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Introduction



Message Authentication Codes

MACKM T\

∗

\

t

• Using key K, message M is signed with tag T

• Verification takes K and (M,T ) and outputs

⊤ if tag is correct

⊥ if tag is incorrect

• Security goal: unforgeability

• Often, one adopts a stronger notion: PRF security

• MACK should behave like a random function

• Advprf
MAC(q) should be small
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Hash-then-PRF

Idea

• Process arbitrary length M through “weaker” universal hash HK1

• Protect with “stronger” FK2

Security

• Secure MAC function if

• H is ϵ-universal hash function

• F is pseudorandom function

• F can be replaced by (truncation of) block cipher E at some loss

• Extra message block can be entered after H if it is ϵ-XOR-universal

HK1

FK2

M

T

\ ∗

\ n

\
t

Ideally: HK1
is parallelizable
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Examples of Parallelizable Hash-then-PRF Designs

Protected counter sum [Ber99]

PMAC [BR02] (L = EK(0n)) LightMAC [LPTY16]

M1⟨1⟩s

FK1

M2⟨2⟩s

FK1

Mℓ10
∗⟨ℓ⟩s

FK1
. . .

0

FK1⟨0⟩s

T

M1

EK

21 ·L

M2

EK

22 ·L

Mℓ−1

EK

2ℓ−1 ·L

. . .

Mℓ10
∗

0

EK

⌊·⌋t

T

⟨1⟩s∥M1

EK1

⟨2⟩s∥M2
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“Expensive” Parallelizable Universal Hashing

• Parallelizable universal hashing is almost always built from block cipher

• Intuitively, it should be possible to build it from universal hashes

Goal: parallelizable domain extender for universal hashing

1 EliHash: fully parallelizable universal hash from fixed-length hashes

2 EliMAC: MAC function on top of EliHash

3 Instantiation of EliMAC using round-reduced AES

4 Side-result: flaws in earlier attempt Marvin [SBB+09, SB12]
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EliHash and EliMAC



EliHash

Building Blocks

• Two – not necessarily independent – families of hash functions:

• H : K′ × [1, . . . , µ] → K
• I : K ×X → Y

Design

• EliHash : K′ ×X [1...µ] → Y is defined as

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y
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EliHash: Security (1/2)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y ) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Goal

• XOR-universality of EliHash as long as H and I satisfy certain conditions

Technical Complications

• Ideally, we rely on XOR-universality of H and I

• Typically more than two evaluations of I are XORed

• We will have to rely on slightly stronger property of H : µ-independence

• Okay in our case as H has very small domain: [1, . . . , µ]
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EliHash: Security (2/3)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y ) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

General Result

• Let µ ∈ N be maximal message length to EliHash

• Let H : K′ × [1, . . . , µ] → K be δ-µ-independent

• Let I : K ×X → Y be ε-XOR-universal

• Then, EliHash : K′ ×X [1...µ] → Y is (|K|δ)µε-XOR-universal
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EliHash: Security (3/3)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y ) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Rough Proof Idea

• Consider any distinct X = (X1, . . . , Xℓ), X
′ = (X ′

1, . . . , X
′
ℓ′) and any Y

• We have to upper bound PrK (EliHashK(X)⊕ EliHashK(X ′) = Y )

1 Count the number of key tuples to I that fulfill a XOR-collision

2 Bound the probability that H hits one of these key tuples: ≤ δµ

3 Bound the number of possible key tuples: ≤ (|K|)µε
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EliMAC

Building Blocks

• Two – not necessarily independent – families of hash functions:

• H : {0, 1}k′ × [1, . . . , µ] → {0, 1}k
• I : {0, 1}k × {0, 1}n → {0, 1}n

• Block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

Design

• EliMAC ≈ LightMAC but with hashing part replaced by EliHash

10 / 15

M11

IHK1

M22

IHK1

Mℓ−1ℓ− 1

IHK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T



EliMAC: Security

Security Proof

• Views EliHash as universal hash function

• Composition to MAC similar to proof of LightMAC [LPTY16]

• Relies on security of truncation for last part [Sta78, BN18, Men19]

Tightness

• Matching attacks given in paper
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Instantiation



Heuristic Instantiation

Instantiation Using AES-128 [DR02]

• Instantiation of E : AES10(K,X)

• Instantiation of I : AES4(0,K ⊕X)

• 4-round AES-128 has good differential properties [KS07, DR10]

• Instantiation of H : AES7(K, ⟨i⟩32∥⟨i⟩32∥⟨i⟩32∥⟨i⟩32)
• µ-independence does not follow from XOR-universality

• It appears that 7 rounds suffice [DFJ13] for µ ≤ 232
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Theoretical Comparison

scheme
# AES rounds for ℓ blocks

bit length of
ℓ-block message

pre online total

LightMAC 0 10ℓ 10ℓ

96ℓ− 1

EliMAC 7(ℓ− 1) 4(ℓ− 1) + 10 11ℓ− 1

128ℓ− 1

• Here, ℓ ≤ µ = 232, and counter values encoded using s = 32 bits

• EliMAC invokes slightly more AES rounds than LightMAC

• However, it can process more message bits per block → improvement of ≈ 20%

• Precomputation can speed up EliMAC significantly

• Note: difference in • assumptions (on round-reduced AES for EliMAC) and

• generic security bounds (64-bit versus 56-bit)
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Benchmark

Comparison

• EliMAC-AES: default and with key precomputation

• Comparison with:

• LightMAC-AES [LPTY16]
• PMAC2-AES [CCJN21]
• ZMAC-Deoxys-TBC-256 [IMPS17, JNPS21]

• All parallelizable and with length independent bounds

• Cpb when authenticating 64/1536/4096 byte messages

Notes

• Security assumptions and bounds differ

• Key precomputation (“EliMAC p.c.”) is much faster but

comes with added memory requirements

64 1536 4096

Ivy Bridge

LightMAC 3.43 1.13 1.11

EliMAC 2.18 1.02 0.98

EliMAC p.c. 2.00 0.46 0.43

PMAC2 4.50 1.28 1.22

ZMAC 5.70 1.49 1.26

Broadwell

LightMAC 8.75 0.98 1.08

EliMAC 1.94 0.76 0.74

EliMAC p.c. 1.75 0.30 0.27

PMAC2 3.25 1.13 1.09

ZMAC 6.97 1.34 1.23

Skylake

LightMAC 2.53 0.86 0.85

EliMAC 1.56 0.70 0.69

EliMAC p.c. 1.31 0.27 0.26

PMAC2 1.71 0.67 0.64

ZMAC 4.64 0.91 0.84

Zen 2

LightMAC 2.18 0.58 0.58

EliMAC 1.31 0.45 0.42

EliMAC p.c. 0.87 0.14 0.13

PMAC2 1.31 0.58 0.56

ZMAC 4.34 0.88 0.81
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Conclusion

EliHash and EliMAC

• Domain extender for universal hashing and corresponding MAC

• Underlying hashes must be µ-independent and XOR-universal

• Potentially significant speed-up but under different assumptions

Future Research

• Avoiding µ-independence?

• Purely parallelizable universal hash function extender

Thank you for your attention!
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Marcos A. Simpĺıcio Jr., Pedro d’Aquino F. F. S. Barbuda, Paulo S. L. M. Barreto,

Tereza Cristina M. B. Carvalho, and Cintia B. Margi.

The MARVIN message authentication code and the LETTERSOUP

authenticated encryption scheme.

Security and Communication Networks, 2(2):165–180, 2009.

A. J. Stam.

Distance between sampling with and without replacement.

Statistica Neerlandica, 32(2):81–91, 1978.

15 / 15


	Introduction
	EliHash and EliMAC
	Instantiation
	Conclusion

