
Aurel Page
Inria and Université de Bordeaux

Endomorphism Ring
The supersingular

27 May 2024, Eurocrypt 2024, Zurich, Switzerland

One Endomorphism
problems are equivalent

and

Benjamin Wesolowski
CNRS and ENS de Lyon

(speaker)

Elliptic curves
An elliptic curve over 𝔽q is:

a curve of the form

y
2 = x

3 + ax + b

Elliptic curves

y
2 = x

3 + x
y

2 = x
3 – 4x

An elliptic curve over 𝔽q is:

a curve of the form

y
2 = x

3 + ax + b

Isogenies

y
2 = x

3 + x
y

2 = x
3 – 4x

An isogeny is:

a map between two curves

𝜑 : E1 → E2

Isogenies

y
2 = x

3 + x
y

2 = x
3 – 4x

An isogeny is:

a map between two curves

𝜑 : E1 → E2

(x, y)

x
2 + 1
x

y (x
2 + 1)
x

2
,()

isogeny

The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E2, find an isogeny 𝜑 : E1 → E2

y
2 = x

3 + x
y

2 = x
3 – 4x

??

The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E2, find an isogeny 𝜑 : E1 → E2

A useful specialization:

𝓵-IsogenyPath: Given two elliptic curves E1 and E2, find an 𝓵-isogeny paths E1 → E2

The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E2, find an isogeny 𝜑 : E1 → E2

A useful specialization:

𝓵-IsogenyPath: Given two elliptic curves E1 and E2, find an 𝓵-isogeny paths E1 → E2

Special kind of easy-to-

work-with isogenies

Isogeny-based cryptography

Security of
cryptosystemsℓ-IsogenyPath =

Expectations: cryptosystems as secure as ℓ-IsogenyPath is hard

Hard even for quantum
algorithms

Post-quantum

cryptography

Isogeny-based cryptography

Reality: upper and lower bounds

Security of
cryptosystems?? ≤ 𝓵-IsogenyPath≤

Isogeny-based cryptography

Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of
cryptosystems?? ≤ 𝓵-IsogenyPath≤

Isogeny-based cryptography

Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of
cryptosystems?? ≤ 𝓵-IsogenyPath≤

≤ CGL hash function (collision)OneEnd

Isogeny-based cryptography

Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of
cryptosystems?? ≤ 𝓵-IsogenyPath≤

≤ SQIsign (soundness)OneEnd
≤ CGL hash function (collision)OneEnd

Endomorphisms
OneEnd and EndRing

© MEE & © Wizards of the Coast

Endomorphism ring
An endomorphism of E is an isogeny 𝜑 : E → E

Endomorphism ring
An endomorphism of E is an isogeny 𝜑 : E → E

The endomorphism ring of E is End(E) = {𝜑 : E → E}

Endomorphism ring
An endomorphism of E is an isogeny 𝜑 : E → E

The endomorphism ring of E is End(E) = {𝜑 : E → E}

• It contains ℤ ⊂ End(E) (1 = identity, 2 = point doubling, -1 = negation…)

Endomorphism ring
An endomorphism of E is an isogeny 𝜑 : E → E

The endomorphism ring of E is End(E) = {𝜑 : E → E}

• It contains ℤ ⊂ End(E) (1 = identity, 2 = point doubling, -1 = negation…)

• (End(E), +) is a lattice of dimension 2 or 4

Endomorphism ring
An endomorphism of E is an isogeny 𝜑 : E → E

The endomorphism ring of E is End(E) = {𝜑 : E → E}

• It contains ℤ ⊂ End(E) (1 = identity, 2 = point doubling, -1 = negation…)

• (End(E), +) is a lattice of dimension 2 or 4

Endomorphism ring
An endomorphism of E is an isogeny 𝜑 : E → E

The endomorphism ring of E is End(E) = {𝜑 : E → E}

• It contains ℤ ⊂ End(E) (1 = identity, 2 = point doubling, -1 = negation…)

• (End(E), +) is a lattice of dimension 2 or 4

0 1 2 3 4–1–2–3 5 6 7-4-5 ℤ

Endomorphism ring
An endomorphism of E is an isogeny 𝜑 : E → E

The endomorphism ring of E is End(E) = {𝜑 : E → E}

• It contains ℤ ⊂ End(E) (1 = identity, 2 = point doubling, -1 = negation…)

• (End(E), +) is a lattice of dimension 2 or 4

Ordinary elliptic curve

Supersingular elliptic curve

The endomorphism ring problem

EndRing: Given a supersingular E, find four endomorphisms generating End(E)

The endomorphism ring problem

EndRing: Given a supersingular E, find four endomorphisms generating End(E)

Earlier heuristic reductions in:

[Petit, Lauter – preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs.

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and
endomorphism rings: Reductions and solutions.

Theorem [W. – FOCS 2021]: EndRing is equivalent to 𝓵-IsogenyPath
(assuming the Generalised Riemann Hypothesis)

EndRing: Given a supersingular E, find four endomorphisms generating End(E)

OneEnd: Given a supersingular E, find a single endomorphism α ∈ End(E) \ ℤ

The [one] endomorphism [ring] problem

EndRing: Given a supersingular E, find four endomorphisms generating End(E)

OneEnd: Given a supersingular E, find a single endomorphism α ∈ End(E) \ ℤ

Clearly, OneEnd ≤ EndRing…

The [one] endomorphism [ring] problem

EndRing: Given a supersingular E, find four endomorphisms generating End(E)

OneEnd: Given a supersingular E, find a single endomorphism α ∈ End(E) \ ℤ

Clearly, OneEnd ≤ EndRing…

Theorem (main result of this work): OneEnd is equivalent to EndRing, under
probabilistic polynomial time reductions

The [one] endomorphism [ring] problem

Applications
of OneEnd = EndRing

© MEE & © Wizards of the Coast

New security reductions
Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of
cryptosystems?? ≤ 𝓵-IsogenyPath≤

≤ SQIsign (soundness)OneEnd
≤ CGL hash function (collision)OneEnd

New security reductions
Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of
cryptosystems?? ≤ 𝓵-IsogenyPath≤

≤ SQIsign (soundness)OneEnd
≤ CGL hash function (collision)OneEnd

= EndRing

New security reductions
Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of
cryptosystems?? ≤ 𝓵-IsogenyPath≤

≤ SQIsign (soundness)OneEnd
≤ CGL hash function (collision)OneEnd

= EndRing

EndRing =

New security reductions
Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of
cryptosystems?? ≤ 𝓵-IsogenyPath≤

≤ SQIsign (soundness)OneEnd
≤ CGL hash function (collision)OneEnd

= EndRing

Theorem (Application 1): CGL is collision-resistant if and only if EndRing is hard

Theorem (Application 2): SQIsign is sound if and only if EndRing is hard

EndRing =

Theorem (Application 3): EndRing is equivalent to the Isogeny problem

EndRing is equivalent to Isogeny

Theorem (Application 3): EndRing is equivalent to the Isogeny problem

Previous work:
• Isogeny ≤ EndRing: already known (assuming GRH [W. – FOCS 2021])

• EndRing ≤ Isogeny: only known for special case 𝓵-IsogenyPath (assuming GRH)

EndRing is equivalent to Isogeny

Theorem (Application 3): EndRing is equivalent to the Isogeny problem

Previous work:
• Isogeny ≤ EndRing: already known (assuming GRH [W. – FOCS 2021])

• EndRing ≤ Isogeny: only known for special case 𝓵-IsogenyPath (assuming GRH)

Idea of the proof: Suffices to show that OneEnd ≤ Isogeny

‣ Given E (an instance of OneEnd), sample random isogeny 𝜑 : E → F, solve
Isogeny to find ψ : F → E, and return ψ ∘ 𝜑 (a solution of OneEnd)

‣ No need to assume GRH!

EndRing is equivalent to Isogeny

Theorem (Application 4): There is an algorithm for EndRing in time Õ(p1/2)

Solving EndRing

Theorem (Application 4): There is an algorithm for EndRing in time Õ(p1/2)

Previous work :
• Only known under GRH (see [W. – FOCS 2021], or [Fuselier, Iezzi, Kozek,

Morrison, Namoijam – preprint 2023])

• Unconditionally, best known was Õ(p) [Kohel – PhD thesis 1996]

Solving EndRing

Theorem (Application 4): There is an algorithm for EndRing in time Õ(p1/2)

Previous work :
• Only known under GRH (see [W. – FOCS 2021], or [Fuselier, Iezzi, Kozek,

Morrison, Namoijam – preprint 2023])

• Unconditionally, best known was Õ(p) [Kohel – PhD thesis 1996]

Idea of the proof:
• By the previous application, EndRing ≤ Isogeny (unconditionally!)

• Meet-in-the-middle solves Isogeny with complexity Õ(p1/2)

Solving EndRing

Sketch of the proof
Main ideas and obstacles

© MEE & © Wizards of the Coast

Suppose we have an oracle 𝓞 solving OneEnd

Let E be an instance of EndRing: we wish to find generators of End(E)

Reducing EndRing to OneEnd

Suppose we have an oracle 𝓞 solving OneEnd

Let E be an instance of EndRing: we wish to find generators of End(E)

Idea 0: Sample until you make it…
1. For i = 1, 2,… call 𝓞(E), which returns some αi ∈ End(E) \ ℤ

2. As soon as (αi)i generates End(E), extract a basis and return it

Reducing EndRing to OneEnd

Suppose we have an oracle 𝓞 solving OneEnd

Let E be an instance of EndRing: we wish to find generators of End(E)

Idea 0: Sample until you make it…
1. For i = 1, 2,… call 𝓞(E), which returns some αi ∈ End(E) \ ℤ

2. As soon as (αi)i generates End(E), extract a basis and return it

Reducing EndRing to OneEnd

Efficient linear
algebra!👍

Suppose we have an oracle 𝓞 solving OneEnd

Let E be an instance of EndRing: we wish to find generators of End(E)

Idea 0: Sample until you make it…
1. For i = 1, 2,… call 𝓞(E), which returns some αi ∈ End(E) \ ℤ

2. As soon as (αi)i generates End(E), extract a basis and return it

Reducing EndRing to OneEnd

Efficient linear
algebra!👍

What if 𝓞(E) always
returns the same α?👍

Suppose we have an oracle 𝓞 solving OneEnd

Let E be an instance of EndRing: we wish to find generators of End(E)

Idea 0: Sample until you make it…
1. For i = 1, 2,… call 𝓞(E), which returns some αi ∈ End(E) \ ℤ

2. As soon as (αi)i generates End(E), extract a basis and return it

Idea 1 [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]:
Randomize the oracle…

Reducing EndRing to OneEnd

Efficient linear
algebra!👍

What if 𝓞(E) always
returns the same α?👍

Idea 1: Randomize the oracle
We construct a new oracle Rich𝓞

Enriching the oracle

Idea 1: Randomize the oracle
We construct a new oracle Rich𝓞

On input E:

Enriching the oracle

E

Idea 1: Randomize the oracle
We construct a new oracle Rich𝓞

On input E:
1. Sample a random isogeny 𝜑 : E → F

Enriching the oracle

E
F

Idea 1: Randomize the oracle
We construct a new oracle Rich𝓞

On input E:
1. Sample a random isogeny 𝜑 : E → F

2. Call 𝓞(F) which returns α ∈ End(F) \ ℤ

Enriching the oracle

E
F

Idea 1: Randomize the oracle
We construct a new oracle Rich𝓞

On input E:
1. Sample a random isogeny 𝜑 : E → F

2. Call 𝓞(F) which returns α ∈ End(F) \ ℤ

3. Return 𝜑 ∘ α ∘ 𝜑 ∈ End(E) \ ℤ

Enriching the oracle

^

E
F

Idea 1: Randomize the oracle
1. For i = 1, 2,… call Rich𝓞(E), which returns some αi ∈ End(E) \ ℤ

2. As soon as (αi)i generates End(E), extract a basis and return it

Reducing EndRing to OneEnd

Idea 1: Randomize the oracle
1. For i = 1, 2,… call Rich𝓞(E), which returns some αi ∈ End(E) \ ℤ

2. As soon as (αi)i generates End(E), extract a basis and return it

Heuristic claim [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]:
Rich𝓞 is "random enough": it rapidly produces a generating set

Reducing EndRing to OneEnd

Idea 1: Randomize the oracle
1. For i = 1, 2,… call Rich𝓞(E), which returns some αi ∈ End(E) \ ℤ

2. As soon as (αi)i generates End(E), extract a basis and return it

Heuristic claim [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]:
Rich𝓞 is "random enough": it rapidly produces a generating set

Problem: It fails. There exist oracles 𝓞 for which the algorithm does not terminate

Reducing EndRing to OneEnd

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Stabilization

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

The tough part!

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

Deuring correspondence

The tough part!

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

Deuring correspondence

Jacquet–Langlands correspondence
+

The tough part!

Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

Deuring correspondence

Jacquet–Langlands correspondence

Deligne’s bound on coefficients
of modular forms

+

+

The tough part!

Outline of the reduction:
1. Initialize S = { 1 }
2. While S does not generate a ring of the form ℤ + M·End(E), do:

3. Sample α ← Rich𝓞(E)

4. α ← LazyReduce(α)

5. Add α to S

6. Extract from S a basis of End(E), and return it

Reducing EndRing to OneEnd

(Idea 3)

Outline of the reduction:
1. Initialize S = { 1 }
2. While S does not generate a ring of the form ℤ + M·End(E), do:

3. Sample α ← Rich𝓞(E)

4. α ← LazyReduce(α)

5. Add α to S

6. Extract from S a basis of End(E), and return it

Reducing EndRing to OneEnd

Terminates! 👍

(Idea 3)

Outline of the reduction:
1. Initialize S = { 1 }
2. While S does not generate a ring of the form ℤ + M·End(E), do:

3. Sample α ← Rich𝓞(E)

4. α ← LazyReduce(α)

5. Add α to S

6. Extract from S a basis of End(E), and return it

Reducing EndRing to OneEnd

In exponential time… 👍

Terminates! 👍

(Idea 3)

Outline of the reduction:
1. Initialize S = { 1 }
2. While S does not generate a ring of the form ℤ + M·End(E), do:

3. Sample α ← Rich𝓞(E)

4. α ← LazyReduce(α)

5. Add α to S

6. Extract from S a basis of End(E), and return it

Reducing EndRing to OneEnd

(Idea 3)

Outline of the reduction:
1. Initialize S = { 1 }
2. While S does not generate a ring of the form ℤ + M·End(E), do:

3. Sample α ← Rich𝓞(E)

4. α ← LazyReduce(α)

5. Add α to S

6. Extract from S a basis of End(E), and return it

Reducing EndRing to OneEnd

Polynomial time ! 🍾

(Idea 3)

OneEnd to find them all

© MEE & © Wizards of the Coast

