### Reduction from sparse LPN to LPN, Dual Attack 3.0

Kévin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, Jean-Pierre Tillich

Eurocrypt 2024

## Table of Contents

### 1 Introduction

2 State of the art: Dual Attack 2.0

3 A new algorithm: Dual Attack 3.0

4 Score function prediction in lattices

Code-based cryptography and Decoding Problem

#### Code-based primitives

- PKE, KEM (NIST): McEliece, BIKE, HQC, ...
- Signatures (NIST): SDitH, Wave, ...

Security of code-based primitives  $\rightarrow$  Hardness of decoding linear codes

Decoding Problem at distance t (small)

#### • Input:

▶  $\mathscr{C}$  binary linear code of len. *n* and dim. *k* (linear subspace of  $\mathbb{F}_2^n$  of dimension *k*) ▶ **c** + **e** with **c** ∈  $\mathscr{C}$  and  $|\mathbf{e}| = t$ 

• Output: e

## This work: new Decoding Algorithm

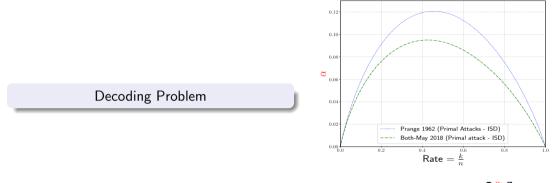


Figure: Complexity  $2^{\alpha n}$ 

# This work: new Decoding Algorithm

Decoding Problem  $\downarrow$ Reduced to LPN (2.0)

#### LPN Problem

- Input: Many samples  $(a, \langle a, s \rangle + e)$ 
  - s ∈ 𝔽<sup>s</sup><sub>2</sub> fixed secret
     a taken at random in 𝔽<sup>s</sup><sub>2</sub>
  - ▶ *e* ~ Bern(*p*)
- Output: s

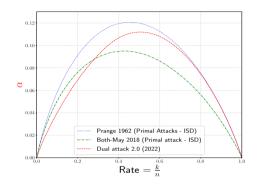


Figure: Complexity  $2^{\alpha n}$ 

#### $\rightarrow$ Big gain for rather small rates

# This work: new Decoding Algorithm



#### LPN Problem

- Input: Many samples  $(a, \langle a, s \rangle + e)$ 
  - s ∈ ℝ<sup>s</sup><sub>2</sub> fixed secret
     a taken at random in ℝ<sup>s</sup><sub>2</sub>
  - ▶ *e* ~ Bern(*p*)
- Output: s

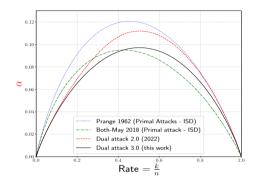


Figure: Complexity  $2^{\alpha n}$ 

 $\rightarrow$  Big gain for R < 0.42

## Table of Contents

#### Introduction

#### 2 State of the art: Dual Attack 2.0

3 A new algorithm: Dual Attack 3.0

4 Score function prediction in lattices

### Setting for Dual Attacks

#### Dual code

$$\mathscr{C}^{\perp} = \{ \mathbf{h} \in \mathbb{F}_2^n : \langle \mathbf{h}, \mathbf{c} \rangle = 0 \quad \forall \mathbf{c} \in \mathscr{C} \} \qquad \text{with} \qquad \langle \mathbf{x}, \mathbf{y} \rangle = \sum x_i \ y_i \pmod{2}$$

Compute dual vector  $\mathbf{h} \in \mathscr{C}^{\perp}$ 

Given 
$$\mathbf{c} + \mathbf{e}$$
  $\rightarrow \langle \mathbf{c} + \mathbf{e}, \mathbf{h} \rangle = \langle \mathbf{e}, \mathbf{h} \rangle$ 

How to exploit?

Reducing Decoding to LPN (Dual attack 2.0) [CDMT, 2022]  $\langle {\bf c} + {\bf e}, {\bf h} \rangle = \langle {\bf e}, {\bf h} \rangle$ 

- Split support in complementary part  $\mathscr{P}$  and  $\mathscr{N} \to \text{Recover } \mathbf{e}_{\mathscr{P}}$ ?

$$\rightarrow \langle \mathbf{e}, \mathbf{h} \rangle = \langle \underbrace{\mathbf{e}}_{\text{secret}}, \mathbf{h}_{\mathscr{P}} \rangle + \underbrace{\langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle}_{\text{noise: biased to 0}}$$

**N** dual vectors  $\rightarrow$  **N** LPN samples

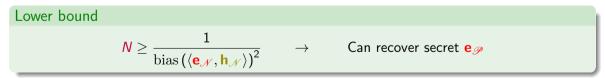
$$(\mathbf{a}, \langle \mathbf{s}, \mathbf{a} \rangle + e) \text{ w.t } \begin{cases} \mathbf{a} = \mathbf{h}_{\mathscr{P}} \in \mathbb{F}_{2}^{|\mathscr{P}|} \\ \mathbf{s} = \mathbf{e}_{\mathscr{P}} \\ \mathbf{e} = \langle \mathbf{e}_{\mathscr{N}}, \mathbf{h}_{\mathscr{N}} \rangle \end{cases}$$

### Hardness of this LPN problem

$$\boldsymbol{e} = \langle \boldsymbol{e}_{\mathscr{N}}, \boldsymbol{h}_{\mathscr{N}} \rangle \qquad \text{bias}\left( \langle \boldsymbol{e}_{\mathscr{N}}, \boldsymbol{h}_{\mathscr{N}} \rangle \right) \stackrel{\triangle}{=} \frac{1}{N} \sum_{\mathbf{h}} (-1)^{\langle \boldsymbol{e}_{\mathscr{N}}, \boldsymbol{h}_{\mathscr{N}} \rangle}$$

Bias computed theoretically using only  $|\mathbf{e}_{\mathscr{N}}|$  and  $|\mathbf{h}_{\mathscr{N}}| = w$ 

 $\rightarrow$  is exponentially small



Solving the LPN problem : Score function

LPN samples  $(a, \langle a, s \rangle + e) \rightarrow$  Recover s?

Score function for  $\mathbf{x} \in \mathbb{F}_{2}^{|\mathscr{P}|}$  $F(\mathbf{x}) = \operatorname{bias} (\langle \mathbf{a}, \mathbf{s} \rangle + e - \langle \mathbf{a}, \mathbf{x} \rangle) = \frac{1}{N} \sum_{\mathbf{a}} (-1)^{\langle \mathbf{a}, \mathbf{s} \rangle + e - \langle \mathbf{a}, \mathbf{x} \rangle}$ 

When  $\mathbf{x} = \mathbf{s}$  then  $F(\mathbf{x})$  is high and equal bias (e)

Compute max  $F(\mathbf{x}) \rightarrow$  use FFT over  $\mathbb{F}_2^{|\mathscr{P}|}$  to compute all values of  $F(\mathbf{x})$ .

#### Key remark

 ${f s}={f e}_{\mathscr{P}}$  is sparse and yet we compute  $F({f x})$  for all  ${f x}\in \mathbb{F}_2^{|\mathscr{P}|}$ 

## Table of Contents

#### 1 Introduction

- 2 State of the art: Dual Attack 2.0
- 3 A new algorithm: Dual Attack 3.0
- 4 Score function prediction in lattices

# Reduction from sparse LPN to plain LPN (1)



# Reduction from sparse LPN to plain LPN (2)



$$\langle \mathbf{s}, \mathbf{a} 
angle + e = \langle \mathbf{s}, \mathbf{c}_{\mathsf{aux}} 
angle + \underbrace{\langle \mathbf{s}, \mathbf{e}_{\mathsf{aux}} 
angle + e}_{e' \text{ new noise}}$$

$$\langle \mathbf{s}, \mathbf{c}_{\mathsf{aux}} \rangle = \langle \mathbf{s}, \mathbf{m}_{\mathsf{aux}} \mathbf{G}_{\mathsf{aux}} \rangle = \langle \mathbf{s} \mathbf{G}_{\mathsf{aux}}^\top, \mathbf{m}_{\mathsf{aux}} \rangle$$

Sample space 
$$\mathbb{F}_2^{|\mathscr{P}|} \to \mathbb{F}_2^{\dim(\mathscr{C}_{\mathsf{aux}})}$$
 is smaller!

Analysis: estimating the number of false candidates?

LPN samples (a,  $\langle a, s \rangle + e$ )

$$\rightarrow$$
 Score function  $F(\mathbf{x}) = bias(\langle \mathbf{a}, \mathbf{s} \rangle + e - \langle \mathbf{a}, \mathbf{x} \rangle)$ 

Key question for complexity analysis How many x (apart from the secret s) are such that  $F(x) \approx bias (e)$ ?

# Distribution of the score function: a bit of history

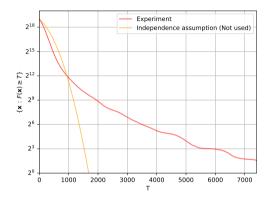


Figure: Distribution score function in Dual Attack 3.0

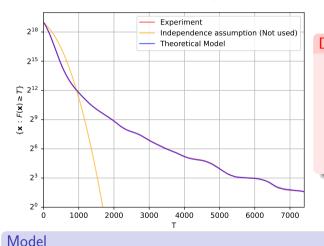
A bit of history about Dual Attacks 2.0:

- [CDMT, 2022] Notice exp. differences
- [M & Tillich, 2023] New model

#### **Independence Assumptions**

### Prediction of score function

 $\rightarrow$  Generalization of [M & Tillich, 2023] to analyze Dual Attacks 3.0



# Dual formula

$$F(\mathbf{x}) \approx \sum_{i \in \mathbb{N}} N_i(\mathscr{D}) K_w(i)$$

*N<sub>i</sub>* (*D*) number of codewords of weight *i* in some code *D*

Proof: Poisson formula +  $\widehat{1_w} = K_w$ 

16/2

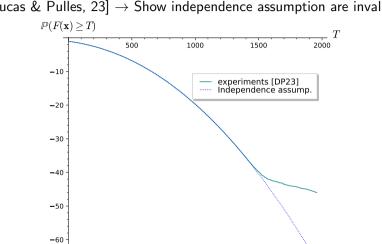
 $N_i(\mathscr{D}) \sim \text{Poisson variable of good expected value}$ 

## Table of Contents

#### Introduction

- 2 State of the art: Dual Attack 2.0
- 3 A new algorithm: Dual Attack 3.0
- 4 Score function prediction in lattices

### The problem

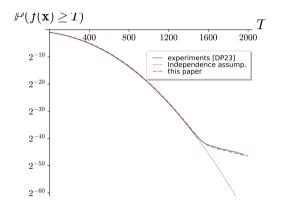


[Ducas & Pulles, 23]  $\rightarrow$  Show independence assumption are invalid

 $\rightarrow$  Seriously question Dual Attacks in Lattices

#### Accurate score prediction

 $\rightarrow$  We adapt [M & Tillich, 2023] to analyze dual attacks in codes to lattices



#### Dual formula

$$F(\mathbf{x}) \approx \sum_{i} N_i(\Lambda) \left(\frac{\mathbf{w}}{i}\right)^{n/2} J_{\frac{n}{2}}(2\pi \mathbf{w} i)$$

•  $N_i(\Lambda)$  number of lattice points of length i

•  $J_n$  Bessel function

Proof : Poisson formula

$$\widehat{1_{\leq \mathbf{w}}} = \left(\frac{\mathbf{w}}{i}\right)^{n/2} J_{\frac{n}{2}} \left(2\pi \mathbf{w} i\right)$$

#### Conclusion

• New decoding algorithm beat state of art for rates smaller than 0.42

• Analysis not relying on independence assumptions

• Prediction of score function in lattice

# Thank you!