
Anamorphic Encryption, Revisited

Fabio Banfi1 Konstantin Gegier2 Martin Hirt2

Ueli Maurer2 Guilherme Rito3

1Zühlke Engineering AG, Switzerland

2ETH Zurich, Switzerland

3Ruhr-Universität Bochum, Germany

EUROCRYPT 2024
May 27, Zurich, Switzerland

1 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

c ← Enc(pk,m)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

c ← Enc(pk,m)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

c ← Enc(pk,m)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()

c ← Enc(pk,m)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pk

c ← Enc(pk,m)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

With double key dk, Alice embeds covert message m̂

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

With double key dk, Alice embeds covert message m̂

c̃ ← aEnc(dk,m′, m̂)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

With double key dk, Alice embeds covert message m̂

c̃ ← aEnc(dk,m′, m̂)

c̃

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

With double key dk, Alice embeds covert message m̂

c̃ ← aEnc(dk,m′, m̂)

c̃
m̂ := aDec(dk, c̃)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

With double key dk, Alice embeds covert message m̂

c̃ ← aEnc(dk,m′, m̂)

c̃
m̂ := aDec(dk, c̃)

m′ := Dec(sk, c̃)

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

With double key dk, Alice embeds covert message m̂

c̃ ← aEnc(dk,m′, m̂)

c̃
m̂ := aDec(dk, c̃)

m′ := Dec(sk, c̃)
c̃

2 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

With double key dk, Alice embeds covert message m̂

c̃ ← aEnc(dk,m′, m̂)

c̃
m̂ := aDec(dk, c̃)

m′ := Dec(sk, c̃)
c̃

m′ := Dec(sk, c̃)

2 / 11

Decoupling Keys & Security

In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk):

(sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation:

impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages:

can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal:

c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m);

m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic:

c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂);

m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃)

, m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security:

The two modes must be indistinguishable: c̃ ≈ c ! Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c !

Is this all?

3 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?
3 / 11

Using Anamorphic Encryption

aEnc aDec

m

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

m

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

m

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

m

⊥

This case was not considered!

Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

m

m̃?

⊥

This case was not considered!

Need to signal “no covert message” =⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

m

m̃?

⊥

This case was not considered! Need to signal “no covert message”

=⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

m

⊥

This case was not considered! Need to signal “no covert message”

=⇒ Robustness

4 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

m

⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality:

Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not:

ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory?

No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security:

it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property:

Selective Randomness Recoverability

6 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”:

for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r :

A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r :

B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T:

set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))]

[Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ3: Getting Rid of Synchronization

Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ],

set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y,

r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr),

and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x,

let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y:

if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥

9 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥
9 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3:

can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation:

in our new model, we can simply update the double key!

10 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!
10 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes? (see next talk�������)

Thank You For Your Attention!

11 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes? (see next talk�������)

Thank You For Your Attention!

11 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes? (see next talk�������)

Thank You For Your Attention!

11 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes? (see next talk�������)

Thank You For Your Attention!

11 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes? (see next talk�������)

Thank You For Your Attention!

11 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes? (see next talk�������)

Thank You For Your Attention!

11 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes?

(see next talk�������)

Thank You For Your Attention!

11 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes? (see next talk�������)

Thank You For Your Attention!

11 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes? (see next talk�������)

Thank You For Your Attention!
11 / 11

Anamorphic Encryption, Revisited

Fabio Banfi1 Konstantin Gegier2 Martin Hirt2

Ueli Maurer2 Guilherme Rito3

1Zühlke Engineering AG, Switzerland

2ETH Zurich, Switzerland

3Ruhr-Universität Bochum, Germany

EUROCRYPT 2024
May 27, Zurich, Switzerland

1 / 11

(Receiver-)Anamorphic Encryption [Persiano et al., EUROCRYPT 2022]

Alice Bob

Bob uses a well-established PKE Π = (Gen,Enc,Dec)

(sk, pk)← Gen()
pkc ← Enc(pk,m)

c
m := Dec(sk, c)

Suddenly, Bob’s country is led by a dictator D!

Dictator

Bob can still use Π, but must surrender sk to D

sk c

m := Dec(sk, c)
Use anamorphic extension Σ = (aGen, aEnc, aDec)

dk ← aGen(sk, pk)

dk

With double key dk, Alice embeds covert message m̂

c̃ ← aEnc(dk,m′, m̂)

c̃
m̂ := aDec(dk, c̃)

m′ := Dec(sk, c̃)
c̃

m′ := Dec(sk, c̃)

2 / 11

Decoupling Keys & Security
In Persiano et al., double key dk was bound to key pair (sk, pk): (sk, pk,dk)← aGen()

Limitation: impossible to associate a new double key to an already deployed key pair

We redefine aGen so that Bob can later associate dk ← aGen(sk, pk) to his key pair

Advantages: can associate multiple double keys to a key pair and enables deniability

Recall the two modes Alice and Bob can use to communicate:

I Normal: c ← Enc(pk,m); m := Dec(sk, c)

I Anamorphic: c̃ ← aEnc(dk,m, m̂); m̂ := aDec(dk, c̃), m := Dec(sk, c̃)

Security: The two modes must be indistinguishable: c̃ ≈ c ! Is this all?
3 / 11

Using Anamorphic Encryption

Enc Dec

aEnc aDec

m c m

m, m̂ c̃ m̂

m

m̃?⊥

This case was not considered! Need to signal “no covert message” =⇒ Robustness

4 / 11

Why Robustness?

I Functionality: Bob might use Π regularly and Σ sporadically

Therefore, more often than not: ciphertexts carry no (intentional) covert message!

When Bob sees “garbage” covert messages, he could guess they were not meant ...

Is this satisfactory? No!

I Security: it could get even worse!

Without robustness, D might find out that Bob has established a covert channel!

1. Send encryption of random message to Bob

2. If D is lucky, the covert message is not “garbage” and Bob detectably reacts!

5 / 11

Construction Σ1: A Naive Robust Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Alice: map m̂ ∈ M̂ to r ∈ R via FK and counter ctr, use r to encrypt m into c̃:

aEnc(dk,m, m̂) := Enc(pk,m;FK (ctr‖m̂))

I Bob: decrypt c̃ into m, and check which m̂ ∈ M̂ yields c̃:

aDec(dk, c̃) := { let m := Dec(sk, c̃);

find m̂ s.t. Enc(pk,m;FK (ctr‖m̂)) = c̃ or return ⊥; }

Problem: Alice and Bob need to keep synchronized counters and aDec uses Dec!

Solution: use PKEs with a special property: Selective Randomness Recoverability

6 / 11

Selective Randomness Recoverability (SRR)

PKE scheme Π = (Gen,Enc,Dec) is SRR if the following conditions are met:

(i) Randomness space R must form a group with some operation ?

(ii) Ciphertexts “have two parts”: for c := Enc(pk,m; r) we want c = (A,B) where:

I Part A depends on pk, m, and r : A = α(pk,m, r)

I Part B depends only on r : B = β(r)

(iii) Can compute β(a) from β(a ? b) and b:

I There exists an efficiently computable function γ s.t. γ(β(a ? b), b) = β(a)

Both ElGamal and Cramer-Shoup are SRR

7 / 11

Construction Σ2: Using an SRR Scheme

Keep M̂ small (poly. size), share key K of PRF F as part of double key dk, and then:

I Bob: precompute β−1 in table T: set T[β(m̂)] := m̂ for each m̂ ∈ M̂

I Alice: use FK (ctr) as otp for m̂ and use result as r to enc. m into c̃ = (A,B):

aEnc(dk,m, m̂; ctr) := Enc(pk,m; m̂ ? FK (ctr))

I Bob: use FK and γ to extract m̂ from B:

aDec(dk, (A,B); ctr) := T[γ(B,FK (ctr))] [Dec not needed!]

Still need to keep synchronized counters!

8 / 11

Construction Σ3: Getting Rid of Synchronization
Idea: pick random ctr, until can partially extract ctr from B via some function δ

aEnc(dk,m, m̂):

1. Pick u.a.r. (x, y) ∈ [σ]× [τ], set ctr := x‖y, r := m̂ ? FK (ctr), and B := β(r)

2. Repeat until δ(B) = x, let r∗ be the such first r

3. Return (A,B) := Enc(pk,m; r∗)

aDec(dk, (A,B)):

1. Set x := δ(B)

2. For each possible value y: if m̂ := T[γ(B,FK (x‖y))] 6= ⊥, return m̂

3. If no such y found, return ⊥
9 / 11

Security-Efficiency Trade-Off for Σ3

Security of Σ3: can safely transmit at most σ · τ covert messages

Efficiency of Σ3:

I aEnc takes σ tries in expectation

I aDec takes at most τ tries

Trade-off:

I For aEnc and aDec to be efficient, σ and τ must be small (poly.)

I This means, the limit on transmitted covert messages σ · τ will also be small

Mitigation: in our new model, we can simply update the double key!
10 / 11

Conclusions

I Our abstract scheme can be made concrete for ElGamal and Cramer-Shoup

I We also show how to make (fully) rand. recoverable schemes robustly anamorphic

I Use small subset of randomness as covert message space (concrete for RSA-OAEP)

I Open questions:

I Is the trade-off between security and efficiency for Σ3 optimal?

I Are there more robust anamorphic schemes? (see next talk�������)

Thank You For Your Attention!
11 / 11

Appendix: The Evolution of Anamorphic Encryption

I Persiano et al. [EUROCRYPT 2022]: first receiver- and sender-anam. schemes

I Kutyłowski et al. [CRYPTO 2023]: sender-anamorphic signatures

I Kutyłowski et al. [PoPETs 2023(4)]: more receiver-anamorphic PKE schemes

I Wang et al. [ASIACRYPT 2023]: sender-anam. robustness (inspired by our work)

I Our work [EUROCRYPT 2024]: receiver-anamorphic robustness

I Catalano et al. [EUROCRYPT 2024]: receiver-anam. homomorphic encryption

+ new receiver-anamorphic robust schemes
I More to come ...

11 / 11

Appendix: Deniability

Why does decoupling key-pair (sk, pk) and double key dk enable deniability?

Assume dk ← aGen(pk) instead of dk ← aGen(sk, pk) (true for all our constructions)

Then, a malicious sender holding dk cannot convince D that Bob also holds dk:

I The double key dk can be generated either by the sender or the receiver

I The sender can simulate dk and some ciphertexts, without the help of the receiver

This is not true for Persiano et al.’s anamorphic Naor-Yung transform:

I The malicious sender hands dk to the dictator

I The dictator can then detect whether key-pair was deployed in anamorphic mode

11 / 11

Appendix: An SRR Scheme

ElGamal on cyclic group G = 〈g〉 of order q is SRR:

(i) R = Zq, and 〈Zq;⊕〉 is a group with ⊕ addition modulo q

(ii) With A = α(pk,m, r) = m · pkr and B = β(r) = gr : Enc(pk,m; r) = (A,B)

(iii) With γ(a, b) := a · g−b: γ(β(a ⊕ b), b) = γ(ga⊕b, b) = ga⊕b · g−b = ga = β(a)

Analogously for Cramer-Shoup

11 / 11

Appendix: Correctness and Robustness of Σ2

Correctness: with (A, β(m̂ ? FK (ctr))) := aEnc(dk,m, m̂; ctr):

aDec(dk, (A, β(m̂ ? FK (ctr))); ctr) = T[γ(β(m̂ ? FK (ctr)),FK (ctr))]

= T[β(m̂)] = m̂

Robustness: with (A, β(r)) := Enc(pk,m; r), for r $←R:

aDec(dk, (A, β(r)); ctr) = T[γ(β(r),FK (ctr))] = T[β(r ? FK (ctr)−1)]
(∗)
≈ ⊥

(∗): w.o.p., since r ? FK (ctr)−1 /∈ M̂ with probability 1− |M̂|/|R|

11 / 11

