Tsinghua University

Accelerating BGV Bootstrapping for Large p Using Null

Polynomials over Ze

Shihe Ma, Tairong Huang, Anyu Wang, Xiaoyun Wang

Tsinghua University

Overview

® Background on FHE and BGV
m Existing BGV bootstrapping: overview and limitations
® Our method and contribution

= Method |: Local null polynomials

m Method 2: Global null polynomials

m Experimental results

m Conclusion

Concept of FHE

® Fully Homomorphic Encryption(FHE) allows anyone to compute on encrypted data without access to
the decryption key.

® The concept was first proposed by Rivest,Adleman, and Dertouzos in 1978

® The first FHE scheme was designed by Gentry in 2009

Function f

Enc(m)

L ——

Enc(f(m))

XN
cr

The BGV Scheme

m RIWE-based FHE scheme designed by Brakerski, Gentry, and Vaikuntanathan in 201 |
" R =Z[X]/Py(X), R, = R/qR for some q
= Plaintext modulus p” for prime p and integer 7. Plaintext polynomial m € Rr

m Suitable for computing on modular integers & finite fields

m Secret key generation: s « y, for some distribution yg over R

" Enc(m;p") =c=(b,a) =(—as+m+pTe,a),witha « R,,e < x,

m Dec(c) = [[b + as]q]

r

p

Plaintext Batching in BGV

= R, is isomorphic to E- for some Galois field (or ring) E, let d = [E: Z,r|

m Each of the L positions is called a slot

m SIMD property: ciphertext additions & multiplications are slot-wise

Bootstrapping in FHE

m All currently known FHE schemes rely on noisy encryption, e.g., NTRU, LWE, RLWE,AGCD...
® The noise in ciphertexts accumulates during homomorphic computation

m A too large noise will lead to decryption failure

m Bootstrapping: reset the noise level by evaluating the decryption circuit homomorphically

= Much more expensive than homomorphic arithmetic operations in CKKS/BFV/BGV

® The performance bottleneck of all FHE schemes

BGV Bootstrapping

® General bootstrapping: each slot stores a finite field/ring element

= Homomorphic Digit Removal is the performance bottleneck

Enc(m;p")
Decryption Formula Simplification and
lHomomorpllic Inner Product
Enc(p® "m + €;p°)

l(?oeﬂToSlot and Unpacking
Enc([p® "mi.n + €in,- - -, P Mingn=i F €ntn—a]ip®) fore=0,1;...,d-1
ll—lomomor])hic Digit Removal
Enc(msy oo Miwgv=1]i07) for i =0,1,...,d—1
lRepacking and SlotToCoeff
Enc(m;p")

BGV Bootstrapping

® Thin bootstrapping [CH I8]: each slot stores an integer

= Homomorphic Digit Removal is still the performance bottleneck

Enc([mo;- - «sMin—i];p")
lSlotToCoeff
Enc(m;p")

lDecryption Formula Simplification and
Homomorphic Inner Product
Enc(p®~"m + €; p°)

lCoeﬁToSlot
Enc([pe—rmo Y€y « s ,pe_rmn_l + En—l];pe)
lHomomorphic Digit Removal

EHC([mO, cen ,mn—l];pr)

Homomorphic Digit Removal

= Homomorphically extract the highest r p-ary digits (m;) from e digits (p°~"m; + €;)

B We_1We_2 " We_yWe_y—1 " Wg = Wg_q*** We_r

® Basic operation is the digit extraction: obtain 0 --- 0 wy from w,_4 --- wy

e—1
m HS|5 & HS21: Compute a lifting polynomial of degree p for e — 1 times
m CHI8: Compute a digit extraction polynomial of degree (p —1)(e — 1) + 1

= GIKV23: Compute two polynomials of degrees (p — 1)(e' —1) + 1 and [5} p

® Polynomial degree at least p -> Inefficient for large p (p is at most 257 in previous works)

[HS15] S. Halevi,V. Shoup: Bootstrapping for HElib. EUROCRYPT 2015
[HS21] S. Halevi,V. Shoup: Bootstrapping for HElib.]. Cryptol. (2021)
[CH18] H. Chen, K. Han: Homomorphic Lower Digits Removal and Improved FHE Bootstrapping. EUROCRYPT 2018

[GIKV23] R. Geelen, I. lliashenko, |. Kang, F.Vercauteren: On Polynomial Functions Modulo pe and Faster Bootstrapping for
Homomorphic Encryption. EUROCRYPT 2023

Faster BGV Bootstrapping using Null Polynomials

= Definition [GIKV23]:A polynomial f € Z,e[X] is called a null polynomial over S € Ze if
f(a) = 0 mod pé,Va € S.
® First exploited by Geelen et al. to accelerate digit removal at Eurocrypt’23.
= Digit removal consists of homomorphic polynomial evaluations, e.g., computing f () on Enc(a; p®)

= |f there exists a null polynomial g over the support of a, with deg(g) < deg(f), we have
(f mod g)(a) = f(a) mod p®

® Lower polynomial degree => less time & level consumption for digit removal

® Qur target: find low-degree null polynomials

Accelerating Digit Removal: First Approach

= Core observation: |¢;| can be made very small

= Consequence: there exists a low-degree null polynomial over p¢~"m; + ¢;

: p
q)
= First steps in BGV bootstrapping = p'e A
lxppr pr pe—r
= Assume g = 1 mod p¢ for simplicity
q pe-T ql p°e p°'m 0
m Require [p¢"(m+pTe)| < p and || <
. [—¢ vmod up to @ o’ P

The Bound on [

. [— {[pe"”b]qﬂpe‘r

algs : o
p 1 } has the size of a modulus-switching error

= Approximately, Pr

w(M)
1| > k\/hgb(ﬂfz); ‘ < ¢p(M) - erfc (%) > Heuristic by Halevi and Shoup

» For k =8,w(M) =2,M < 26 Pr||I| > 4.7Vh] < 2733
= The bound on |I| depends heavily on the Hamming weight h of s
m Solution: sparse secret key encapsulation by Bossuat et al. at ACNS’22

m |[| = 23 for our parameters

Low-degree Null Polynomials from Small Lower Digits

m letS ={al|a=p®"m; + I;} using the bound on |

m Let B = |I|,let k satisfy e < k(e —r+ vp((ZB)!) - [logp(ZB)J) + v, (k). Let
k-1 / B
AX) = 1_[X—i)—j- pe—r+vp((ZB)!)—[logp(ZB)J

j=0 \i=—B

= A(X) is a null polynomial over S of degree at most [ﬁ} (2B +1)

= Much smaller than p when p is large. E.g.,p = 65537,7 = 1,deg(A(X)) < 100

Applying to Digit Removal

= For a coefficient of p¢™"m + I, let w,_; -+ w be its p-ary representation

= |f |I| takes one digit: extracting 0 --- 0 wy from w,_; --- W, finishes the digit removal step

= |f || takes two digits: | v

* Supportforp =11
* More than two digits are not
considered because p is too small

Accelerating Digit Removal: Second Approach

m Core observation: the input to digit removal can be +
made into [+ Al’ using the technique from KDE+24 Overflow part extraction

cp") ———> I, o THUp(A)
= Both [and I are bounded by B, independent of m Enc(m; p’) Enc(I + AI';p™"7™)

= Consequence:a null polynomial of degree (2B + 1)?
over the coefficients of I + Al’ l

l Digit removal

§ Usua-lly have higher degree than null polynomials in Enc(Am + I; pr—l—'yp(&)) Enc(I; p’f‘-{-?}p[ﬂ))
the first approach

| Assembling |

v

Enc(m;p")

1. A=p*":B <§
2. A coprime with p: B < %, I + Al'| <§

KDE+24 Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi,Yongwoo Lee,Whan Ghang, Donghoon Yoo:
General Bootstrapping Approach for RLWE-based Homomorphic Encryption. IEEE Trans. Computers 73(1): 86-96 (2024)

Low-degree Interpolation Polynomial from Small Support Size

m Case |: A =p¢ 7"
p /

m Support sizes are no more than
(2B + 1)?

" A,(X) = HbESupp(a)(X —b)

Low-degree Interpolation Polynomial from Small Support Size

m Case 2: A coprime with p
" We require B < %,B + AB <§

= There is an interpolation polynomial f(X) of degree (2B + 1)? — 1, satisfying
f(I; + AI/) = I; mod p"

where [}, Ij' € Z,r are coefficients of I and I'.

= The plaintext modulus remains p” throughout bootstrapping since v,(A) = 0

Parameter Sets

Table 4: The selected parameter sets are categorized as follows: Parameter sets
that share the same Roman number have identical values of p, r, M. Type-A pa-
rameter sets utilize A = p’, while type-B parameter sets employ A = Aq coprime
to p. Other parameter sets use HElib’s original bootstrapping (HS bootstrap-
ping). Parameters that provide 80-bit security are enclosed in braces.

ID | p’ M | d |log,(Q)| A h A log,(e)] B C_(f,l, log,(qo R)
pee
I | s Lacanaloa] 1aeo |oo 24012)[136.081.3) .. .| / o |63.8(64.5)
LA | 17 |38309]24) 1462 18250, 1 14)]133.1(80.8)| T3*3 |23 (18)| M 70.3
1 Y I 122(12)|134.1(87.3) .. .| / _ 169.4(60.7)
< 145 225 2.6 ... 3 —33.71 ... : 27 ‘
1A | 127 |P0047145) 2253 182.6000 19 l135.4(85.7)| 733 |22am)| 127 | 666
T Y . . 1220213556870 .. .1 / | ... [64.2(64.7)
572 |55427(28| 2 2.8’ 2 —33.8]..7 .| 257 .
mi-A| 227 |P0427128| 2176 1828155 19)|133.4(85.5)| ~33-3|22(17)| *” 70.6
IV 22(12)[130:233:3) _,, | /7 | g19 (66-3(66:8)
TV-A| 8191 |45193|14| 1803 |[82.3]24(12)|136.7(81.9)| """ |23(17)| °™ 72.7
IV-B 22(12)[131.8(83.8)| —33.0][22(07)[45 | 62.8
v 22(12)[130.6(83.0)| a0 ol /7 [c5537/746(75.D)
V-A [65537|50731|18| 2036 [82.3]24(12)]136.8(82.3)| ~ 7 |23(17)|"°7°"| 81.2
V-B 22(12)[132.8(84.8)| —32.9|23(17)| 47 | 67.1

Degree of Polynomials, HElib and Ours

Parameter Set mm_

17,81;65 17,81; 14 (~ 1/4.5)
I 253 134 (~ 1/1.9) NA
i 513 134 (~ 1/3.8) NA
W, 8191 93 (~ 1/88) 2024 (~ 1/4)

Vv 65536 93 (~ 1/700) 2208 (~ 1/32)

Experimental Results

Table 6: Benchmark results of general bootstrapping with 128 bits of security for
s. The parameter sets without any suffix use the HS bootstrapping provided by

HEIlib. The parameter sets suffixed with -A’ use A = p', where both the global

and local null polynomial optimizations are available. Those suffixed with -B’
use A = A, where the digit removal is performed using the lifted interpolation
polynomial (i.e., only the global null polynomial optimization is available).

Parameter Set 1D

I I-A

I II-A

[I1 TIII-A

IV IV-A IV-B

V V-A V-B

Capacity
(bits)

Initial

1003 1019

1573 1594

1542 1558

1253 1266 1287

1415 1431 1457

Linear map

207 241

194 219

208 241

199 243 158

225 277

171

Digit extract

446 341

298 293

400 316

559 288 329

812 331

389

Remaining

344 434

1070 1080

927 998

484 732 791

363 820

889

Time
(sec)

Linear map

93 93

285 277

319 319

113 115 113

115 112

115

Digit extract

953 568

3176 2148

3010 1224

4535 363 2095

46088 574

3471

Total

1046 662

3462 2427

3330 1545

4648 479 2209

46203 688

3589

Throughput (bps)

0.329 0.656

0.309 0.445

0.278 0.646

0.104 1.527 0.358

0.008 1.191 0.248

Speedup

1x 2.00x

1x 1.44x

1x 2.32x

1x 14.7x 3.44x

1x

151x 31.5x

Summary of Idea

m The sparsity of [in p~"m + I, the input to homomorphic digit removal, can greatly accelerate the
bootstrapping process by lowering the polynomial degree.

m There exists null polynomials over p¢~"m + I of degree roughly 2|I| e—ir

® The idea has been used in CKKS bootstrapping, where computing m from gyl + m also benefits from
the property that |I| is small.

= |]| allows to approximate the mod function on a smaller range, thus with polynomials of lower
degrees.

® | has the same expression in BGV and CKKS (as a function of the Hamming weight). Both
schemes benefit from a sparse bootstrapping key.

Thank you for your attention

. Q&A

