Diving Deep into the Preimage Security of AES-like Hashing

Shiyao Chen, Jian Guo, Eik List, Danping Shi, Tianyu Zhang*

*Nanyang Technological University, Singapore

27 May 2024

(日) (四) (三) (三) (三)

æ

Outline

Backgound AES-like hashing

Meet-in-the-Middle Attack

Advanced Techniques for MITM Attacks S-box Linearization (LIN) Distributed Initial Structures (DIS) Structual Similarity (SIM)

3 Applications

AES and Rijndael Whirlpool and Streebog

4 Conclusion

э

EUROCRYPT 2024

27 May 2024

A (10) × (10) × (10) ×

Construct hash functions based on block ciphers

(1) Convert an encryption function E to a compression function CF with a PGV mode

2 Then iterate the CF following the Merkle-Damgård construction

The AES round function

AES is selected by NIST in 2001 from the Rijndael block cipher family.

An encryption state of AES is organized as a 4 * 4 grid of bytes. An AES round consists of the following operations:

- SubBytes (SB): a non-linear byte-wise substitution (S-box)
- ShiftRows (SR): a cyclic left shift on the *i*-th row by *i* bytes
- MixColumns (MC): a column-wise left multiplication of an MDS matrix
- AddRoundKey (AK): a bitwise XOR of the round key to the state

AES-like Hashing

The outstanding security of AES has inspired many designs.

Hash functions with a compression function **based on** or **similar to** the AES round function is refered to as AES-like hash functions or AES-like hashing.

Examples include:

- AES-MMO (standard in the Zigbee protocol suite and ISO/IEC standard)
- Whirlpool (ISO/IEC standard)
- Streebog (ISO/IEC standard)
- Grøstl
- Saturnin
- etc.

5/27

人口 医水理 医水黄 医水黄素 计算

27 May 2024

EUROCRYPT 2024

Backgound Meet-in-the-Middle Attack

Outline

Backgound

AES-like hashing Meet-in-the-Middle Attack

2 Advanced Techniques for MITM Attacks S-box Linearization (LIN) Distributed Initial Structures (DIS) Structual Similarity (SIM)

3 Applications

AES and Rijndael Whirlpool and Streebog

4 Conclusion

э

EUROCRYPT 2024

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 27 May 2024

Meet-in-the-Middle attacks

In a series of works, Aoki and Sasaki proposed the Meet-in-the-Middle (MITM) attack on hash functions. An MITM attack is orchestrated as follows:

- For $2^{n-d_b-d_r}$ values of $M_L/\{m_a, m_b\}$:
 - For 2^{db} values of m_a, compute forward to the matching point and save in a table T⁺;
 - For 2^d, values of m_b, compute backward and save in a table T⁻;
 - If find a match between T^+ , T^- :
 - Test whether a full match and return the preimage;

Total complexity:

EUROCRYPT 2024

Byte classification in MITM attacks

- a forward neutral byte, represented by
- a backward neutral byte, represented by ۲
- a constant byte, represented by
- an unknown byte, represented by \Box ۲
- a superposition byte, represented by , value of which is the sum of its forward and backward neutral components: $v = v^+ \oplus v^-$.
 - a superposition byte is preserved through all linear operations
 - after the nonlinear operations (e.g., an S-box), a superposition byte becomes unknown

8 / 27

FUROCRYPT 2024

Outline

Backgound

AES-like hashing Meet-in-the-Middle Attack

2 Advanced Techniques for MITM Attacks S-box Linearization (LIN)

Distributed Initial Structures (DIS Structual Similarity (SIM)

3 Applications

AES and Rijndael Whirlpool and Streebog

4 Conclusion

э

EUROCRYPT 2024

< □ ▶ < ⊡ ▶ < ≧ ▶ < ≧ ▶
 27 May 2024

Exploiting the algebraic structure of AES S-box

At Asiacrypt 2023, Zhang *et al.* observed the non-linear layer of the AES S-box has the following decomposition:

$$x^{254} = (x^{17})^{14} \cdot x^{16}$$

The decomposition has the following properties:

- x^{17} has 15 possible non-zero possible values, 16 in total
- x^{16} is linear, as x^2 over \mathbb{F}_{2^8} is linear

However, the observation did not lead to better results on AES, quoting their words:

This linearizes the non-linear layer of AES, but unfortunately, no attacks better than the current state-of-the-art has been found based on this fact.

Tianyu Zhang (NTU)

EUROCRYPT 2024

27 May 2024

Linearizating AES S-box in MITM attacks

We generalize the observation to the superposition bytes:

$$v^{254} = (v^+ + v^-)^{254} = ((v^+ + v^-)^{17})^{14} \cdot (v^+ + v^-)^{16}$$
$$= (H(v^+, v^-))^{14} \cdot ((v^+)^{16} + (v^-)^{16})$$

Thus, a superposition byte can be preserved after an AES S-box by

- an enumeration over the pool of $|\{H(z) = z^{17} : z \in \mathbb{F}_{2^8}\}| = 16$ hints, and
- an efficient checking, as it only requires local information (unlike GnD)

Outline

Backgound

AES-like hashing Meet-in-the-Middle Attack

2 Advanced Techniques for MITM Attacks S-box Linearization (LIN) Distributed Initial Structures (DIS) Structual Similarity (SIM)

3 Applications

AES and Rijndael Whirlpool and Streebog

4 Conclusion

э

EUROCRYPT 2024

< □ ▶ < ⊡ ▶ < ≧ ▶ < ≧ ▶
 27 May 2024

Choice of initial states

In previous MITM attacks, one intuitively choose

- a full state $\overleftarrow{S}^{\text{ENC}}$ in the encryption function and
- a full state $\overleftrightarrow{S}^{KSA}$ in the key schedule

as initial states to allocate \blacksquare , \blacksquare , or \blacksquare (no superpositions).

In essence, the initial states in MITM attacks are some **independent** intermediate values where we distribute initial DoFs for forward and backward computations.

In this work, we introduce the distributed initial structure (**DIS**), which:

- remove the artificial constriant on initial states
- allow more combinations of the initial states

13/27

27 May 2024

EUROCRYPT 2024

An example of **DIS** in AES-192

We will distribute initial DoFs in

- $#AK^{i-1}$
- $\#SB^{i}$
- the rightmost two columns of $\#\mathrm{K}^{j}$

The effect of **DIS** includes:

- $\#K^j$ can be expressed and used as \overleftarrow{S}^{KSA} for further key schedule propagations
- Thus, superpositions are now allowed in $\overleftrightarrow{S}^{\text{KSA}}$, and
- more superposition information can be preserved in the AES key schedule

Outline

Backgound

AES-like hashing Meet-in-the-Middle Attack

2 Advanced Techniques for MITM Attacks

S-box Linearization (LIN) Distributed Initial Structures (DIS Structual Similarity (SIM)

3 Applications

AES and Rijndael Whirlpool and Streebog

4 Conclusion

э

EUROCRYPT 2024

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 27 May 2024

Advanced Techniques for MITM Attacks Structual Similarity (SIM)

Related constraints at AddRoundKey

- Previous models consider constraints incurred at AK in different rounds as **independent**
- However, the constraints may be added to the same DoF source in multiple rounds
- In other words, the constraints can be related

16 / 27

EUROCRYPT 2024

27 May 2024

Exploiting **SIM** in Whirlpool and Streebog

- The encryption and the key schedule share the same round function
- If $\#AK_a^i$ is 0, then $\#SB_a^{i+1} = 0 \oplus \#K_a^i = \#K_a^i$
- After the same sets of operations, $\# SB_a^{i+2}$ should be constant after XOR
- Previous models may invoke unnecessary costs to have constants in $\#SB_a^{i+2}$

Tianyu Zhang (NTU)

EUROCRYPT 2024

27 May 2024

Outline

Backgound

AES-like hashing Meet-in-the-Middle Attack

2 Advanced Techniques for MITM Attacks S-box Linearization (LIN) Distributed Initial Structures (DIS) Structual Similarity (SIM)

3 Applications AES and Rijndael Whirlpool and Stre

4 Conclusion

э

EUROCRYPT 2024

< □ ▶ < 큔 ▶ < 글 ▶ < 글 ▶ 27 May 2024

Preimage Attacks

Cipher (target)	#Rounds	T_1^{\dagger}	$T_2{}^\ddagger$	Memory	Essential technique(s)	References
	8/12	2 ¹¹²	2^{116}	2 ¹⁶	МІТМ	[BDGWZ19]
AES-192	8/12	2 ¹⁰⁰	2 ¹¹⁵	2 ⁹⁶	LIN , DIS , BiDir	This work
	9/12	2^{120}	2^{125}	_	MILP	[BDGLSSW21]
(Hash)	9/12	2^{112}	2^{121}	_	BiDir	[BGST22]
	10/12	2 ¹²⁴	2 ¹²⁷	2 ¹²⁴	LIN, DIS, BiDir	This work
Rijndael-192/192	9/12	2 ¹⁸⁴	2 ¹⁸⁹	_	BiDir	[Zha23]
(Hash)	9/12	2 ¹⁸⁰	2 ¹⁸⁷	2 ¹⁸⁰	LIN, BiDir	This work
Rijndael-192/256	9/12	2 ¹⁶⁸	2 ¹⁸¹	_	BiDir	[Zha23]
(Hash)	10/12	2 ¹⁸⁸	2 ¹⁹¹	2 ¹⁸⁰	LIN, BiDir	This work

 † T_1 is the time complexity of the pseudo-preimage attack on compression function.

 ‡ T_2 is the time complexity of the preimage attack on hash function.

Tianyu Zhang (NTU)

EUROCRYPT 2024

< □ ▶ < 큔 ▶ < 콜 ▶ < 콜 ▶ 27 May 2024

- The **first** 10-round preimage/pseudo-preimage attack on AES-192
- Linearizing an S-box from $\#\mathrm{SR}^2$ to $\#\mathrm{SB}^2$
- Distributing initial states to $\#AK^{i-1}$, $\#SB^i$ and the rightmost two columns of $\#K^j$
- 2^{124} for pseudo-preimage and 2^{127} for preimage
 - different from biclique attacks
 - not reduced to S-box level evaluation

-

Tianyu Zhang (NTU)

EUROCRYPT 2024

◆□ ▶ < 酉 ▶ < 重 ▶ < 重 ▶</p>
27 May 2024

Applications Whirlpool and Streebog

Outline

Backgound

AES-like hashing Meet-in-the-Middle Attack

Advanced Techniques for MITM Attacks S-box Linearization (LIN) Distributed Initial Structures (DIS) Structual Similarity (SIM)

3 Applications

AES and Rijndael Whirlpool and Streebog

4 Conclusion

э

EUROCRYPT 2024

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 27 May 2024

Preimage Attacks

Cipher (target)	#Rounds	T_1^\dagger	$T_2{}^\ddagger$	Memory	Essential technique(s)	References
Whirlpool (Hash)	5/10	2 ⁴¹⁶	2 ⁴⁴⁸	2 ⁹⁶	Dedicated method	[SWWW12]
	5/10	2 ³⁵²	2 ⁴³³	2^{160}	BiDir, MulAK	[BGST22]
	5/10	2 ³²⁰	2 ⁴¹⁷	O(1)	SIM, BiDir	This work
	6/10	2 ⁴⁴⁸	2 ⁴⁸¹	2 ²⁵⁶	Dedicated method, GnD	[SWWW12]
	6/10	2 ⁴⁴⁰	2 ⁴⁷⁷	2 ¹⁹²	GnD	[BGST22]
	6/10	2 ⁴¹⁶	2 ⁴⁶⁵	2 ²⁸⁸	SIM, BiDir, GnD	This work
	7/10	2 ⁴⁸⁰	2 ⁴⁹⁷	2 ¹²⁸	GnD, MulAK	[BGST22]
	7.75/10	2 ⁴⁸⁰	2 ⁴⁹⁷	2 ²⁵⁶	SIM, BiDir, GnD	This work

3

Tianyu Zhang (NTU)

EUROCRYPT 2024

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶
 27 May 2024

Collision Attacks

Cipher (target)	#Rounds	Time	Memory	Essential technique(s)	References
Whirlpool (Hash)	4.5/10	2 ¹²⁰	2 ¹⁶	Rebound	[MRST09]
	4.5/10	2 ⁶⁴	2 ¹⁶	Rebound	[LMSRR15]
	5/10	2 ¹²⁰	2 ⁶⁴	Super-SBox	[LMRRS09; GP10]
	5.5/10	2^{184-s}	2 ^s	Rebound	[LMSRR15]
	6/10	2 ²²⁸	2 ²²⁸	Quantum	[HS20]
	6/10	2 ²⁴⁸	2 ²⁴⁸	MILP, MITM	[DHSLWH21]
	6/10	2 ²⁴⁰	2 ²⁴⁰	New MILP model, MITM	This work
	6.5/10	2 ²⁴⁰	2 ²⁴⁰	New MILP model, MITM	This work

3

Tianyu Zhang (NTU)

EUROCRYPT 2024

◆□ ▶ < 酉 ▶ < 重 ▶ < 重 ▶</p>
27 May 2024

Applications Whirlpool and Streebog

- DoF compensation at round 1
- Same color match at round 3
- 2³² times (pseudo-preimage) and 2¹⁶ times (preimage) improvements than previous best attack
- Reduce memory cost to O(1) (compared to previous best attack with 2¹⁶⁰)

27 May 2024

Preimage Attacks

Cipher (target)	#Rounds	T_1^{\dagger}	T_2^{\ddagger}	Memory	Essential technique(s)	References
	7.5/12	2 ⁴⁹⁶	_	2 ⁶⁴	Dedicated method	[MLHL15]
Streebog-512 (Compression)	7.5/12	2 ⁴⁴¹	_	2^{192}	GnD, MuIAK	[HDSZHW22]
	7.5/12	2 ⁴³³	—	2 ¹⁷⁷	SIM, GnD	This work
	8.5/12	2 ⁴⁸¹	_	2 ²⁸⁸	GnD, MulAK	[HDSZHW22]
	8.5/12	2 ⁴⁸¹	-	2 ¹²⁹	SIM, GnD	This work
Streebog-512 (Hash)	7.5/12	_	2 ⁴⁹⁶	2 ⁶⁴	Dedicated method	[MLHL15]
	7.5/12	_	2 ^{478.25}	2^{256}	$MITM + Multi-collision^{\P}$	[HDSZHW22]
	7.5/12	—	2 ^{474.25}	2 ²⁵⁶	MITM + Multi-collision	This work
	8.5/12	_	2 ^{498.25}	2 ²⁸⁸	MITM + Multi-collision	[HDSZHW22]
	8.5/12	-	2 ^{498.25}	2 ²⁵⁶	MITM + Multi-collision	This work

The attack on the compression function of Streebog is converted into a preimage attack on its hash function using the technique from [AY14].

Tianyu Zhang (NTU)

EUROCRYPT 2024

27 May 2024

∃ つへで 25/27 Conclusion

Conclusion

In this paper, we

- introduced three new advanced techniques into MITM: S-box Linearization (LIN), Distributed Initial Structures (DIS) and Structual Similarity (SIM)
- furnished the MITM framework and constructed more efficient MILP-based model
- found first 10-round MITM preimage/pseudo-preimage attacks on AES-192 hashing
- improved MITM preimage/pseudo-preimage and/or collision attacks on Whirlpool and Streebog

For more details, please refer to our paper :)

https://eprint.iacr.org/2024/300

Tianyu Zhang (NTU)

EUROCRYPT 2024

27 May 2024

TYFL!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?