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Overview



 Fully Homomorphic Encryption(FHE) allows anyone to compute on encrypted data without access to 

the decryption key.

 The concept was first proposed by Rivest, Adleman, and Dertouzos in 1978

 The first FHE scheme was designed by Gentry in 2009

Concept of FHE

Enc(𝑚)
Function 𝑓

Enc 𝑓 𝑚



 RLWE-based FHE scheme designed by Brakerski, Gentry, and Vaikuntanathan in 2011

 ℛ = ℤ 𝑋 /Φ𝑀 𝑋 , ℛ𝑞 = ℛ/𝑞ℛ for some 𝑞

 Plaintext modulus 𝑝𝑟 for prime 𝑝 and integer 𝑟. Plaintext polynomial 𝑚 ∈ ℛ𝑝𝑟

 Suitable for computing on modular integers & finite fields

 Secret key generation: 𝑠 ← 𝜒𝑠 for some distribution 𝜒𝑠 over ℛ

 Enc 𝑚; 𝑝𝑟 = 𝑐 = 𝑏, 𝑎 = −𝑎𝑠 + 𝑚 + 𝑝𝑟𝑒, 𝑎 , with 𝑎 ← ℛ𝑞 , 𝑒 ← 𝜒𝑒

 Dec 𝑐 = 𝑏 + 𝑎𝑠 𝑞
𝑝𝑟

The BGV Scheme



 ℛ𝑝𝑟 is isomorphic to 𝐸𝐿 for some Galois field (or ring) 𝐸, let 𝑑 = 𝐸: ℤ𝑝𝑟

 Each of the 𝐿 positions is called a slot

 SIMD property: ciphertext additions & multiplications are slot-wise

Plaintext Batching in BGV



 All currently known FHE schemes rely on noisy encryption, e.g., NTRU, LWE, RLWE, AGCD...

 The noise in ciphertexts accumulates during homomorphic computation

 A too large noise will lead to decryption failure

 Bootstrapping: reset the noise level by evaluating the decryption circuit homomorphically

 Much more expensive than homomorphic arithmetic operations in CKKS/BFV/BGV

 The performance bottleneck of all FHE schemes

Bootstrapping in FHE



 General bootstrapping: each slot stores a finite field/ring element

 Homomorphic Digit Removal is the performance bottleneck

BGV Bootstrapping



 Thin bootstrapping [CH18]: each slot stores an integer

 Homomorphic Digit Removal is still the performance bottleneck

BGV Bootstrapping



 Homomorphically extract the highest 𝑟 p-ary digits (𝑚𝑖) from 𝑒 digits (𝑝𝑒−𝑟𝑚𝑖 + 𝜖𝑖)

 𝑤𝑒−1𝑤𝑒−2 ⋯ 𝑤𝑒−𝑟𝑤𝑒−𝑟−1 ⋯ 𝑤0 → 𝑤𝑒−1 ⋯ 𝑤𝑒−𝑟

 Basic operation is the digit extraction: obtain 0 ⋯ 0
𝑒−1

𝑤0 from 𝑤𝑒−1 ⋯ 𝑤0

 HS15 & HS21: Compute a lifting polynomial of degree 𝑝 for 𝑒 − 1 times

 CH18: Compute a digit extraction polynomial of degree 𝑝 − 1 𝑒 − 1 + 1

 GIKV23: Compute two polynomials of degrees 𝑝 − 1 𝑒′ − 1 + 1 and 
𝑒

𝑒′ 𝑝

 Polynomial degree at least 𝑝 -> Inefficient for large 𝑝 (𝑝 is at most 257 in previous works)

Homomorphic Digit Removal
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 Definition [GIKV23]: A polynomial 𝑓 ∈ ℤ𝑝𝑒 𝑋  is called a null polynomial over 𝑆 ⊆ ℤ𝑝𝑒 if

𝑓 𝑎 ≡ 0 mod 𝑝𝑒, ∀𝑎 ∈ 𝑆.

 First exploited by Geelen et al. to accelerate digit removal at Eurocrypt’23.

 Digit removal consists of homomorphic polynomial evaluations, e.g., computing 𝑓 ⋅ on Enc 𝑎; 𝑝𝑒

 If there exists a null polynomial 𝑔 over the support of 𝑎, with deg 𝑔 ≤ deg 𝑓 ,  we have

𝑓 mod 𝑔 𝑎 ≡ 𝑓 𝑎  mod 𝑝𝑒

 Lower polynomial degree => less time & level consumption for digit removal

 Our target: find low-degree null polynomials

Faster BGV Bootstrapping using Null Polynomials



 Core observation: 𝜖𝑖 can be made very small

 Consequence: there exists a low-degree null polynomial over 𝑝𝑒−𝑟𝑚𝑖 + 𝜖𝑖

 First steps in BGV bootstrapping →

 Assume 𝑞 ≡ 1 mod 𝑝𝑒 for simplicity

 Require 𝑝𝑒−𝑟 𝑚 + 𝑝𝑟𝜖 <
𝑞

2
 and 𝐼 <

𝑝𝑒−𝑟

2

 𝐼 = 𝜖

Accelerating Digit Removal: First Approach



 𝐼 =
𝑝𝑒−𝑟𝑏 𝑞+ 𝑝𝑒−𝑟𝑎 𝑞𝑠

𝑞
has the size of a modulus-switching error

 Approximately, Pr 𝐼 > 𝑘
ℎ𝜙 𝑀 2𝜔 𝑀

12𝑀
< 𝜙 𝑀 ⋅ erfc

𝑘

2
⊳ Heuristic by Halevi and Shoup

 For 𝑘 = 8, 𝜔 𝑀 = 2, 𝑀 < 216, Pr 𝐼 > 4.7 ℎ < 2−33

 The bound on 𝐼  depends heavily on the Hamming weight ℎ of 𝑠

 Solution: sparse secret key encapsulation by Bossuat et al. at ACNS’22

 𝐼 ≈ 23 for our parameters

The Bound on 𝐼



 Let 𝑆 = 𝑎 ∣ 𝑎 = 𝑝𝑒−𝑟𝑚𝑖 + 𝐼𝑖  using the bound on 𝐼

 Let 𝐵 = 𝐼 , let 𝑘 satisfy 𝑒 ≤ 𝑘 𝑒 − 𝑟 + 𝑣𝑝 2𝐵 ! − log𝑝 2𝐵 + 𝑣𝑝 𝑘! . Let

Λ 𝑋 = ෑ

𝑗=0

𝑘−1

ෑ

𝑖=−𝐵

𝐵

𝑋 − 𝑖 − 𝑗 ⋅ 𝑝𝑒−𝑟+𝑣𝑝 2𝐵 ! − log𝑝 2𝐵 .

 Λ 𝑋  is a null polynomial over 𝑆 of degree at most 
𝑒

𝑒−𝑟
2𝐵 + 1

 Much smaller than 𝑝 when 𝑝 is large. E.g., 𝑝 = 65537, 𝑟 = 1, deg Λ 𝑋 < 100

Low-degree Null Polynomials from Small Lower Digits



 For a coefficient of 𝑝𝑒−𝑟𝑚 + 𝐼, let 𝑤𝑒−1 ⋯ 𝑤0 be its 𝑝-ary representation

 If 𝐼  takes one digit: extracting 0 ⋯ 0
𝑒−1

𝑤0 from 𝑤𝑒−1 ⋯ 𝑤0 finishes the digit removal step

 If 𝐼  takes two digits: 

Applying to Digit Removal

• Support for 𝑝 ≥ 11
• More than two digits are not 

considered because 𝑝 is too small



 Core observation: the input to digit removal can be 

made into 𝐼 + Δ𝐼′ using the technique from KDE+24

 Both 𝐼 and 𝐼′ are bounded by 𝐵, independent of 𝑚

 Consequence: a null polynomial of degree 2𝐵 + 1 2 

over the coefficients of 𝐼 + Δ𝐼′

 Usually have higher degree than null polynomials in 

the first approach

1. Δ = 𝑝𝑒−𝑟: 𝐵 <
Δ

2

2. Δ coprime with 𝑝: 𝐵 <
Δ

2
, 𝐼 + Δ𝐼′ <

𝑝

2

Accelerating Digit Removal: Second Approach

KDE+24 Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan Ghang, Donghoon Yoo:

General Bootstrapping Approach for RLWE-based Homomorphic Encryption. IEEE Trans. Computers 73(1): 86-96 (2024)



Low-degree Interpolation Polynomial from Small Support Size

 Case 1: Δ = 𝑝𝑒−𝑟

 Support sizes are no more than 

2𝐵 + 1 2

 𝛬𝑎 X = ς𝑏∈supp 𝑎 𝑋 − 𝑏



 Case 2: Δ coprime with 𝑝

 We require 𝐵 ≤
Δ

2
, 𝐵 + Δ𝐵 <

𝑝

2

 There is an interpolation polynomial 𝑓 𝑋  of degree 2𝐵 + 1 2 − 1, satisfying

𝑓 𝐼𝑗 + Δ𝐼𝑗
′ = 𝐼𝑗  mod 𝑝𝑟

 where 𝐼𝑗 , 𝐼𝑗
′  ∈ ℤ𝑝𝑟 are coefficients of 𝐼 and 𝐼′.

 The plaintext modulus remains 𝑝𝑟 throughout bootstrapping since 𝑣𝑝 Δ = 0

Low-degree Interpolation Polynomial from Small Support Size



Parameter Sets



Parameter Set HElib Ours-A Ours-B

I 17, 81; 65 17, 81; 14 (≈ 1/4.5) NA

II 253 134 (≈ 1/1.9) NA

III 513 134 (≈ 1/3.8) NA

IV 8191 93 (≈ 1/88) 2024 (≈ 1/4)

V 65536 93 (≈ 1/700) 2208 (≈ 1/32)

Degree of Polynomials, HElib and Ours



Experimental Results



 The sparsity of 𝐼 in 𝑝𝑒−𝑟𝑚 + 𝐼, the input to homomorphic digit removal, can greatly accelerate the 

bootstrapping process by lowering the polynomial degree.

 There exists null polynomials over 𝑝𝑒−𝑟𝑚 + 𝐼 of degree roughly 2 𝐼
𝑒

𝑒−𝑟
.

 The idea has been used in CKKS bootstrapping, where computing 𝑚 from 𝑞0𝐼 + 𝑚 also benefits from 

the property that 𝐼  is small. 

 𝐼  allows to approximate the mod function on a smaller range, thus with polynomials of lower 

degrees.

 𝐼 has the same expression in BGV and CKKS (as a function of the Hamming weight). Both 

schemes benefit from a sparse bootstrapping key.

Summary of Idea



 Q&A

Thank you for your attention


