

The supersingular Endomorphism Ring and One Endomorphism problems are equivalent

Aurel Page Inria and Université de Bordeaux (speaker)

Benjamin Wesolowski CNRS and ENS de Lyon

Elliptic curves

An **elliptic curve** over \mathbb{F}_q is:

- a curve of the form
 - $y^2 = x^3 + ax + b$

Elliptic curves

An **elliptic curve** over \mathbb{F}_q is:

a curve of the form $y^2 = x^3 + ax + b$

An **isogeny** is:

An **isogeny** is:

Isogenies

The isogeny problem

Isogeny problem: Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

The isogeny problem

A useful specialization:

l-lsogenyPath: Given two elliptic curves E_1 and E_2 , find an *l*-isogeny paths $E_1 \rightarrow E_2$

Isogeny problem: Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

The isogeny problem

Isogeny problem: Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

A useful specialization:

l-lsogenyPath: Given two elliptic curves E_1 and E_2 , find an *l*-isogeny paths $E_1 \rightarrow E_2$

Special kind of easy-to-Special kind of easy-to-work-with isogenies

Expectations: cryptosystems as secure as *l-lsogenyPath* is hard

Hard even for Quantum algorithms

Isogeny-based cryptography

Security of cryptosystems

Reality: upper and lower bounds

lsogenyPath

Reality: upper and lower bounds

CGL hash function (preimage)

Reality: upper and lower bounds

CGL hash function (preimage) *l*-lsogenyPath CGL hash function (collision) OneEnd <u><</u>

Reality: upper and lower bounds

CGL hash function (preimage) *l*-lsogenyPath CGL hash function (collision) OneEnd **≤**

<

- **OneEnd**

SQIsign (soundness)

Endomorphisms OneEnd and EndRing

An **endomorphism** of *E* is an isogeny $\varphi : E \rightarrow E$

An **endomorphism** of *E* is an isogeny $\varphi : E \rightarrow E$

The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$

An **endomorphism** of *E* is an isogeny $\varphi : E \rightarrow E$

The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$

(1 = identity, 2 = point doubling, -1 = negation...) • It contains $\mathbb{Z} \subset \text{End}(E)$

An **endomorphism** of *E* is an isogeny $\varphi : E \to E$

The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$

- (1 = identity, 2 = point doubling, -1 = negation...) • It contains $\mathbb{Z} \subset \text{End}(E)$
- (End(*E*), +) is a **lattice** of dimension 2 or 4

- An **endomorphism** of *E* is an isogeny $\varphi : E \to E$
- The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$
 - (1 = identity, 2 = point doubling, -1 = negation...)• It contains $\mathbb{Z} \subset \text{End}(E)$
 - (End(*E*), +) is a **lattice** of dimension 2 or 4

- An **endomorphism** of *E* is an isogeny $\varphi : E \to E$
- The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$
 - (1 = identity, 2 = point doubling, -1 = negation...)• It contains $\mathbb{Z} \subset \text{End}(E)$
 - (End(*E*), +) is a **lattice** of dimension 2 or 4

An **endomorphism** of *E* is an isogeny $\varphi : E \rightarrow E$

The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$

- (1 = identity, 2 = point doubling, -1 = negation...) • It contains $\mathbb{Z} \subset \text{End}(E)$
- (End(*E*), +) is a **lattice** of dimension 2 or 4

Jinary elliptic curve

Supersingular elliptic curve

The endomorphism ring problem

EndRing: Given a supersingular *E*, find four endomorphisms generating End(*E*)

The endomorphism ring problem

Theorem [W. – FOCS 2021]: EndRing is equivalent to *l*-lsogenyPath (assuming the Generalised Riemann Hypothesis)

Earlier **heuristic** reductions in:

[Petit, Lauter – preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs.

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and endomorphism rings: Reductions and solutions.

- **EndRing:** Given a supersingular E, find four endomorphisms generating End(E)

The [one] endomorphism [ring] problem

EndRing: Given a supersingular *E*, find four endomorphisms generating End(*E*)

OneEnd: Given a supersingular *E*, find a single endomorphism $\alpha \in End(E) \setminus \mathbb{Z}$

The [one] endomorphism [ring] problem

EndRing: Given a supersingular *E*, find four endomorphisms generating End(*E*)

OneEnd: Given a supersingular *E*, find a single endomorphism $\alpha \in End(E) \setminus \mathbb{Z}$

Clearly, **OneEnd** ≤ **EndRing**...

The [one] endomorphism [ring] problem

EndRing: Given a supersingular *E*, find four endomorphisms generating End(*E*)

OneEnd: Given a supersingular *E*, find a single endomorphism $\alpha \in End(E) \setminus \mathbb{Z}$

Clearly, **OneEnd** ≤ **EndRing**...

Theorem (main result of this work): OneEnd is equivalent to EndRing, under probabilistic polynomial time reductions

Applications of OneEnd = EndRing

- *l*-lsogenyPath
 - OneEnd **≤**
 - <
 - OneEnd

Reality: upper and lower bounds

Security of cryptosystems

 \leq

l-lsogenyPath

CGL hash function (preimage) CGL hash function (collision)

SQIsign (soundness)

- *l*-lsogenyPath =
 - OneEnd **≤**
 - <
 - OneEnd

Reality: upper and lower bounds

Security of cryptosystems

 \leq

l-lsogenyPath

= EndRing

CGL hash function (preimage) CGL hash function (collision)

SQlsign (soundness)

- *l*-lsogenyPath
 - **≤**
 - <
 - OneEnd
 - **OneEnd**
- EndRing =

Reality: upper and lower bounds

Security of cryptosystems

l-lsogenyPath

= EndRing

CGL hash function (preimage) CGL hash function (collision)

SQlsign (soundness)

- *l*-lsogenyPath CGL hash function (preimage)
- OneEnd CGL hash function (collision) < EndRing =
 - SQlsign (soundness) OneEnd <
 - **Theorem (Application 1):** CGL is **collision-resistant** if and only if **EndRing** is hard **Theorem (Application 2):** SQIsign is **sound** if and only if **EndRing** is hard

- **Reality:** upper and lower bounds
 - **Security of** cryptosystems

<

l-lsogenyPath

= EndRing

EndRing is equivalent to Isogeny

Theorem (Application 3): EndRing is equivalent to the Isogeny problem

EndRing is equivalent to Isogeny

Theorem (Application 3): EndRing is equivalent to the **Isogeny** problem

Previous work:

- **Isogeny** ≤ **EndRing**: already known (assuming GRH **[W. FOCS 2021]**)

• EndRing \leq Isogeny: only known for special case ℓ -IsogenyPath (assuming GRH)

EndRing is equivalent to Isogeny

Theorem (Application 3): EndRing is equivalent to the **Isogeny** problem

Previous work:

- **Isogeny** ≤ **EndRing**: already known (assuming GRH **[W. FOCS 2021]**) • EndRing \leq Isogeny: only known for special case ℓ -IsogenyPath (assuming GRH)

Idea of the proof: Suffices to show that **OneEnd** \leq **Isogeny**

- Given E (an instance of **OneEnd**), sample random isogeny $\varphi : E \rightarrow F$, solve **Isogeny** to find $\psi: F \rightarrow E$, and return $\psi \circ \varphi$ (a solution of **OneEnd**)
- No need to assume GRH!

Solving EndRing

Theorem (Application 4): There is an algorithm for **EndRing** in time $\tilde{O}(p^{1/2})$

Solving EndRing

Theorem (Application 4): There is an algorithm for **EndRing** in time $O(p^{1/2})$

Previous work :

- Only known under GRH (see [W. FOCS 2021], or [Fuselier, lezzi, Kozek, Morrison, Namoijam – preprint 2023])
- Unconditionally, best known was Õ(p) [Kohel PhD thesis 1996]

Solving EndRing

Theorem (Application 4): There is an algorithm for **EndRing** in time $O(p^{1/2})$

Previous work :

- Only known under GRH (see [W. FOCS 2021], or [Fuselier, lezzi, Kozek, Morrison, Namoijam – preprint 2023])
- Unconditionally, best known was Õ(p) [Kohel PhD thesis 1996]

Idea of the proof:

- By the previous application, EndRing
 <u>Isogeny</u> (unconditionally!) • Meet-in-the-middle solves **Isogeny** with complexity $\tilde{O}(p^{1/2})$

Sketch of the proof Main ideas and obstacles

Suppose we have an oracle *O* solving **OneEnd** Let E be an instance of **EndRing**: we wish to find generators of End(E)

- Suppose we have an oracle O solving OneEnd Let E be an instance of **EndRing**: we wish to find generators of End(E)
- **Idea O:** Sample until you make it...
- **1.** For $i = 1, 2, ..., call \mathcal{O}(E)$, which returns some $\alpha_i \in End(E) \setminus \mathbb{Z}$
- **2.** As soon as $(\alpha_i)_i$ generates End(E), extract a basis and return it

- Suppose we have an oracle O solving OneEnd Let E be an instance of **EndRing**: we wish to find generators of End(E)
- **Idea O:** Sample until you make it...
- **1.** For $i = 1, 2, ..., call \mathcal{O}(E)$, which returns some $\alpha_i \in End(E) \setminus \mathbb{Z}$
- **2.** As soon as $(\alpha_i)_i$ generates End(*E*), extract a basis and return it $\sum_{i=1}^{n} \beta_i$

Efficient linear algebra!

- Suppose we have an oracle O solving OneEnd Let E be an instance of **EndRing**: we wish to find generators of End(E)
- **Idea O:** Sample until you make it...
- **1.** For i = 1, 2, ... call $\mathcal{O}(E)$, which returns some $\alpha_i \in \text{End}(E) \setminus \mathbb{Z}$
- **2.** As soon as $(\alpha_i)_i$ generates End(*E*), extract a basis and return it $\sum_{i=1}^{n} \alpha_i$

Efficient linear algebra!

- Suppose we have an oracle *O* solving **OneEnd** Let E be an instance of **EndRing**: we wish to find generators of End(E)
- **Idea O:** Sample until you make it...
- **1.** For $i = 1, 2, ..., \text{ call } \mathcal{O}(E)$, which returns some $\alpha_i \in \text{End}(E) \setminus \mathbb{Z}$
- **2.** As soon as $(\alpha_i)_i$ generates End(*E*), extract a basis and return it $\sum_{i=1}^{n} \alpha_i$

Idea 1 [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]: **Randomize** the oracle...

Efficient linear algebra!

Idea 1: Randomize the oracle We construct a new oracle **Rich**^o

Idea 1: Randomize the oracle We construct a new oracle **Rich**^o

On input E:

Idea 1: Randomize the oracle We construct a new oracle **Rich**^o

On input E:

1. Sample a random isogeny $\varphi : E \rightarrow F$

Idea 1: Randomize the oracle We construct a new oracle **Rich**^o

On input E:

- **1.** Sample a random isogeny $\varphi : E \rightarrow F$
- **2.** Call $\mathcal{O}(F)$ which returns $\alpha \in \text{End}(F) \setminus \mathbb{Z}$

Idea 1: Randomize the oracle We construct a new oracle **Rich**^o

On input E:

- **1.** Sample a random isogeny $\varphi : E \to F$
- **2.** Call $\mathcal{O}(F)$ which returns $\alpha \in \text{End}(F) \setminus \mathbb{Z}$
- **3.** Return $\hat{\phi} \circ \alpha \circ \phi \in \text{End}(E) \setminus \mathbb{Z}$

Idea 1: Randomize the oracle

- **1.** For $i = 1, 2, ... \text{ call } \text{Rich}^{o}(E)$, which returns some $\alpha_i \in \text{End}(E) \setminus \mathbb{Z}$
- **2.** As soon as $(\alpha_i)_i$ generates End(E), extract a basis and return it

Idea 1: Randomize the oracle

- **1.** For $i = 1, 2, \dots$ call **Rich**^O(*E*), which returns some $\alpha_i \in \text{End}(E) \setminus \mathbb{Z}$
- **2.** As soon as $(\alpha_i)_i$ generates End(E), extract a basis and return it

Rich^o is "random enough": it rapidly produces a generating set

Heuristic claim [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]:

Idea 1: Randomize the oracle

- **1.** For $i = 1, 2, \dots$ call **Rich**^O(*E*), which returns some $\alpha_i \in \text{End}(E) \setminus \mathbb{Z}$
- **2.** As soon as $(\alpha_i)_i$ generates End(E), extract a basis and return it

Rich^o is "random enough": it rapidly produces a generating set

- Heuristic claim [Eisenträger, Hallgren, Lauter, Morrison, Petit Eurocrypt 2018]:
- **Problem:** It **fails**. There exist oracles \mathcal{O} for which the algorithm does not terminate

Idea 2: Prove that the ring generated by $(\alpha_i)_i$ eventually stabilizes

Stabilization

Theorem 1: The probability distribution of **Rich**^o(*E*) is stable under conjugation In essence: any output α is as likely as any conjugate $\beta^{-1}\alpha\beta$

Theorem 1: The probability distribution of **Rich**^o(*E*) is stable under conjugation In essence: any output α is as likely as any conjugate $\beta^{-1}\alpha\beta$

Theorem 2: Subrings of End(E) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$

- **Theorem 1:** The probability distribution of **Rich**^O(*E*) is stable under conjugation In essence: any output α is as likely as any conjugate $\beta^{-1}\alpha\beta$
- **Theorem 2:** Subrings of End(*E*) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$
- **Conclusion:** The algorithm **eventually** generates a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$

- **Theorem 1:** The probability distribution of **Rich**^O(*E*) is stable under conjugation In essence: any output α is as likely as any conjugate $\beta^{-1}\alpha\beta$
- **Theorem 2:** Subrings of End(E) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$
- **Conclusion:** The algorithm **eventually** generates a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$
 - From a generating set of \mathbb{Z} + M·End(E), one can find a basis of End(E) \downarrow

- **Theorem 1:** The probability distribution of **Rich**^O(*E*) is stable under conjugation In essence: any output α is as likely as any conjugate $\beta^{-1}\alpha\beta$
- **Theorem 2:** Subrings of End(E) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$
- **Conclusion:** The algorithm **eventually** generates a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$
 - From a generating set of \mathbb{Z} + M·End(E), one can find a basis of End(E) \downarrow
 - "Eventually" = exponential time

Idea 2: Prove that the ring generated by $(\alpha_i)_i$ eventually stabilizes

The tough part!

Theorem 1: The probability distribution of **Rich**^O(*E*) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$

- **Conclusion:** The algorithm **eventually** generates a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$

Idea 2: Prove that the ring generated by $(\alpha_i)_i$ eventually stabilizes

Deuring correspondence

The tough part!

Theorem 1: The probability distribution of **Rich**^o(*E*) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$

- **Conclusion:** The algorithm **eventually** generates a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$

Idea 2: Prove that the ring generated by $(\alpha_i)_i$ eventually stabilizes

Deuring correspondence

The tough part!

Theorem 1: The probability distribution of **Rich**^o(*E*) is stable under conjugation

Theorem 2: Subrings of Ethd(E) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$ Jacquet-Langlands correspondence

- **Conclusion:** The algorithm **eventually** generates a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$

Idea 2: Prove that the ring generated by $(\alpha_i)_i$ eventually stabilizes

Deuring correspondence

Conclusion: The algorithm **eventually** generates a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$ Deligne's bound on coefficients From a generating set of \mathbb{Z} + M-End(E), one of modular forms nd(E)

The tough part!

Theorem 1: The probability distribution of **Rich**^o(*E*) is stable under conjugation

Theorem 2: Subrings of Ethd(E) stable under conjugation are $\mathbb{Z} + M \cdot \text{End}(E)$ for $M \in \mathbb{Z}$ Jacquet-Langlands correspondence

Outline of the reduction:

- 1. Initialize $S = \{1\}$
- **2.** While S does not generate a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$, do:
 - **3.** Sample $\alpha \leftarrow \operatorname{Rich}^{O}(E)$
 - **4.** $\alpha \leftarrow LazyReduce(\alpha)$ (Idea 3)
 - **5.** Add α to S
- 6. Extract from S a basis of End(E), and return it

Outline of the reduction:

- Initialize $S = \{1\}$ 1.
- **2.** While S does not generate a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$, do:
 - **3.** Sample $\alpha \leftarrow \operatorname{Rich}^{O}(E)$
 - **4.** $\alpha \leftarrow LazyReduce(\alpha)$ (Idea 3)
 - **5.** Add α to S
- 6. Extract from S a basis of End(E), and return it

Outline of the reduction:

- Initialize $S = \{1\}$ 1.
- **2.** While S does not generate a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$, do:
 - **3.** Sample $\alpha \leftarrow \operatorname{Rich}^{O}(E)$
 - **4.** $\alpha \leftarrow LazyReduce(\alpha)$ (Idea 3)
 - **5.** Add α to S
- 6. Extract from S a basis of End(E), and return it

Termina

Outline of the reduction:

- 1. Initialize $S = \{1\}$
- **2.** While S does not generate a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$, do:
 - **3.** Sample $\alpha \leftarrow \operatorname{Rich}^{O}(E)$
 - **4.** $\alpha \leftarrow LazyReduce(\alpha)$ (Idea 3)
 - **5.** Add α to S
- 6. Extract from S a basis of End(E), and return it

Outline of the reduction:

- 1. Initialize $S = \{1\}$
- **2.** While S does not generate a ring of the form $\mathbb{Z} + M \cdot \text{End}(E)$, do:
 - **3.** Sample $\alpha \leftarrow \operatorname{Rich}^{O}(E)$
 - **4.** $\alpha \leftarrow LazyReduce(\alpha)$ (Idea 3)
 - **5.** Add α to S
- 6. Extract from S a basis of End(E), and return it

Polynomial time!

OneEnd to find them all

