
Trapdoor Memory-Hard Functions

Benedikt Auerbach

Christoph Günther

Krzysztof Pietrzak

Eurocrypt 2024

This research was funded in whole or in part by the Austrian Science Fund (FWF) 10.55776/F85.

Memory-hard functions (MHFs)

• Need moderately-hard functions, e.g., password hashing, PoW, …

• Computationally hard functions are not egalitarian (easier on

specialized hardware, e.g., ASICs)

• Memory-hardness: Evaluation cost dominated by memory usage and

not computation

• Scrypt, Argon2 family, DRSample, …

2

Memory-hard functions (MHFs)

• Need moderately-hard functions, e.g., password hashing, PoW, …

• Computationally hard functions are not egalitarian (easier on

specialized hardware, e.g., ASICs)

• Memory-hardness: Evaluation cost dominated by memory usage and

not computation

• Scrypt, Argon2 family, DRSample, …

2

Memory-hard functions (MHFs)

• Need moderately-hard functions, e.g., password hashing, PoW, …

• Computationally hard functions are not egalitarian (easier on

specialized hardware, e.g., ASICs)

• Memory-hardness: Evaluation cost dominated by memory usage and

not computation

• Scrypt, Argon2 family, DRSample, …

2

Memory-hard functions (MHFs)

• Need moderately-hard functions, e.g., password hashing, PoW, …

• Computationally hard functions are not egalitarian (easier on

specialized hardware, e.g., ASICs)

• Memory-hardness: Evaluation cost dominated by memory usage and

not computation

• Scrypt, Argon2 family, DRSample, …

2

Memory measure

Input𝑤

Cumulative memory complexity (CMC)
M
em

or
y

Time

Output 𝑦

3

Memory measure

Input𝑤

Cumulative memory complexity (CMC)
M
em

or
y

Time

Output 𝑦

3

Scrypt (Percival, BSDCan’09)

• Sequential algorithm Eval(𝑤) → 𝑦

• Mode of operation for a hash function 𝐻∶ {0, 1}∗ → {0, 1}ℓ

• Memory-hardness parameter 𝑛

• Eval’s CMC is Θ(𝑛2ℓ)

Theorem (Alwen et al., EC’17)

Any (parallel) algorithm evaluating Scrypt has a CMC ofΩ(𝑛2ℓ) in the
random oracle model

4

Scrypt (Percival, BSDCan’09)

• Sequential algorithm Eval(𝑤) → 𝑦

• Mode of operation for a hash function 𝐻∶ {0, 1}∗ → {0, 1}ℓ

• Memory-hardness parameter 𝑛

• Eval’s CMC is Θ(𝑛2ℓ)

Theorem (Alwen et al., EC’17)

Any (parallel) algorithm evaluating Scrypt has a CMC ofΩ(𝑛2ℓ) in the
random oracle model

4

Scrypt (Percival, BSDCan’09)

• Sequential algorithm Eval(𝑤) → 𝑦

• Mode of operation for a hash function 𝐻∶ {0, 1}∗ → {0, 1}ℓ

• Memory-hardness parameter 𝑛

• Eval’s CMC is Θ(𝑛2ℓ)

Theorem (Alwen et al., EC’17)

Any (parallel) algorithm evaluating Scrypt has a CMC ofΩ(𝑛2ℓ) in the
random oracle model

4

Scrypt (Percival, BSDCan’09)

• Sequential algorithm Eval(𝑤) → 𝑦

• Mode of operation for a hash function 𝐻∶ {0, 1}∗ → {0, 1}ℓ

• Memory-hardness parameter 𝑛

• Eval’s CMC is Θ(𝑛2ℓ)

Theorem (Alwen et al., EC’17)

Any (parallel) algorithm evaluating Scrypt has a CMC ofΩ(𝑛2ℓ) in the
random oracle model

4

Scrypt (Percival, BSDCan’09)

• Sequential algorithm Eval(𝑤) → 𝑦

• Mode of operation for a hash function 𝐻∶ {0, 1}∗ → {0, 1}ℓ

• Memory-hardness parameter 𝑛

• Eval’s CMC is Θ(𝑛2ℓ)

Theorem (Alwen et al., EC’17)

Any (parallel) algorithm evaluating Scrypt has a CMC ofΩ(𝑛2ℓ) in the
random oracle model

4

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Scrypt’s Eval
𝑛 ⋅ ℓ bits

𝑛 steps

𝑤 = 𝑤0 𝑤1 𝑤2 𝑤𝑛−1

𝑠0𝑠0𝑠0𝑠1𝑠2𝑦 = 𝑠𝑛

ChallengeCMC≈ 𝑛 ⋅ 𝑛 ⋅ ℓ

𝐻(𝑤0) 𝐻(𝑤1)

𝐻(𝑤𝑛−1)

𝑗 = 𝑠0 mod 𝑛

𝐻(𝑤𝑗, 𝑠0)𝐻(𝑤2, 𝑠0)

𝑠1 mod 𝑛 = 𝑛 − 1

𝐻(𝑤𝑛−1, 𝑠1)𝐻(𝑤𝑛−1, 𝑠1)

5

Trapdoor memory-hard functions

Algorithms

• Setup() → pp

, td

• Eval(pp, 𝑤) → 𝑦

• TDEval(pp, 𝑤, td) → 𝑦

Correctness
Eval(pp, 𝑤) = TDEval(pp, 𝑤, td)

Memory-hardness
Evaluation without td has high CMC

TD-Efficiency
CMC of TDEval ll CMC of Eval

6

Trapdoor memory-hard functions

Algorithms

• Setup() → pp, td

• Eval(pp, 𝑤) → 𝑦

• TDEval(pp, 𝑤, td) → 𝑦

Correctness
Eval(pp, 𝑤) = TDEval(pp, 𝑤, td)

Memory-hardness
Evaluation without td has high CMC

TD-Efficiency
CMC of TDEval ll CMC of Eval

6

Trapdoor memory-hard functions

Algorithms

• Setup() → pp, td

• Eval(pp, 𝑤) → 𝑦

• TDEval(pp, 𝑤, td) → 𝑦

Correctness
Eval(pp, 𝑤) = TDEval(pp, 𝑤, td)

Memory-hardness
Evaluation without td has high CMC

TD-Efficiency
CMC of TDEval ll CMC of Eval

6

Trapdoor memory-hard functions

Algorithms

• Setup() → pp, td

• Eval(pp, 𝑤) → 𝑦

• TDEval(pp, 𝑤, td) → 𝑦

Correctness
Eval(pp, 𝑤) = TDEval(pp, 𝑤, td)

Memory-hardness
Evaluation without td has high CMC

TD-Efficiency
CMC of TDEval ll CMC of Eval

6

Trapdoor memory-hard functions

Algorithms

• Setup() → pp, td

• Eval(pp, 𝑤) → 𝑦

• TDEval(pp, 𝑤, td) → 𝑦

Correctness
Eval(pp, 𝑤) = TDEval(pp, 𝑤, td)

Memory-hardness
Evaluation without td has high CMC

TD-Efficiency
CMC of TDEval ll CMC of Eval

6

Use case: spam prevention

Server Client

Eval(𝑤) = 𝑦
send e-mail + 𝑦

𝑦 ?= Eval(𝑤)
Expensive!

𝑦 ?= TDEval(𝑤, td)
Cheaper!

7

Use case: spam prevention

Server Client

Eval(𝑤) = 𝑦
send e-mail + 𝑦

𝑦 ?= Eval(𝑤)
Expensive!

𝑦 ?= TDEval(𝑤, td)
Cheaper!

7

Use case: spam prevention

Server Client

Eval(𝑤) = 𝑦
send e-mail + 𝑦

𝑦 ?= Eval(𝑤)
Expensive!

𝑦 ?= TDEval(𝑤, td)
Cheaper!

7

Use case: spam prevention

Server Client

Eval(𝑤) = 𝑦
send e-mail + 𝑦

𝑦 ?= Eval(𝑤)
Expensive!

𝑦 ?= TDEval(𝑤, td)
Cheaper!

7

Use case: spam prevention

Server Client

Eval(𝑤) = 𝑦
send e-mail + 𝑦

𝑦 ?= Eval(𝑤)
Expensive!

𝑦 ?= TDEval(𝑤, td)
Cheaper!

7

Diodon (Biryukov & Perrin, AC’17)

• Setup samples hidden-order RSA group
• pp = 𝑁 RSA modulus

• td = 𝜑(𝑁) Group order

• Input is group element𝑊 ∈ ℤ∗
𝑁

• Scrypt but hashes𝑤𝑖+1 = 𝐻(𝑤𝑖) replaced by squares

𝑊𝑖+1 = 𝑊2
𝑖 mod 𝑁

= 𝑊2𝑖+1 mod 𝑁

8

Diodon (Biryukov & Perrin, AC’17)

• Setup samples hidden-order RSA group
• pp = 𝑁 RSA modulus

• td = 𝜑(𝑁) Group order

• Input is group element𝑊 ∈ ℤ∗
𝑁

• Scrypt but hashes𝑤𝑖+1 = 𝐻(𝑤𝑖) replaced by squares

𝑊𝑖+1 = 𝑊2
𝑖 mod 𝑁

= 𝑊2𝑖+1 mod 𝑁

8

Diodon (Biryukov & Perrin, AC’17)

• Setup samples hidden-order RSA group
• pp = 𝑁 RSA modulus

• td = 𝜑(𝑁) Group order

• Input is group element𝑊 ∈ ℤ∗
𝑁

• Scrypt but hashes𝑤𝑖+1 = 𝐻(𝑤𝑖) replaced by squares

𝑊𝑖+1 = 𝑊2
𝑖 mod 𝑁

= 𝑊2𝑖+1 mod 𝑁

8

Diodon (Biryukov & Perrin, AC’17)

• Setup samples hidden-order RSA group
• pp = 𝑁 RSA modulus

• td = 𝜑(𝑁) Group order

• Input is group element𝑊 ∈ ℤ∗
𝑁

• Scrypt but hashes𝑤𝑖+1 = 𝐻(𝑤𝑖) replaced by squares

𝑊𝑖+1 = 𝑊2
𝑖 mod 𝑁

= 𝑊2𝑖+1 mod 𝑁

8

Diodon’s Eval

𝑊 𝑊2 𝑊4 𝑊2𝑛−1

𝑠0𝑠1𝑠2𝑠𝑛

𝑊⋅𝑊mod𝑁

𝐻(𝑊2𝑛−1
)𝐻(𝑊2𝑛−1
)

𝐻(𝑊4, 𝑠0)𝐻(𝑊4, 𝑠0)𝐻(𝑊2𝑛−1
, 𝑠1)𝐻(𝑊2𝑛−1
, 𝑠1)

9

Diodon’s Eval

𝑊 𝑊2 𝑊4 𝑊2𝑛−1

𝑠0𝑠1𝑠2𝑠𝑛

𝑊⋅𝑊mod𝑁

𝐻(𝑊2𝑛−1
)𝐻(𝑊2𝑛−1
)

𝐻(𝑊4, 𝑠0)𝐻(𝑊4, 𝑠0)𝐻(𝑊2𝑛−1
, 𝑠1)𝐻(𝑊2𝑛−1
, 𝑠1)

9

Diodon’s TDEval

𝑊 𝑊2𝑗 mod 𝜑(𝑁) 𝑊2𝑛−1 mod 𝜑(𝑁)

𝑠0⋯𝑠𝑖𝑠𝑖+1⋯

𝐻(𝑊2𝑛−1
)

modular reduction & exponentiationmod. red. & exp.

𝐻(𝑊2𝑗 , 𝑠𝑖)

10

Diodon’s TDEval

𝑊 𝑊2𝑗 mod 𝜑(𝑁) 𝑊2𝑛−1 mod 𝜑(𝑁)

𝑠0⋯𝑠𝑖𝑠𝑖+1⋯

𝐻(𝑊2𝑛−1
)

modular reduction & exponentiationmod. red. & exp.

𝐻(𝑊2𝑗 , 𝑠𝑖)

10

Diodon’s properties

• Correctness: By inspection

• TD-Efficiency:

Eval ≈ 𝑛2 log(𝑁) ≫ TDEval ≈ 𝑛 log(𝑛) log(𝑁)2

• Memory-hardness:

11

Diodon’s properties

• Correctness: By inspection

• TD-Efficiency:

Eval ≈ 𝑛2 log(𝑁) ≫ TDEval ≈ 𝑛 log(𝑛) log(𝑁)2

• Memory-hardness:

11

Diodon’s properties

• Correctness: By inspection

• TD-Efficiency:

Eval ≈ 𝑛2 log(𝑁) ≫ TDEval ≈ 𝑛 log(𝑛) log(𝑁)2

• Memory-hardness:

11

Diodon’s properties

• Correctness: By inspection

• TD-Efficiency:

Eval ≈ 𝑛2 log(𝑁) ≫ TDEval ≈ 𝑛 log(𝑛) log(𝑁)2

• Memory-hardness: ???

11

Diodon’s properties

• Correctness: By inspection

• TD-Efficiency:

Eval ≈ 𝑛2 log(𝑁) ≫ TDEval ≈ 𝑛 log(𝑛) log(𝑁)2

• Memory-hardness: Yes (this work)

11

Main result

Theorem
Assuming that factoring is hard, Diodon has a CMC lower bounded by

Ω(𝑛2 log(𝑁) ⋅
1

log𝑛
)

in the (parallel) random oracle and generic group model

12

Main result

Theorem
Assuming that factoring is hard, Diodon has a CMC lower bounded by

Ω(𝑛2 log(𝑁) ⋅
1

log𝑛
)

in the (parallel) random oracle and generic group model

12

Main result

Theorem
Assuming that factoring is hard, Diodon has a CMC lower bounded by

Ω(𝑛2 log(𝑁) ⋅
1

log𝑛
)

in the (parallel) random oracle and generic group model

12

Main result

Theorem
Assuming that factoring is hard, Diodon has a CMC lower bounded by

Ω(𝑛2 log(𝑁) ⋅
1

log𝑛
)

in the (parallel) random oracle and generic group model

12

Proof outline
• Scrypt’s proof (Alwen et al., EC’17)

1. Single-challenge time-memory trade-off

2. Multi-challenge memory complexity lower bound

• Re-use multi-challenge lower bound (thankfully…)

• Primary hurdle: Single-challenge trade-off

13

Proof outline
• Scrypt’s proof (Alwen et al., EC’17)

1. Single-challenge time-memory trade-off

2. Multi-challenge memory complexity lower bound

• Re-use multi-challenge lower bound (thankfully…)

• Primary hurdle: Single-challenge trade-off

13

Proof outline
• Scrypt’s proof (Alwen et al., EC’17)

1. Single-challenge time-memory trade-off

2. Multi-challenge memory complexity lower bound

• Re-use multi-challenge lower bound (thankfully…)

• Primary hurdle: Single-challenge trade-off

13

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge trade-off

𝑊 𝑊2 𝑊4 𝑊8 𝑊16 𝑊32

Challenge 𝑗 = 2

𝑀-bit state

𝒜 GGM oracle

Challenger

𝑗 𝑊2𝑗

𝑊 𝑊2𝑊2 𝑊4 𝑊8

𝑗 = 2

𝑊 ⋅ 𝑊

𝑊2

𝑊2 ⋅ 𝑊2

𝑊4

𝑊4

14

Single-challenge intuition

• Memory reduced by 2/3…

• …but 1/3 of the challenges require 2 queries!

• Intuitively: 𝑀/ log𝑁 equidistant group elements offers good trade-off

• We prove that one cannot do much better

15

Single-challenge intuition

• Memory reduced by 2/3…

• …but 1/3 of the challenges require 2 queries!

• Intuitively: 𝑀/ log𝑁 equidistant group elements offers good trade-off

• We prove that one cannot do much better

15

Single-challenge intuition

• Memory reduced by 2/3…

• …but 1/3 of the challenges require 2 queries!

• Intuitively: 𝑀/ log𝑁 equidistant group elements offers good trade-off

• We prove that one cannot do much better

15

Single-challenge intuition

• Memory reduced by 2/3…

• …but 1/3 of the challenges require 2 queries!

• Intuitively: 𝑀/ log𝑁 equidistant group elements offers good trade-off

• We prove that one cannot do much better

15

Single-challenge bound

• 𝑀-bit state

• Challenge 𝑗 ∈ {0,… , 𝑛 − 1} requires 𝑡𝑗 GGM queries

Time-memory trade-off

Pr
𝑗
[𝑡𝑗 ≳

𝑛
2 ⋅ 𝑀/ log𝑁

⋅
1

log𝑛
] ≥

1
2

𝑀 small ⟹ 𝑡𝑗 large
1/2 of challenges

Equidistant strategy Not tight?
16

Single-challenge bound

• 𝑀-bit state

• Challenge 𝑗 ∈ {0,… , 𝑛 − 1} requires 𝑡𝑗 GGM queries

Time-memory trade-off

Pr
𝑗
[𝑡𝑗 ≳

𝑛
2 ⋅ 𝑀/ log𝑁

⋅
1

log𝑛
] ≥

1
2

𝑀 small ⟹ 𝑡𝑗 large
1/2 of challenges

Equidistant strategy Not tight?
16

Single-challenge bound

• 𝑀-bit state

• Challenge 𝑗 ∈ {0,… , 𝑛 − 1} requires 𝑡𝑗 GGM queries

Time-memory trade-off

Pr
𝑗
[𝑡𝑗 ≳

𝑛
2 ⋅ 𝑀/ log𝑁

⋅
1

log𝑛
] ≥

1
2

𝑀 small ⟹ 𝑡𝑗 large
1/2 of challenges

Equidistant strategy Not tight?
16

Single-challenge bound

• 𝑀-bit state

• Challenge 𝑗 ∈ {0,… , 𝑛 − 1} requires 𝑡𝑗 GGM queries

Time-memory trade-off

Pr
𝑗
[𝑡𝑗 ≳

𝑛
2 ⋅ 𝑀/ log𝑁

⋅
1

log𝑛
] ≥

1
2

𝑀 small ⟹ 𝑡𝑗 large
1/2 of challenges

Equidistant strategy Not tight?
16

Single-challenge bound

• 𝑀-bit state

• Challenge 𝑗 ∈ {0,… , 𝑛 − 1} requires 𝑡𝑗 GGM queries

Time-memory trade-off

Pr
𝑗
[𝑡𝑗 ≳

𝑛
2 ⋅ 𝑀/ log𝑁

⋅
1

log𝑛
] ≥

1
2

𝑀 small ⟹ 𝑡𝑗 large
1/2 of challenges

Equidistant strategy Not tight?
16

How to prove the bound?
Contradiction: 𝒜 answers

• quickly (most 𝑡𝑗 small)

• given small𝑀-bit state

• for most RSA moduli𝑁

1. Run𝒜 on all 𝑗 = 0,… , 𝑛 − 1
given small𝑀-bit state and

extract a system 𝐴 ⃗𝑥 = ⃗𝑏 using
the GGM oracle

2. Most 𝑡𝑗 small and𝜑(𝑁) hidden
⟹ ⃗𝑥 has many entries

3. Case 1: ⃗𝑥 has few entries

⟹ 𝒜 knows𝜑(𝑁)
⟹ Factor𝑁 �

4. Case 2: ⃗𝑥 has many entries
⟹ ⃗𝑥 contains a lot of info

about the GGM oracle

⟹ Compress to𝑀 bits �

17

How to prove the bound?
Contradiction: 𝒜 answers

• quickly (most 𝑡𝑗 small)

• given small𝑀-bit state

• for most RSA moduli𝑁

1. Run𝒜 on all 𝑗 = 0,… , 𝑛 − 1
given small𝑀-bit state and

extract a system 𝐴 ⃗𝑥 = ⃗𝑏 using
the GGM oracle

2. Most 𝑡𝑗 small and𝜑(𝑁) hidden
⟹ ⃗𝑥 has many entries

3. Case 1: ⃗𝑥 has few entries

⟹ 𝒜 knows𝜑(𝑁)
⟹ Factor𝑁 �

4. Case 2: ⃗𝑥 has many entries
⟹ ⃗𝑥 contains a lot of info

about the GGM oracle

⟹ Compress to𝑀 bits �

17

How to prove the bound?
Contradiction: 𝒜 answers

• quickly (most 𝑡𝑗 small)

• given small𝑀-bit state

• for most RSA moduli𝑁

1. Run𝒜 on all 𝑗 = 0,… , 𝑛 − 1
given small𝑀-bit state and

extract a system 𝐴 ⃗𝑥 = ⃗𝑏 using
the GGM oracle

2. Most 𝑡𝑗 small and𝜑(𝑁) hidden
⟹ ⃗𝑥 has many entries

3. Case 1: ⃗𝑥 has few entries

⟹ 𝒜 knows𝜑(𝑁)
⟹ Factor𝑁 �

4. Case 2: ⃗𝑥 has many entries
⟹ ⃗𝑥 contains a lot of info

about the GGM oracle

⟹ Compress to𝑀 bits �

17

How to prove the bound?
Contradiction: 𝒜 answers

• quickly (most 𝑡𝑗 small)

• given small𝑀-bit state

• for most RSA moduli𝑁

1. Run𝒜 on all 𝑗 = 0,… , 𝑛 − 1
given small𝑀-bit state and

extract a system 𝐴 ⃗𝑥 = ⃗𝑏 using
the GGM oracle

2. Most 𝑡𝑗 small and𝜑(𝑁) hidden
⟹ ⃗𝑥 has many entries

3. Case 1: ⃗𝑥 has few entries

⟹ 𝒜 knows𝜑(𝑁)
⟹ Factor𝑁 �

4. Case 2: ⃗𝑥 has many entries
⟹ ⃗𝑥 contains a lot of info

about the GGM oracle

⟹ Compress to𝑀 bits �

17

How to prove the bound?
Contradiction: 𝒜 answers

• quickly (most 𝑡𝑗 small)

• given small𝑀-bit state

• for most RSA moduli𝑁

1. Run𝒜 on all 𝑗 = 0,… , 𝑛 − 1
given small𝑀-bit state and

extract a system 𝐴 ⃗𝑥 = ⃗𝑏 using
the GGM oracle

2. Most 𝑡𝑗 small and𝜑(𝑁) hidden
⟹ ⃗𝑥 has many entries

3. Case 1: ⃗𝑥 has few entries

⟹ 𝒜 knows𝜑(𝑁)
⟹ Factor𝑁 �

4. Case 2: ⃗𝑥 has many entries
⟹ ⃗𝑥 contains a lot of info

about the GGM oracle

⟹ Compress to𝑀 bits �
17

Conclusion
Contribution
Diodon’s CMC lower bounded by

Ω(𝑛2 log(𝑁) ⋅
1

log𝑛
)

proving it memory-hard

Open questions

• Tight bound (no 1/ log𝑛)

• TMHF saving on time and

memory

• TMHF for other MHF flavors

Trapdoor Memory-Hard Functions

B. Auerbach, C. U. Günther, and K. Pietrzak

https://eprint.iacr.org/2024/312

