n)) to each party with constant probability
2. Must have O(»?) neighborhoods

3. Must have per party communication of O(I’ - 1) for messages of length I’
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So.. Any candidates for a £&-WeakFlooding protocol?

Ford = O(y1), FFlood(d):

1.

Ensures delivery with diameter O(log(n)) to each
party with constant probability

Has d neighborhoods

Has per party communication of O(I’ -d) for

messages of length I’

Each party forwards the message to a
random subset of parties of size d.
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How long should the message be?

n = number of parties.

FFlood = Send to k random parties with
increasing k to reduce error rate.
ECFlood (x) = Our new protocol with
parameter x.
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n = number of parties.

FFlood = Send to k random parties with
increasing k to reduce error rate.
ECFlood (x) = Our new protocol with
parameter x.
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Per-party communication lower bound

U Theorem: Any flooding protocol must have max per party communication 2(l - 1.
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U Theorem: Any flooding protocol must have max per party communication 2(l - 1.
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Optimality of O(l - »*) per party communication
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Optimality of O(l - »*) per party communication

/E strategy: \

Divide parties into sets of size =n - y.
Choose random i and corrupt everyone
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Also in the paper

U Theorem: Property-based flooding implies UC-flooding.
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Conclusion

In this talk:

1. Presented ECFlood: A flooding protocol with a logarithmic neighborhood, a logarithmic diameter,

and only O(/ - »") per party communication.
2. Presented simulations showing practical advantages over existing approaches.
3. Shown the optimality of a O(/ - ) per party communication.

Details and additional results in the full version of the paper: https://eprint.iacr.org/2022/1723
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