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Threshold Secret Sharing [shamir, Biakiey]

Sharing:

secret s

share s;

share s,

share s3

Reconstruction:

Concern: Side-channel attacks

@ “All-or-nothing” no longer true

@ Revealing partial or full information from every share

X

secret s

< k shares: “all-or-nothing”

share s,
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Local Leakage-resilient Secret Sharing

[Benhamouda-Degwekar—lshai-Rabin-lB, GoyaI-Kumar-18]

secret s
share s; share s, share s3 e share s,
] | fa(ss) fo| | fa(sn)

O

Leakage resilience: Adversary view is essentially uncorrelated with the secret s.
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Our Research Problem
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@ Why Shamir? Because it is everywhere.
@ What leakage? We consider probing attacks [Ishai-Sahai-Wagner-03]. J

Current state-of-the-art [

Shamir's secret sharing over prime fields with random evaluation places is leakage-resilient.

How about composite order fields?
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Model: Shamir's Secret Sharing _

(n, k) — ShamirSS

degree (k — 1)

s=P(0
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Leakage Model: PhySical Blt PrObing [Ishai—Sahai—Wagner—O?)]

Representation of every field element x € F4

H—/
log, p bits
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Leakage Model: Physical Bit Probing [isnai sahai wagner 03]

Representation of every field element x € F4

%/—/
log, p bits

Leakage model
The adversary gets physical bits leakage from every share.

Example: single block leakage (a log>p physical bits leakage)

S1 S S

|

I -és I
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Main Result |

Theorem (Randomized construction for composite order fields)

Let A = d[log, p| be the security parameter.
1-1/p if2<p<k-—1,

1 otherwise,
random evaluation places yield leakage-resilient Shamir's scheme.

If the total leakage < p(k — 1)\, where p =
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Our result holds for any k > 2 and large characteristic-2 fields.

@ Enables leakage-resilient secure computation using GMW-style protocols.
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Our result holds for any k > 2 and large characteristic-2 fields.

@ Enables leakage-resilient secure computation using GMW-style protocols.

.

Comparison with the result over prime fields |

@ p =1 for prime fields.

@ The permissible leakage tolerance may be slightly smaller for composite order fields.

6/13



Main Result Il

Theorem (Classifying evaluation places: a dichotomy)

Against single block leakage, (n,2)-Shamir’s scheme is either perfectly secure or completely insecure.

7/13



Main Result Il

Theorem (Classifying evaluation places: a dichotomy)

Against single block leakage, (n,2)-Shamir’s scheme is either perfectly secure or completely insecure.

Classifying Secure Evaluation Places Algorithm for Single Block Leakages

@ Input: Distinct evaluation places Xi, Xo,..., X, € Fa.

@ Output: Whether (n,2)-Shamir’s secret sharing with evaluation places Xi, Xz, ..., X, are secure.
@ Algorithm:

@ Compute the set of shift factors S (of size d).

Q@ If exist n1,1m2,...,mn € S such that Xini, Xom, . .., Xana are Fp-linearly dependence, then
return “insecure”.

© Otherwise, return “secure”.

7/13



Main Result Il

Theorem (Classifying evaluation places: a dichotomy)

Against single block leakage, (n,2)-Shamir’s scheme is either perfectly secure or completely insecure.

Classifying Secure Evaluation Places Algorithm for Single Block Leakages
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@ Output: Whether (n,2)-Shamir’s secret sharing with evaluation places Xi, Xz, ..., X, are secure.
@ Algorithm:

@ Compute the set of shift factors S (of size d).

Q@ If exist n1,1m2,...,mn € S such that Xini, Xom, . .., Xana are Fp-linearly dependence, then
return “insecure”.

© Otherwise, return “secure”.

Comparison with [

| |

@ Consider similar problems over Mersenne/Fermat prime fields, one-bit leakage per share.

@ Derandomize the construction over prime fields.
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Prior Works

Relevant work | Finite Field F | Evaluation Places | Leakage family | Bounds on k
BDIR'18&21 prime any local k > 0.85n
MNPSW'21 prime random physical bit k>?2

MNPW'22 prime any local k > 0.78n

MNPSWYY'22 prime random bounded joint | kK > 0.5n

KK'23 prime any local k > 0.69n
This work composite random physical bit k>2

Table 1: Summary of prior works and ours for 1-bit leakage, where A = log,|F|.
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Technical Overview

Extend the analysis of [MINPSW'21] to composite order fields: Fourier analysis & probabilistic method.

Reductions

@ For any leakage function, for any two secrets, the distinguishing advantage is small over randomly
chosen evaluation places.

Eg SD(f(s), f(s)) <Ex Y. Y <H

te{o,1}" acFn\{0} \i=1

ﬂ,m;))) Pr [07 € CX%] < exp(—0(N))

@ Applying standard probabilistic techniques (union bound and Markov inequality) yields most
evaluation places are secure.
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Bound on the Number of Solutions of a System of Equations

System of equations

Fix a € (I-:;)k, consider the following system of equations

Xi Xo - Xi ax 0 A(X) =1 X1+ aaXo+---+ouXe =0

X2 X2 ... X2 o 0 HX) =X +aoXZ+- -+ X =0
. . . . o ) = <~

Xk xk oo Xk o 0 F(X) = 0n XE + 0 X+ +auXt =0

How many solutions X € (I—;;Z,)k satisfying X;'s are distinct?
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Bound on the Number of Solutions of a System of Equations

System of equations

Fix a € (I-;’Z)k, consider the following system of equations

X1 X2 Xk (051 0 ()_()

B DG aos O @ 0 Hh(X) =

. ) X . ) = <~

XtX e Xe) \au 0 Fu(X) = an Xt + aoXf ++ - + auXf

How many solutions X € (I—;‘Z,)k satisfying X;'s are distinct?

o1 X1 + oXo 4+ - -+ o Xk
a1 X? + X+ 4+ auX?

Bound on the number of solutions

@ Employ a contemporary Bézout-like theorem over composite order fields
[Bafna-Sudan-Velusamy-Xiang-21].

o Maji et al. used [Wooley-96] result for prime fields.
@ Subtlety arises for composite order fields

@ A naive analysis would not work.

.
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Bézout-like Theorems

Definition
Consider fi € Fa[X1, X2, ..., Xi] of degree d; for 1 < i < k.
An 3 e l—;’; is an isolated zero of the square system f = 0, if £(3) = 0 but J(f; 3) # 0.

Jacobian

) € FalXt, Xa, .., Xu].
ije{1,2,...,k}

Theorem ([ ] for prime fields, [ ] for composite order fields)

The number of isolated zeroes of the system of equations f =0 is at most dy - db- - - di.
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[llustrating Examples

How the proof in [ ] works?

Consider k =3, a@ = T and a prime field F, with large p.

111
J(F)=det [ 2X1 2Xo 2Xs | = 6(Xi — Xo)(X2 — X3)(Xs — Xi1)
3X2 3X2 3X2

J(f:: )?) = 0 iff X;'s are distinct. So #solutions = #isolated zeroes.
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[llustrating Examples

How the proof in | ] works?

Consider k =3, @ =1, and a prime field Fp, with large p.

11 1
Jf)y=det [ 2Xi 2% 2X:3 | = 6(X1 — Xo)(Xa — X3)(Xs — X1)
3X2 3XZ 3X?

J(f7 )?) # 0 iff X;'s are distinct. So #solutions = #isolated zeroes.

Over composite order fields

@ When p > k = 3, the same idea works since J(fq7 )?) = 0 iff X;'s are distinct.

\.

@ When p = 2, the same analysis does not work since J(f, 3) = 0 for every a.

Our solution when p = 2

@ Remove equation with even power

@ Fix Xz arbitrarily, consider a new system g1 = X; + Xo + ¢c1, and g0 = X + X3 + .

= 1 1
J(g) = det (3X12 3X22) =3(X1 — X2) (X1 + X2) = 3(X1 — X2)2

12/13




[llustrating Examples

How the proof in [ ] works?

Consider k =3, @ = 1, and a prime field F, with large p.

111
J)=det [ 2X1 2% 2X3 | = 6(X1 — Xo)(Xa — X3)(Xz — X1)
3X? 3X? 3X%

J(F, X) # 0 iff X;'s are distinct. So #solutions = #isolated zeroes.

Over composite order fields

@ When p > k = 3, the same idea works since J(f, X) # 0 iff X;'s are distinct.

A

@ When p = 2, the same analysis does not work since J(f, 3) = 0 for every a.

Q J(2,X)=0iff Xy = X2 or X; + Xo = 0 — a new and unexpected way of making Jacobian zero.

@ J(g) is a generalized Vandermonde determinant. We prove that the number of zeroes is small.

o ldentifying their zeroes is an open research problem in Mathematics.
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Summary

Theorem (Randomized construction for composite order fields)

Random evaluation places yield leakage-resilient Shamir's scheme.

Theorem (Classifying evaluation places: a dichotomy)

@ Against single block leakage, (n,2)-Shamir is either perfectly secure or completely insecure.

@ Given evaluation places (X1, Xa, ..., Xa), our algorithm classifies them as secure or not.
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Theorem (Classifying evaluation places: a dichotomy)

@ Against single block leakage, (n,2)-Shamir is either perfectly secure or completely insecure.

@ Given evaluation places (X1, Xa, ..., Xa), our algorithm classifies them as secure or not.

Thank you!
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