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The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E2, find an isogeny 𝜑 : E1 → E2
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The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E2, find an isogeny 𝜑 : E1 → E2 

A useful specialization: 

𝓵-IsogenyPath: Given two elliptic curves E1 and E2, find an 𝓵-isogeny paths E1 → E2

Special kind of easy-to-

work-with isogenies



Isogeny-based cryptography

Security of 
cryptosystemsℓ-IsogenyPath =

Expectations: cryptosystems as secure as ℓ-IsogenyPath is hard

Hard even for quantum 
algorithms

Post-quantum 

cryptography
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Isogeny-based cryptography

Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of 
cryptosystems?? ≤ 𝓵-IsogenyPath≤

≤ SQIsign (soundness)OneEnd
≤ CGL hash function (collision)OneEnd



Endomorphisms
OneEnd and EndRing
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Endomorphism ring
An endomorphism of E is an isogeny 𝜑 : E → E 

The endomorphism ring of E is End(E) = {𝜑 : E → E} 

• It contains ℤ ⊂ End(E)                    (1 = identity, 2 = point doubling, -1 = negation…) 

• (End(E), +) is a lattice of dimension 2 or 4

Ordinary elliptic curve

Supersingular elliptic curve



The endomorphism ring problem
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The endomorphism ring problem

EndRing: Given a supersingular E, find four endomorphisms generating End(E)

Earlier heuristic reductions in:

[Petit, Lauter – preprint 2017] Hard and Easy Problems for Supersingular Isogeny Graphs.

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and 
endomorphism rings: Reductions and solutions.

Theorem [W. – FOCS 2021]: EndRing is equivalent to 𝓵-IsogenyPath 
(assuming the Generalised Riemann Hypothesis)
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EndRing: Given a supersingular E, find four endomorphisms generating End(E)

OneEnd: Given a supersingular E, find a single endomorphism α ∈ End(E) \ ℤ

Clearly, OneEnd ≤ EndRing…

Theorem (main result of this work): OneEnd is equivalent to EndRing, under 
probabilistic polynomial time reductions

The [one] endomorphism [ring] problem



Applications
of OneEnd = EndRing
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New security reductions
Reality: upper and lower bounds

= CGL hash function (preimage)𝓵-IsogenyPath

Security of 
cryptosystems?? ≤ 𝓵-IsogenyPath≤

≤ SQIsign (soundness)OneEnd
≤ CGL hash function (collision)OneEnd

= EndRing

Theorem (Application 1): CGL is collision-resistant if and only if EndRing is hard

Theorem (Application 2): SQIsign is sound if and only if EndRing is hard

EndRing =
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Theorem (Application 3): EndRing is equivalent to the Isogeny problem

Previous work: 
• Isogeny ≤ EndRing: already known (assuming GRH [W. – FOCS 2021])

• EndRing ≤ Isogeny: only known for special case 𝓵-IsogenyPath (assuming GRH)

Idea of the proof:  Suffices to show that OneEnd ≤ Isogeny 

‣ Given E (an instance of OneEnd), sample random isogeny 𝜑 : E → F, solve 
Isogeny to find ψ : F → E, and return ψ ∘ 𝜑 (a solution of OneEnd)

‣ No need to assume GRH!

EndRing is equivalent to Isogeny
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Theorem (Application 4): There is an algorithm for EndRing in time Õ(p1/2)

Previous work :
• Only known under GRH (see [W. – FOCS 2021], or [Fuselier, Iezzi, Kozek, 

Morrison, Namoijam – preprint 2023])

• Unconditionally, best known was Õ(p) [Kohel – PhD thesis 1996]

Idea of the proof: 
• By the previous application, EndRing ≤ Isogeny (unconditionally!)

• Meet-in-the-middle solves Isogeny with complexity Õ(p1/2)

Solving EndRing



Sketch of the proof
Main ideas and obstacles
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Suppose we have an oracle 𝓞 solving OneEnd

Let E be an instance of EndRing: we wish to find generators of End(E)

Idea 0: Sample until you make it…
1. For i = 1, 2,… call 𝓞(E), which returns some αi ∈ End(E) \ ℤ

2. As soon as (αi)i generates End(E), extract a basis and return it

Idea 1  [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]: 
Randomize the oracle…

Reducing EndRing to OneEnd

Efficient linear 
algebra!👍

What if 𝓞(E) always 
returns the same α?👍
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Idea 1: Randomize the oracle
We construct a new oracle Rich𝓞

On input E:
1. Sample a random isogeny 𝜑 : E → F

2. Call 𝓞(F) which returns α ∈ End(F) \ ℤ

3. Return 𝜑 ∘ α ∘ 𝜑 ∈ End(E) \ ℤ

Enriching the oracle

^

E
F
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Idea 1: Randomize the oracle
1. For i = 1, 2,… call Rich𝓞(E), which returns some αi ∈ End(E) \ ℤ

2. As soon as (αi)i generates End(E), extract a basis and return it

Heuristic claim [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018]: 
Rich𝓞 is "random enough": it rapidly produces a generating set

Problem: It fails. There exist oracles 𝓞 for which the algorithm does not terminate

Reducing EndRing to OneEnd



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Stabilization



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes 

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation 

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ 

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

The tough part!



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes 

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation 

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ 

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

Deuring correspondence

The tough part!



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes 

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation 

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ 

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

Deuring correspondence

Jacquet–Langlands correspondence
+

The tough part!



Idea 2: Prove that the ring generated by (αi)i eventually stabilizes 

Theorem 1: The probability distribution of Rich𝓞(E) is stable under conjugation 

Theorem 2: Subrings of End(E) stable under conjugation are ℤ + M·End(E) for M ∈ ℤ 

Conclusion: The algorithm eventually generates a ring of the form ℤ + M·End(E)

Stabilization

In essence: any output 𝝰 is as likely as any conjugate 𝝱–1𝝰𝝱

From a generating set of ℤ + M∙End(E), one can find a basis of End(E) 👍
"Eventually" = exponential time 👍

Deuring correspondence

Jacquet–Langlands correspondence

Deligne’s bound on coefficients 
of modular forms

+

+

The tough part!



Outline of the reduction: 
1. Initialize S = { 1 } 
2. While S does not generate a ring of the form ℤ + M·End(E), do: 
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4. α ← LazyReduce(α) 

5. Add α to S 

6. Extract from S a basis of End(E), and return it

Reducing EndRing to OneEnd
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Outline of the reduction: 
1. Initialize S = { 1 } 
2. While S does not generate a ring of the form ℤ + M·End(E), do: 

3. Sample α ← Rich𝓞(E)  

4. α ← LazyReduce(α) 

5. Add α to S 

6. Extract from S a basis of End(E), and return it

Reducing EndRing to OneEnd

Polynomial time ! 🍾

(Idea 3)



OneEnd to find them all
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