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Overview



 Fully Homomorphic Encryption(FHE) allows anyone to compute on encrypted data without access to 

the decryption key.

 The concept was first proposed by Rivest, Adleman, and Dertouzos in 1978

 The first FHE scheme was designed by Gentry in 2009

Concept of FHE

Enc(𝑚)
Function 𝑓

Enc 𝑓 𝑚



 RLWE-based FHE scheme designed by Brakerski, Gentry, and Vaikuntanathan in 2011

 ℛ = ℤ 𝑋 /Φ𝑀 𝑋 , ℛ𝑞 = ℛ/𝑞ℛ for some 𝑞

 Plaintext modulus 𝑝𝑟 for prime 𝑝 and integer 𝑟. Plaintext polynomial 𝑚 ∈ ℛ𝑝𝑟

 Suitable for computing on modular integers & finite fields

 Secret key generation: 𝑠 ← 𝜒𝑠 for some distribution 𝜒𝑠 over ℛ

 Enc 𝑚; 𝑝𝑟 = 𝑐 = 𝑏, 𝑎 = −𝑎𝑠 + 𝑚 + 𝑝𝑟𝑒, 𝑎 , with 𝑎 ← ℛ𝑞 , 𝑒 ← 𝜒𝑒

 Dec 𝑐 = 𝑏 + 𝑎𝑠 𝑞
𝑝𝑟

The BGV Scheme



 ℛ𝑝𝑟 is isomorphic to 𝐸𝐿 for some Galois field (or ring) 𝐸, let 𝑑 = 𝐸: ℤ𝑝𝑟

 Each of the 𝐿 positions is called a slot

 SIMD property: ciphertext additions & multiplications are slot-wise

Plaintext Batching in BGV



 All currently known FHE schemes rely on noisy encryption, e.g., NTRU, LWE, RLWE, AGCD...

 The noise in ciphertexts accumulates during homomorphic computation

 A too large noise will lead to decryption failure

 Bootstrapping: reset the noise level by evaluating the decryption circuit homomorphically

 Much more expensive than homomorphic arithmetic operations in CKKS/BFV/BGV

 The performance bottleneck of all FHE schemes

Bootstrapping in FHE



 General bootstrapping: each slot stores a finite field/ring element

 Homomorphic Digit Removal is the performance bottleneck

BGV Bootstrapping



 Thin bootstrapping [CH18]: each slot stores an integer

 Homomorphic Digit Removal is still the performance bottleneck

BGV Bootstrapping



 Homomorphically extract the highest 𝑟 p-ary digits (𝑚𝑖) from 𝑒 digits (𝑝𝑒−𝑟𝑚𝑖 + 𝜖𝑖)

 𝑤𝑒−1𝑤𝑒−2 ⋯ 𝑤𝑒−𝑟𝑤𝑒−𝑟−1 ⋯ 𝑤0 → 𝑤𝑒−1 ⋯ 𝑤𝑒−𝑟

 Basic operation is the digit extraction: obtain 0 ⋯ 0
𝑒−1

𝑤0 from 𝑤𝑒−1 ⋯ 𝑤0

 HS15 & HS21: Compute a lifting polynomial of degree 𝑝 for 𝑒 − 1 times

 CH18: Compute a digit extraction polynomial of degree 𝑝 − 1 𝑒 − 1 + 1

 GIKV23: Compute two polynomials of degrees 𝑝 − 1 𝑒′ − 1 + 1 and 
𝑒

𝑒′ 𝑝

 Polynomial degree at least 𝑝 -> Inefficient for large 𝑝 (𝑝 is at most 257 in previous works)

Homomorphic Digit Removal
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 Definition [GIKV23]: A polynomial 𝑓 ∈ ℤ𝑝𝑒 𝑋  is called a null polynomial over 𝑆 ⊆ ℤ𝑝𝑒 if

𝑓 𝑎 ≡ 0 mod 𝑝𝑒, ∀𝑎 ∈ 𝑆.

 First exploited by Geelen et al. to accelerate digit removal at Eurocrypt’23.

 Digit removal consists of homomorphic polynomial evaluations, e.g., computing 𝑓 ⋅ on Enc 𝑎; 𝑝𝑒

 If there exists a null polynomial 𝑔 over the support of 𝑎, with deg 𝑔 ≤ deg 𝑓 ,  we have

𝑓 mod 𝑔 𝑎 ≡ 𝑓 𝑎  mod 𝑝𝑒

 Lower polynomial degree => less time & level consumption for digit removal

 Our target: find low-degree null polynomials

Faster BGV Bootstrapping using Null Polynomials



 Core observation: 𝜖𝑖 can be made very small

 Consequence: there exists a low-degree null polynomial over 𝑝𝑒−𝑟𝑚𝑖 + 𝜖𝑖

 First steps in BGV bootstrapping →

 Assume 𝑞 ≡ 1 mod 𝑝𝑒 for simplicity

 Require 𝑝𝑒−𝑟 𝑚 + 𝑝𝑟𝜖 <
𝑞

2
 and 𝐼 <

𝑝𝑒−𝑟

2

 𝐼 = 𝜖

Accelerating Digit Removal: First Approach



 𝐼 =
𝑝𝑒−𝑟𝑏 𝑞+ 𝑝𝑒−𝑟𝑎 𝑞𝑠

𝑞
has the size of a modulus-switching error

 Approximately, Pr 𝐼 > 𝑘
ℎ𝜙 𝑀 2𝜔 𝑀

12𝑀
< 𝜙 𝑀 ⋅ erfc

𝑘

2
⊳ Heuristic by Halevi and Shoup

 For 𝑘 = 8, 𝜔 𝑀 = 2, 𝑀 < 216, Pr 𝐼 > 4.7 ℎ < 2−33

 The bound on 𝐼  depends heavily on the Hamming weight ℎ of 𝑠

 Solution: sparse secret key encapsulation by Bossuat et al. at ACNS’22

 𝐼 ≈ 23 for our parameters

The Bound on 𝐼



 Let 𝑆 = 𝑎 ∣ 𝑎 = 𝑝𝑒−𝑟𝑚𝑖 + 𝐼𝑖  using the bound on 𝐼

 Let 𝐵 = 𝐼 , let 𝑘 satisfy 𝑒 ≤ 𝑘 𝑒 − 𝑟 + 𝑣𝑝 2𝐵 ! − log𝑝 2𝐵 + 𝑣𝑝 𝑘! . Let

Λ 𝑋 = ෑ

𝑗=0

𝑘−1

ෑ

𝑖=−𝐵

𝐵

𝑋 − 𝑖 − 𝑗 ⋅ 𝑝𝑒−𝑟+𝑣𝑝 2𝐵 ! − log𝑝 2𝐵 .

 Λ 𝑋  is a null polynomial over 𝑆 of degree at most 
𝑒

𝑒−𝑟
2𝐵 + 1

 Much smaller than 𝑝 when 𝑝 is large. E.g., 𝑝 = 65537, 𝑟 = 1, deg Λ 𝑋 < 100

Low-degree Null Polynomials from Small Lower Digits



 For a coefficient of 𝑝𝑒−𝑟𝑚 + 𝐼, let 𝑤𝑒−1 ⋯ 𝑤0 be its 𝑝-ary representation

 If 𝐼  takes one digit: extracting 0 ⋯ 0
𝑒−1

𝑤0 from 𝑤𝑒−1 ⋯ 𝑤0 finishes the digit removal step

 If 𝐼  takes two digits: 

Applying to Digit Removal

• Support for 𝑝 ≥ 11
• More than two digits are not 

considered because 𝑝 is too small



 Core observation: the input to digit removal can be 

made into 𝐼 + Δ𝐼′ using the technique from KDE+24

 Both 𝐼 and 𝐼′ are bounded by 𝐵, independent of 𝑚

 Consequence: a null polynomial of degree 2𝐵 + 1 2 

over the coefficients of 𝐼 + Δ𝐼′

 Usually have higher degree than null polynomials in 

the first approach

1. Δ = 𝑝𝑒−𝑟: 𝐵 <
Δ

2

2. Δ coprime with 𝑝: 𝐵 <
Δ

2
, 𝐼 + Δ𝐼′ <

𝑝

2

Accelerating Digit Removal: Second Approach

KDE+24 Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan Ghang, Donghoon Yoo:

General Bootstrapping Approach for RLWE-based Homomorphic Encryption. IEEE Trans. Computers 73(1): 86-96 (2024)



Low-degree Interpolation Polynomial from Small Support Size

 Case 1: Δ = 𝑝𝑒−𝑟

 Support sizes are no more than 

2𝐵 + 1 2

 𝛬𝑎 X = ς𝑏∈supp 𝑎 𝑋 − 𝑏



 Case 2: Δ coprime with 𝑝

 We require 𝐵 ≤
Δ

2
, 𝐵 + Δ𝐵 <

𝑝

2

 There is an interpolation polynomial 𝑓 𝑋  of degree 2𝐵 + 1 2 − 1, satisfying

𝑓 𝐼𝑗 + Δ𝐼𝑗
′ = 𝐼𝑗  mod 𝑝𝑟

 where 𝐼𝑗 , 𝐼𝑗
′  ∈ ℤ𝑝𝑟 are coefficients of 𝐼 and 𝐼′.

 The plaintext modulus remains 𝑝𝑟 throughout bootstrapping since 𝑣𝑝 Δ = 0

Low-degree Interpolation Polynomial from Small Support Size



Parameter Sets



Parameter Set HElib Ours-A Ours-B

I 17, 81; 65 17, 81; 14 (≈ 1/4.5) NA

II 253 134 (≈ 1/1.9) NA

III 513 134 (≈ 1/3.8) NA

IV 8191 93 (≈ 1/88) 2024 (≈ 1/4)

V 65536 93 (≈ 1/700) 2208 (≈ 1/32)

Degree of Polynomials, HElib and Ours



Experimental Results



 The sparsity of 𝐼 in 𝑝𝑒−𝑟𝑚 + 𝐼, the input to homomorphic digit removal, can greatly accelerate the 

bootstrapping process by lowering the polynomial degree.

 There exists null polynomials over 𝑝𝑒−𝑟𝑚 + 𝐼 of degree roughly 2 𝐼
𝑒

𝑒−𝑟
.

 The idea has been used in CKKS bootstrapping, where computing 𝑚 from 𝑞0𝐼 + 𝑚 also benefits from 

the property that 𝐼  is small. 

 𝐼  allows to approximate the mod function on a smaller range, thus with polynomials of lower 

degrees.

 𝐼 has the same expression in BGV and CKKS (as a function of the Hamming weight). Both 

schemes benefit from a sparse bootstrapping key.

Summary of Idea
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