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Key Recovery

⊕
X∈X

X =
⊕
P∈P

E (P) = 0 =
⊕
C∈C

F (C⊕ K), For the right key K

Integral/Zero-Sum Distinguisher

Shibam • Eurocrypt 2024 — Motivation • 12/42



Key Recovery Programme

procedure foo(C ⊆ {0, 1}m of size 2m)

for K ∈ {0, 1}m do

S = 0

for C ∈ C do

S = S⊕ F (C⊕ K)

if S ̸= 0 then

Discard K

procedure bar(C ⊆ {0, 1}m of size 2m)

for K ∈ {0, 1}m do

S = 0

for C ∈ {0, 1}m do

S = S⊕ F (C⊕ K)GC(C)

if S ̸= 0 then

Discard K

GC(C) =

1, if occurrences of C is odd in C

0, if occurrences of C is even in C
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Key Recovery Programme

procedure foo(C ⊆ {0, 1}m of size 2m)

for K ∈ {0, 1}m do

S = 0

for C ∈ C do

S = S⊕ F (C⊕ K)

if S ̸= 0 then

Discard K

procedure bar(C ⊆ {0, 1}m of size 2m)

for K ∈ {0, 1}m do

S = 0

for C ∈ {0, 1}m do

S = S⊕ F (C⊕ K)GC(C)

if S ̸= 0 then

Discard K

BAR ≡ Convolution for each K,

F ∗ G (K) =
⊕

C∈{0,1}m
F (C⊕ K)G (C)
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The BAR matrix

F ∗ G (K) =
⊕

C∈{0,1}m
F (C⊕ K)G (C)



F (0⊕ 0) F (0⊕ 1) F (0⊕ 2) F (0⊕ 3) F (0⊕ 4) F (0⊕ 5) F (0⊕ 6) F (0⊕ 7)

F (1⊕ 0) F (1⊕ 1) F (1⊕ 2) F (1⊕ 3) F (1⊕ 4) F (1⊕ 5) F (1⊕ 6) F (1⊕ 7)

F (2⊕ 0) F (2⊕ 1) F (2⊕ 2) F (2⊕ 3) F (2⊕ 4) F (2⊕ 5) F (2⊕ 6) F (2⊕ 7)

F (3⊕ 0) F (3⊕ 1) F (3⊕ 2) F (3⊕ 3) F (3⊕ 4) F (3⊕ 5) F (3⊕ 6) F (3⊕ 7)

F (4⊕ 0) F (4⊕ 1) F (4⊕ 2) F (4⊕ 3) F (4⊕ 4) F (4⊕ 5) F (4⊕ 6) F (4⊕ 7)

F (5⊕ 0) F (5⊕ 1) F (5⊕ 2) F (5⊕ 3) F (5⊕ 4) F (5⊕ 5) F (5⊕ 6) F (5⊕ 7)

F (6⊕ 0) F (6⊕ 1) F (6⊕ 2) F (6⊕ 3) F (6⊕ 4) F (6⊕ 5) F (6⊕ 6) F (6⊕ 7)

F (7⊕ 0) F (7⊕ 1) F (7⊕ 2) F (7⊕ 3) F (7⊕ 4) F (7⊕ 5) F (7⊕ 6) F (7⊕ 7)


×



G (0)

G (1)

G (2)

G (3)

G (4)

G (5)

G (6)

G (7)


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The BAR matrix
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F (3⊕ 0) F (3⊕ 1) F (3⊕ 2) F (3⊕ 3) F (3⊕ 4) F (3⊕ 5) F (3⊕ 6) F (3⊕ 7)

F (4⊕ 0) F (4⊕ 1) F (4⊕ 2) F (4⊕ 3) F (4⊕ 4) F (4⊕ 5) F (4⊕ 6) F (4⊕ 7)

F (5⊕ 0) F (5⊕ 1) F (5⊕ 2) F (5⊕ 3) F (5⊕ 4) F (5⊕ 5) F (5⊕ 6) F (5⊕ 7)

F (6⊕ 0) F (6⊕ 1) F (6⊕ 2) F (6⊕ 3) F (6⊕ 4) F (6⊕ 5) F (6⊕ 6) F (6⊕ 7)

F (7⊕ 0) F (7⊕ 1) F (7⊕ 2) F (7⊕ 3) F (7⊕ 4) F (7⊕ 5) F (7⊕ 6) F (7⊕ 7)


8×8
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Properties of BAR matrix Mm

• Mm = 1
2m (Hm ×∆×Hm), Hm[i , j ] =

1
2m/2 (−1)i ·j

H1 =
1√
2

[
1 1

1 −1

]
H2 =

1

2


1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



In General Hm =
1

2m/2

[
Hm−1 Hm−1

Hm−1 −Hm−1

]

• FHT: A divide-and-conquer algorithm, complexity = O(m2m)
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Properties of BAR matrix Mm

• Mm = 1
2m (Hm ×∆×Hm), Hm[i , j ] =

1
2m/2 (−1)i ·j

• ∆ = Hm ×M0
m, whereM0

m is the first column ofMm

Mm × C =
1

2m
(Hm ×∆×Hm)× C

=
1

2m
(Hm × ((Hm ×M0

m) ⋆ (Hm × C)))

• Complexity: 22m → 4m2m

• For m = 32: 264 → 239
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Plan of this Section

1. Motivation

2. Integral attack on AES

3. Partial Sums Meet FFT

4. Results and Conclusion

Shibam • Eurocrypt 2024 — Integral attack on AES • 22/42



Integral Attack On AES

χ(K,C) = S(K4 ⊕ S3(K3 ⊕ C3)⊕ S2(K2 ⊕ C2)

⊕ S1(K1 ⊕ C1)⊕ S0(K0 ⊕ C0))

1. Naive Complexity: c × 272

2. FHT [Todo et al. [TA14]]: For each fixed

K4,

χ(K,C) = SK4(S3(K3 ⊕ C3)⊕ S2(K2 ⊕ C2)

⊕ S1(K1 ⊕ C1)⊕ S0(K0 ⊕ C0))
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2. FHT [Todo et al. [TA14]]: For each fixed

K4,

χ(K,C) = SK4(S3(K3 ⊕ C3)⊕ S2(K2 ⊕ C2)

⊕ S1(K1 ⊕ C1)⊕ S0(K0 ⊕ C0))
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The Problem with Finite Field Arithmetic

• F ∗ G (k) =
⊕
x

F (x ⊕ k)g(x) VS F ∗ G (k) =
∑
x

F (x ⊕ k)g(x)

• We need functions whose output is an integer and not an element of F8
2

• Todo et al. [TA14] proposed to consider 8 outputs separately

• F (K⊕ C) = (F 0(K⊕ C), ...,F 7(K⊕ C))

• and compute convolution for each F i separately

• So we need to run the algorithm for 8 times.

Complexity: Time c × 28 × 8× 239 and Memory f × 232
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Partial Sum Technique [FKL+00]

χ(K⊕ C) = S(K4 ⊕ S3(K3 ⊕ C3)⊕ S2(K2 ⊕ C2)⊕ S1(K1 ⊕ C1)⊕ S0(K0 ⊕ C0)))

• Guess (K1,K0) and compute S1(K1 ⊕ C1)⊕ S0(K0 ⊕ C0)

Declare an empty bit-array A1 of size 224

for c0, c1, c2, c3 ∈ {0, 1}32 do

a1 ← (S0(C0 ⊕ K0)⊕ S1(C1 ⊕ K1))GC(C0,C1,C2,C3)

A1[a1,C2,C3]← A1[a1,C2,C3]⊕ 1

χ(K⊕ C) = S(K4 ⊕ S3(K3 ⊕ C3)⊕ S2(K2 ⊕ C2)⊕ a1)

Complexity: 216 ∗ 232
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Partial Sum Technique [FKL+00] at a Glance

Complexity: Time c × 250 and Memory 224
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Plan of this Section

1. Motivation

2. Integral attack on AES

3. Partial Sums Meet FFT

4. Results and Conclusion
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Partial Sums Meet FFT

Basic Idea

• We follow the general structure of the partial sums attack

• Replace each partial sum with FFT

• However, rearrange the steps to make it FFT compatible

• Rearrange the steps again to reduce memory complexity
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Partial Sums Meet FFT

χ(K⊕ C) = S(K4 ⊕ S3(K3 ⊕ C3)⊕ S2(K2 ⊕ C2)⊕ S1(K1 ⊕ C1)⊕ S0(K0 ⊕ C0)))
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Partial Sums Meet FFT

χ(K⊕ C) = S(K4 ⊕ S3(K3 ⊕ C3)⊕ S2(K2 ⊕ C2)⊕ S1(K1 ⊕ C1)⊕ S0(K0 ⊕ C0)))

A1 = [ ] of size 216 × 224; ▷ 240 memory

for all (a1,C2,C3) ∈ {0, 1}24 do

for all (K0,K1) ∈ {0, 1}16 do

A1[K0,K1][a1,C2,C3]←
⊕
C0,C1

A[C0,C1,C2,C3] · 1(S0(C0 ⊕ K0)⊕ S1(C1 ⊕ K1) = a1)
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Partial Sums Meet FFT

for all (K0,K1) ∈ {0, 1}16 do

A2 = [ ] of size 28 × 216;

for all C3 do

for all (K2, a2) ∈ {0, 1}16 do

A2[K2][a2,C3]←
⊕
a1,C2

A1[K0,K1][a1,C2,C3] · 1(a1 ⊕ S2(C2 ⊕ K2) = a2)
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Partial Sums Meet FFT

for all (K0,K1) ∈ {0, 1}16 do

· · ·
for all k2 ∈ {0, 1}8 do

· · ·
for all k3 ∈ {0, 1}8 do

A4 of size 28;

for all k4 ∈ {0, 1}8 do

A4[k4]←
⊕
a3

A3[k3][a3] · S(a3 ⊕ k4)

for all k4 ∈ {0, 1}8 do

if A4[k4] ̸= 0 then

k0, k1, k2, k3, k4 is not a valid key candidate
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Complexities of Various Steps

Steps Time Memory

1 224 ∗ (4 ∗ 16 ∗ 216) = 246 240

2 216 ∗ (28 ∗ (4 ∗ 16 ∗ 216)) = 246 224

3 216 ∗ 28 ∗ (4 ∗ 16 ∗ 216) = 246 216

4 216 ∗ 28 ∗ 28 ∗ (8 ∗ 4 ∗ 8 ∗ 28) = 248 28

Total 248.5 240
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Packing Multiple FFT’s

for all (K0,K1) ∈ {0, 1}16 do

· · ·
for all k2 ∈ {0, 1}8 do

· · ·
for all k3 ∈ {0, 1}8 do

· · ·
for all k4 ∈ {0, 1}8 do

· · ·
A4[k4]←

⊕
a3

S(a3 ⊕ k4) · A3[k3][a3]
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Packing Technique

• We assume that the attack is implemented using 64-bit operations in software

• Computing one convolution (results one bit information) is a waste of resources

• We compute several convolution in parallel and pack the results in 64-bit

⊕
a3

S(a3 ⊕ k4) · A3[k3][a3] =
∑
a3

(27bS7(K⊕ C) + · · ·+ S0(K⊕ C))A3[k3][a3]

=
∑
a3

∑
j

2jbS j(K⊕ C) · A3[k3][a3]
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How large should b be?

• How large should b be so that S j(K⊕ C) < 2b ∀j ?

• Suppose S is a balanced function then each S j(K⊕ C) is the sum 128 elements

• Thus each S j(K⊕ C) is distributed as Bin(128, 1/2)

• Expectation is 64 and Standard deviation 4
√
2

• If b = 7, Using Chernoff bound, Pr(S j(K⊕ C) > 27) is extremely small
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How small should b be?

• If b is too large, this may cause an overflow

• Obviously we ignore overflow beyond 64 bits

• Assuming each s j(K⊕ C) < 2b, there will be no overflow if 7b < (64− n)

• Thus, b ≤ 7

Using b = 7, we compute 8 convolutions in parallel

Complexity: 245 VS 248
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Complexities of Various Steps

Steps Time Memory

1 246/7 240

2 246/7 224

3 246/7 216

4 248/8 28

Total ≈ 244 240

But still we need at least 128GB of memory
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Low memory Variant

for all K0 ∈ {0, 1}8 do

A0 of size 232; ▷ 232 memory

for all (C0,C1,C2,C3) ∈ {0, 1}32 do

a0 ← S0(C0 ⊕ K0)

A0[a0,C1,C2,C3]← A[C0,C1,C2,C3]

A1 of size 28 × 224; ▷ 232 memory

for all (C2,C3) ∈ {0, 1}16 do

for all (K1, a1) ∈ {0, 1}16 do

A1[K1][a1,C2,C3]←
⊕
a0,C1

A0[a0,C1,C2,C3] · 1(a0 ⊕ S1(C1 ⊕ K1) = a1)

Time: ≈ c × 246 and Memory: 0.5GB
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Integral Attack on 6-Round AES

FHT+Part. Sums FHT Part. Sums

AWS Instance m6i.32xlarge r6i.32xlarge m6i.32xlarge

Running Time(m) 48 3120 4859

Total Cost (USD) 5 418 497

In Conclusion: Our attack is 65 times faster and 83 times cheaper
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Integral Attack on 6-Round AES

Cipher Rounds Data Time Technique and Source

AES 6 232 CP 271 Enc. Square [DKR97]

6 · 232 CP 252 S-box Eval. Square & Partial sums [FKL+01]

271 ACPC 271 Enc. Boomerang [Bir04]

233 CP 252 S-box Eval. Square & Partial sums [Tun12]

6 · 232 CP 252 Add. Square & FHT [TA14]

226 CP 280 Enc. Mixture Differential [BDK+20]

255 ACPC 280 Enc. Retracing Boomerang [DKRS20]

279.7 ACPC 278 Enc. Boomeyong [RSP21]

259 ACPC 261 Enc. Truncated Boomerang [BL22]

233 CP 246.4 Add. Square & Partial sums & FHT
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The Improvement Matrix

AES Kuznyechik MISTY1 CLEFIA

Rounds 6 6 7 8 (Full) 12

Improvement Factor 25 26 26 23 230

Shibam • Eurocrypt 2024 — Results and Conclusion • 41/42



Thank You for your
attention!
Any questions?
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Our Attack Without Packing

• Factor of 6 improvement than Todo-Aoki’s attack

• 16/8 vs. 32 bit addition (Factor of 12 improvement)

• Factor of 8 improvement than Partial-sum attack
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Other Attacks With Packing

• Factor of 20 improvement than Todo-Aoki’s attack

• Factor of 60 improvement than Partial-sum attack
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Truncated boomerang attacks and application to AES-based ciphers.
Cryptology ePrint Archive, Report 2022/701, 2022.

Shibam • Eurocrypt 2024



https://eprint.iacr.org/2022/701.

Joan Daemen, Lars R. Knudsen, and Vincent Rijmen.

The block cipher square.

In Eli Biham, editor, Fast Software Encryption, 4th International Workshop, FSE

’97, Haifa, Israel, January 20-22, 1997, Proceedings, volume 1267 of Lecture

Notes in Computer Science, pages 149–165. Springer, 1997.

Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir.

The retracing boomerang attack.

In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology -

EUROCRYPT 2020 - 39th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,

Proceedings, Part I, volume 12105 of Lecture Notes in Computer Science, pages

280–309. Springer, 2020.

Shibam • Eurocrypt 2024

https://eprint.iacr.org/2022/701


Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David A.

Wagner, and Doug Whiting.

Improved cryptanalysis of rijndael.

In FSE, volume 1978 of Lecture Notes in Computer Science, pages 213–230.

Springer, 2000.

Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David

Wagner, and Doug Whiting.

Improved cryptanalysis of Rijndael.

In Bruce Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 213–230.

Springer, Heidelberg, April 2001.

Mostafizar Rahman, Dhiman Saha, and Goutam Paul.

Boomeyong: Embedding yoyo within boomerang and its applications to key

recovery attacks on AES and pholkos.

Shibam • Eurocrypt 2024



IACR Trans. Symmetric Cryptol., 2021(3):137–169, 2021.

Yosuke Todo and Kazumaro Aoki.

FFT key recovery for integral attack.

In Dimitris Gritzalis, Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, CANS

14, volume 8813 of LNCS, pages 64–81. Springer, Heidelberg, October 2014.

Michael Tunstall.

Improved “partial sums”-based square attack on AES.

In Proceedings of the International Conference on Security and Cryptography -

SECRYPT, (ICETE 2012), pages 25–34. INSTICC, SciTePress, 2012.

Shibam • Eurocrypt 2024


	Motivation
	Integral attack on AES
	Partial Sums Meet FFT
	Results and Conclusion
	Appendix

