
EliMAC: Speeding Up LightMAC by Around 20%

Christoph Dobraunig, Bart Mennink, Samuel Neves

FSE 2024

March 25, 2024

1 / 15

Introduction

Message Authentication Codes

MACKM T\

∗

\

t

• Using key K, message M is signed with tag T

• Verification takes K and (M,T) and outputs

⊤ if tag is correct

⊥ if tag is incorrect

• Security goal: unforgeability

• Often, one adopts a stronger notion: PRF security

• MACK should behave like a random function

• Advprf
MAC(q) should be small

2 / 15

Message Authentication Codes

MACKM T\

∗

\

t

• Using key K, message M is signed with tag T

• Verification takes K and (M,T) and outputs

⊤ if tag is correct

⊥ if tag is incorrect

• Security goal: unforgeability

• Often, one adopts a stronger notion: PRF security

• MACK should behave like a random function

• Advprf
MAC(q) should be small

2 / 15

Message Authentication Codes

MACKM T\

∗

\

t

• Using key K, message M is signed with tag T

• Verification takes K and (M,T) and outputs

⊤ if tag is correct

⊥ if tag is incorrect

• Security goal: unforgeability

• Often, one adopts a stronger notion: PRF security

• MACK should behave like a random function

• Advprf
MAC(q) should be small

2 / 15

Hash-then-PRF

Idea

• Process arbitrary length M through “weaker” universal hash HK1

• Protect with “stronger” FK2

Security

• Secure MAC function if

• H is ϵ-universal hash function

• F is pseudorandom function

• F can be replaced by (truncation of) block cipher E at some loss

• Extra message block can be entered after H if it is ϵ-XOR-universal

HK1

FK2

M

T

\ ∗

\ n

\
t

Ideally: HK1
is parallelizable

3 / 15

Hash-then-PRF

Idea

• Process arbitrary length M through “weaker” universal hash HK1

• Protect with “stronger” FK2

Security

• Secure MAC function if

• H is ϵ-universal hash function

• F is pseudorandom function

• F can be replaced by (truncation of) block cipher E at some loss

• Extra message block can be entered after H if it is ϵ-XOR-universal

HK1

FK2

M

T

\ ∗

\ n

\
t

Ideally: HK1
is parallelizable

3 / 15

Hash-then-PRF

Idea

• Process arbitrary length M through “weaker” universal hash HK1

• Protect with “stronger” FK2

Security

• Secure MAC function if

• H is ϵ-universal hash function

• F is pseudorandom function

• F can be replaced by (truncation of) block cipher E at some loss

• Extra message block can be entered after H if it is ϵ-XOR-universal

HK1

FK2

M

T

\ ∗

\ n

\
t

Ideally: HK1
is parallelizable

3 / 15

Examples of Parallelizable Hash-then-PRF Designs

Protected counter sum [Ber99]

PMAC [BR02] (L = EK(0n)) LightMAC [LPTY16]

M1⟨1⟩s

FK1

M2⟨2⟩s

FK1

Mℓ10
∗⟨ℓ⟩s

FK1
. . .

0

FK1⟨0⟩s

T

M1

EK

21 ·L

M2

EK

22 ·L

Mℓ−1

EK

2ℓ−1 ·L

. . .

Mℓ10
∗

0

EK

⌊·⌋t

T

⟨1⟩s∥M1

EK1

⟨2⟩s∥M2

EK1

⟨ℓ− 1⟩s∥Mℓ−1

EK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T

4 / 15

Examples of Parallelizable Hash-then-PRF Designs

Protected counter sum [Ber99] PMAC [BR02] (L = EK(0n))

LightMAC [LPTY16]

M1⟨1⟩s

FK1

M2⟨2⟩s

FK1

Mℓ10
∗⟨ℓ⟩s

FK1
. . .

0

FK1⟨0⟩s

T

M1

EK

21 ·L

M2

EK

22 ·L

Mℓ−1

EK

2ℓ−1 ·L

. . .

Mℓ10
∗

0

EK

⌊·⌋t

T

⟨1⟩s∥M1

EK1

⟨2⟩s∥M2

EK1

⟨ℓ− 1⟩s∥Mℓ−1

EK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T

4 / 15

Examples of Parallelizable Hash-then-PRF Designs

Protected counter sum [Ber99] PMAC [BR02] (L = EK(0n)) LightMAC [LPTY16]

M1⟨1⟩s

FK1

M2⟨2⟩s

FK1

Mℓ10
∗⟨ℓ⟩s

FK1
. . .

0

FK1⟨0⟩s

T

M1

EK

21 ·L

M2

EK

22 ·L

Mℓ−1

EK

2ℓ−1 ·L

. . .

Mℓ10
∗

0

EK

⌊·⌋t

T

⟨1⟩s∥M1

EK1

⟨2⟩s∥M2

EK1

⟨ℓ− 1⟩s∥Mℓ−1

EK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T

4 / 15

“Expensive” Parallelizable Universal Hashing

• Parallelizable universal hashing is almost always built from block cipher

• Intuitively, it should be possible to build it from universal hashes

Goal: parallelizable domain extender for universal hashing

1 EliHash: fully parallelizable universal hash from fixed-length hashes

2 EliMAC: MAC function on top of EliHash

3 Instantiation of EliMAC using round-reduced AES

4 Side-result: flaws in earlier attempt Marvin [SBB+09, SB12]

5 / 15

“Expensive” Parallelizable Universal Hashing

• Parallelizable universal hashing is almost always built from block cipher

• Intuitively, it should be possible to build it from universal hashes

Goal: parallelizable domain extender for universal hashing

1 EliHash: fully parallelizable universal hash from fixed-length hashes

2 EliMAC: MAC function on top of EliHash

3 Instantiation of EliMAC using round-reduced AES

4 Side-result: flaws in earlier attempt Marvin [SBB+09, SB12]

5 / 15

“Expensive” Parallelizable Universal Hashing

• Parallelizable universal hashing is almost always built from block cipher

• Intuitively, it should be possible to build it from universal hashes

Goal: parallelizable domain extender for universal hashing

1 EliHash: fully parallelizable universal hash from fixed-length hashes

2 EliMAC: MAC function on top of EliHash

3 Instantiation of EliMAC using round-reduced AES

4 Side-result: flaws in earlier attempt Marvin [SBB+09, SB12]

5 / 15

EliHash and EliMAC

EliHash

Building Blocks

• Two – not necessarily independent – families of hash functions:

• H : K′ × [1, . . . , µ] → K
• I : K ×X → Y

Design

• EliHash : K′ ×X [1...µ] → Y is defined as

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

6 / 15

EliHash: Security (1/2)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Goal

• XOR-universality of EliHash as long as H and I satisfy certain conditions

Technical Complications

• Ideally, we rely on XOR-universality of H and I

• Typically more than two evaluations of I are XORed

• We will have to rely on slightly stronger property of H : µ-independence

• Okay in our case as H has very small domain: [1, . . . , µ]

7 / 15

EliHash: Security (1/2)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Goal

• XOR-universality of EliHash as long as H and I satisfy certain conditions

Technical Complications

• Ideally, we rely on XOR-universality of H and I

• Typically more than two evaluations of I are XORed

• We will have to rely on slightly stronger property of H : µ-independence

• Okay in our case as H has very small domain: [1, . . . , µ]

7 / 15

EliHash: Security (1/2)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Goal

• XOR-universality of EliHash as long as H and I satisfy certain conditions

Technical Complications

• Ideally, we rely on XOR-universality of H and I

• Typically more than two evaluations of I are XORed

• We will have to rely on slightly stronger property of H : µ-independence

• Okay in our case as H has very small domain: [1, . . . , µ]

7 / 15

EliHash: Security (1/2)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Goal

• XOR-universality of EliHash as long as H and I satisfy certain conditions

Technical Complications

• Ideally, we rely on XOR-universality of H and I

• Typically more than two evaluations of I are XORed

• We will have to rely on slightly stronger property of H : µ-independence

• Okay in our case as H has very small domain: [1, . . . , µ]
7 / 15

EliHash: Security (2/3)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

General Result

• Let µ ∈ N be maximal message length to EliHash

• Let H : K′ × [1, . . . , µ] → K be δ-µ-independent

• Let I : K ×X → Y be ε-XOR-universal

• Then, EliHash : K′ ×X [1...µ] → Y is (|K|δ)µε-XOR-universal

8 / 15

EliHash: Security (2/3)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

General Result

• Let µ ∈ N be maximal message length to EliHash

• Let H : K′ × [1, . . . , µ] → K be δ-µ-independent

• Let I : K ×X → Y be ε-XOR-universal

• Then, EliHash : K′ ×X [1...µ] → Y is (|K|δ)µε-XOR-universal

8 / 15

EliHash: Security (3/3)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Rough Proof Idea

• Consider any distinct X = (X1, . . . , Xℓ), X
′ = (X ′

1, . . . , X
′
ℓ′) and any Y

• We have to upper bound PrK (EliHashK(X)⊕ EliHashK(X ′) = Y)

1 Count the number of key tuples to I that fulfill a XOR-collision

2 Bound the probability that H hits one of these key tuples: ≤ δµ

3 Bound the number of possible key tuples: ≤ (|K|)µε

9 / 15

EliHash: Security (3/3)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Rough Proof Idea

• Consider any distinct X = (X1, . . . , Xℓ), X
′ = (X ′

1, . . . , X
′
ℓ′) and any Y

• We have to upper bound PrK (EliHashK(X)⊕ EliHashK(X ′) = Y)

1 Count the number of key tuples to I that fulfill a XOR-collision

2 Bound the probability that H hits one of these key tuples: ≤ δµ

3 Bound the number of possible key tuples: ≤ (|K|)µε

9 / 15

EliHash: Security (3/3)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Rough Proof Idea

• Consider any distinct X = (X1, . . . , Xℓ), X
′ = (X ′

1, . . . , X
′
ℓ′) and any Y

• We have to upper bound PrK (EliHashK(X)⊕ EliHashK(X ′) = Y)

1 Count the number of key tuples to I that fulfill a XOR-collision

2 Bound the probability that H hits one of these key tuples: ≤ δµ

3 Bound the number of possible key tuples: ≤ (|K|)µε

9 / 15

EliHash: Security (3/3)

X11

IHK

X22

IHK

Xµµ

IHK
. . .

0 Y

ε-XOR-universality

• For any distinct X,X ′ and any Y :

PrK (HK(X)⊕HK(X ′) = Y) ≤ ε

δ-µ-independence

• For any distinct Xi and any Yi:

PrK (∀µi=1 HK(Xi) = Yi) ≤ δµ

Rough Proof Idea

• Consider any distinct X = (X1, . . . , Xℓ), X
′ = (X ′

1, . . . , X
′
ℓ′) and any Y

• We have to upper bound PrK (EliHashK(X)⊕ EliHashK(X ′) = Y)

1 Count the number of key tuples to I that fulfill a XOR-collision

2 Bound the probability that H hits one of these key tuples: ≤ δµ

3 Bound the number of possible key tuples: ≤ (|K|)µε

9 / 15

EliMAC

Building Blocks

• Two – not necessarily independent – families of hash functions:

• H : {0, 1}k′ × [1, . . . , µ] → {0, 1}k
• I : {0, 1}k × {0, 1}n → {0, 1}n

• Block cipher E : {0, 1}k × {0, 1}n → {0, 1}n

Design

• EliMAC ≈ LightMAC but with hashing part replaced by EliHash

10 / 15

M11

IHK1

M22

IHK1

Mℓ−1ℓ− 1

IHK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T

EliMAC: Security

Security Proof

• Views EliHash as universal hash function

• Composition to MAC similar to proof of LightMAC [LPTY16]

• Relies on security of truncation for last part [Sta78, BN18, Men19]

Tightness

• Matching attacks given in paper

11 / 15

M11

IHK1

M22

IHK1

Mℓ−1ℓ− 1

IHK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T

EliMAC: Security

Security Proof

• Views EliHash as universal hash function

• Composition to MAC similar to proof of LightMAC [LPTY16]

• Relies on security of truncation for last part [Sta78, BN18, Men19]

Tightness

• Matching attacks given in paper

11 / 15

M11

IHK1

M22

IHK1

Mℓ−1ℓ− 1

IHK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T

Instantiation

Heuristic Instantiation

Instantiation Using AES-128 [DR02]

• Instantiation of E : AES10(K,X)

• Instantiation of I : AES4(0,K ⊕X)

• 4-round AES-128 has good differential properties [KS07, DR10]

• Instantiation of H : AES7(K, ⟨i⟩32∥⟨i⟩32∥⟨i⟩32∥⟨i⟩32)
• µ-independence does not follow from XOR-universality

• It appears that 7 rounds suffice [DFJ13] for µ ≤ 232

12 / 15

M11

IHK1

M22

IHK1

Mℓ−1ℓ− 1

IHK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T

Heuristic Instantiation

Instantiation Using AES-128 [DR02]

• Instantiation of E : AES10(K,X)

• Instantiation of I : AES4(0,K ⊕X)

• 4-round AES-128 has good differential properties [KS07, DR10]

• Instantiation of H : AES7(K, ⟨i⟩32∥⟨i⟩32∥⟨i⟩32∥⟨i⟩32)
• µ-independence does not follow from XOR-universality

• It appears that 7 rounds suffice [DFJ13] for µ ≤ 232

12 / 15

M11

IHK1

M22

IHK1

Mℓ−1ℓ− 1

IHK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T

Heuristic Instantiation

Instantiation Using AES-128 [DR02]

• Instantiation of E : AES10(K,X)

• Instantiation of I : AES4(0,K ⊕X)

• 4-round AES-128 has good differential properties [KS07, DR10]

• Instantiation of H : AES7(K, ⟨i⟩32∥⟨i⟩32∥⟨i⟩32∥⟨i⟩32)
• µ-independence does not follow from XOR-universality

• It appears that 7 rounds suffice [DFJ13] for µ ≤ 232

12 / 15

M11

IHK1

M22

IHK1

Mℓ−1ℓ− 1

IHK1
. . .

Mℓ10
∗

0

EK2

⌊·⌋t

T

Theoretical Comparison

scheme
AES rounds for ℓ blocks

bit length of
ℓ-block message

pre online total

LightMAC 0 10ℓ 10ℓ

96ℓ− 1

EliMAC 7(ℓ− 1) 4(ℓ− 1) + 10 11ℓ− 1

128ℓ− 1

• Here, ℓ ≤ µ = 232, and counter values encoded using s = 32 bits

• EliMAC invokes slightly more AES rounds than LightMAC

• However, it can process more message bits per block → improvement of ≈ 20%

• Precomputation can speed up EliMAC significantly

• Note: difference in • assumptions (on round-reduced AES for EliMAC) and

• generic security bounds (64-bit versus 56-bit)

13 / 15

Theoretical Comparison

scheme
AES rounds for ℓ blocks bit length of

ℓ-block messagepre online total

LightMAC 0 10ℓ 10ℓ 96ℓ− 1

EliMAC 7(ℓ− 1) 4(ℓ− 1) + 10 11ℓ− 1 128ℓ− 1

• Here, ℓ ≤ µ = 232, and counter values encoded using s = 32 bits

• EliMAC invokes slightly more AES rounds than LightMAC

• However, it can process more message bits per block → improvement of ≈ 20%

• Precomputation can speed up EliMAC significantly

• Note: difference in • assumptions (on round-reduced AES for EliMAC) and

• generic security bounds (64-bit versus 56-bit)

13 / 15

Theoretical Comparison

scheme
AES rounds for ℓ blocks bit length of

ℓ-block messagepre online total

LightMAC 0 10ℓ 10ℓ 96ℓ− 1

EliMAC 7(ℓ− 1) 4(ℓ− 1) + 10 11ℓ− 1 128ℓ− 1

• Here, ℓ ≤ µ = 232, and counter values encoded using s = 32 bits

• EliMAC invokes slightly more AES rounds than LightMAC

• However, it can process more message bits per block → improvement of ≈ 20%

• Precomputation can speed up EliMAC significantly

• Note: difference in • assumptions (on round-reduced AES for EliMAC) and

• generic security bounds (64-bit versus 56-bit)

13 / 15

Theoretical Comparison

scheme
AES rounds for ℓ blocks bit length of

ℓ-block messagepre online total

LightMAC 0 10ℓ 10ℓ 96ℓ− 1

EliMAC 7(ℓ− 1) 4(ℓ− 1) + 10 11ℓ− 1 128ℓ− 1

• Here, ℓ ≤ µ = 232, and counter values encoded using s = 32 bits

• EliMAC invokes slightly more AES rounds than LightMAC

• However, it can process more message bits per block → improvement of ≈ 20%

• Precomputation can speed up EliMAC significantly

• Note: difference in • assumptions (on round-reduced AES for EliMAC) and

• generic security bounds (64-bit versus 56-bit)

13 / 15

Benchmark

Comparison

• EliMAC-AES: default and with key precomputation

• Comparison with:

• LightMAC-AES [LPTY16]
• PMAC2-AES [CCJN21]
• ZMAC-Deoxys-TBC-256 [IMPS17, JNPS21]

• All parallelizable and with length independent bounds

• Cpb when authenticating 64/1536/4096 byte messages

Notes

• Security assumptions and bounds differ

• Key precomputation (“EliMAC p.c.”) is much faster but

comes with added memory requirements

64 1536 4096

Ivy Bridge

LightMAC 3.43 1.13 1.11

EliMAC 2.18 1.02 0.98

EliMAC p.c. 2.00 0.46 0.43

PMAC2 4.50 1.28 1.22

ZMAC 5.70 1.49 1.26

Broadwell

LightMAC 8.75 0.98 1.08

EliMAC 1.94 0.76 0.74

EliMAC p.c. 1.75 0.30 0.27

PMAC2 3.25 1.13 1.09

ZMAC 6.97 1.34 1.23

Skylake

LightMAC 2.53 0.86 0.85

EliMAC 1.56 0.70 0.69

EliMAC p.c. 1.31 0.27 0.26

PMAC2 1.71 0.67 0.64

ZMAC 4.64 0.91 0.84

Zen 2

LightMAC 2.18 0.58 0.58

EliMAC 1.31 0.45 0.42

EliMAC p.c. 0.87 0.14 0.13

PMAC2 1.31 0.58 0.56

ZMAC 4.34 0.88 0.81

14 / 15

Benchmark

Comparison

• EliMAC-AES: default and with key precomputation

• Comparison with:

• LightMAC-AES [LPTY16]
• PMAC2-AES [CCJN21]
• ZMAC-Deoxys-TBC-256 [IMPS17, JNPS21]

• All parallelizable and with length independent bounds

• Cpb when authenticating 64/1536/4096 byte messages

Notes

• Security assumptions and bounds differ

• Key precomputation (“EliMAC p.c.”) is much faster but

comes with added memory requirements

64 1536 4096

Ivy Bridge

LightMAC 3.43 1.13 1.11

EliMAC 2.18 1.02 0.98

EliMAC p.c. 2.00 0.46 0.43

PMAC2 4.50 1.28 1.22

ZMAC 5.70 1.49 1.26

Broadwell

LightMAC 8.75 0.98 1.08

EliMAC 1.94 0.76 0.74

EliMAC p.c. 1.75 0.30 0.27

PMAC2 3.25 1.13 1.09

ZMAC 6.97 1.34 1.23

Skylake

LightMAC 2.53 0.86 0.85

EliMAC 1.56 0.70 0.69

EliMAC p.c. 1.31 0.27 0.26

PMAC2 1.71 0.67 0.64

ZMAC 4.64 0.91 0.84

Zen 2

LightMAC 2.18 0.58 0.58

EliMAC 1.31 0.45 0.42

EliMAC p.c. 0.87 0.14 0.13

PMAC2 1.31 0.58 0.56

ZMAC 4.34 0.88 0.81

14 / 15

Conclusion

Conclusion

EliHash and EliMAC

• Domain extender for universal hashing and corresponding MAC

• Underlying hashes must be µ-independent and XOR-universal

• Potentially significant speed-up but under different assumptions

Future Research

• Avoiding µ-independence?

• Purely parallelizable universal hash function extender

Thank you for your attention!

15 / 15

Conclusion

EliHash and EliMAC

• Domain extender for universal hashing and corresponding MAC

• Underlying hashes must be µ-independent and XOR-universal

• Potentially significant speed-up but under different assumptions

Future Research

• Avoiding µ-independence?

• Purely parallelizable universal hash function extender

Thank you for your attention!

15 / 15

Conclusion

EliHash and EliMAC

• Domain extender for universal hashing and corresponding MAC

• Underlying hashes must be µ-independent and XOR-universal

• Potentially significant speed-up but under different assumptions

Future Research

• Avoiding µ-independence?

• Purely parallelizable universal hash function extender

Thank you for your attention!

15 / 15

References i

Daniel J. Bernstein.

How to Stretch Random Functions: The Security of Protected Counter

Sums.

J. Cryptology, 12(3):185–192, 1999.

Srimanta Bhattacharya and Mridul Nandi.

A note on the chi-square method: A tool for proving cryptographic

security.

Cryptography and Communications, 10(5):935–957, 2018.

15 / 15

References ii

John Black and Phillip Rogaway.

A Block-Cipher Mode of Operation for Parallelizable Message

Authentication.

In Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002,

International Conference on the Theory and Applications of Cryptographic

Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings,

volume 2332 of Lecture Notes in Computer Science, pages 384–397. Springer,

2002.

Bishwajit Chakraborty, Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi.

On Length Independent Security Bounds for the PMAC Family.

IACR Trans. Symmetric Cryptol., 2021(2):423–445, 2021.

15 / 15

References iii

Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean.

Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key

Setting.

In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology -

EUROCRYPT 2013, 32nd Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.

Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 371–387.

Springer, 2013.

Joan Daemen and Vincent Rijmen.

The Design of Rijndael: AES - The Advanced Encryption Standard.

Information Security and Cryptography. Springer, 2002.

15 / 15

References iv

Joan Daemen and Vincent Rijmen.

Refinements of the ALRED construction and MAC security claims.

IET Information Security, 4(3):149–157, 2010.

Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.

ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message

Authentication.

In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology -

CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara,

CA, USA, August 20-24, 2017, Proceedings, Part III, volume 10403 of Lecture

Notes in Computer Science, pages 34–65. Springer, 2017.

15 / 15

References v

Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin.

The Deoxys AEAD Family.

J. Cryptol., 34(3):31, 2021.

Liam Keliher and Jiayuan Sui.

Exact maximum expected differential and linear probability for two-round

Advanced Encryption Standard.

IET Information Security, 1(2):53–57, 2007.

15 / 15

References vi

Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda.

A MAC Mode for Lightweight Block Ciphers.

In Thomas Peyrin, editor, Fast Software Encryption - 23rd International

Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected

Papers, volume 9783 of Lecture Notes in Computer Science, pages 43–59.

Springer, 2016.

Bart Mennink.

Linking Stam’s Bounds with Generalized Truncation.

In Mitsuru Matsui, editor, Topics in Cryptology - CT-RSA 2019 - The

Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA, USA,

March 4-8, 2019, Proceedings, volume 11405 of Lecture Notes in Computer

Science, pages 313–329. Springer, 2019.

15 / 15

References vii

Marcos A. Simpĺıcio Jr. and Paulo S. L. M. Barreto.

Revisiting the Security of the ALRED Design and Two of Its Variants:

Marvin and LetterSoup.

IEEE Trans. Inf. Theory, 58(9):6223–6238, 2012.

Marcos A. Simpĺıcio Jr., Pedro d’Aquino F. F. S. Barbuda, Paulo S. L. M. Barreto,

Tereza Cristina M. B. Carvalho, and Cintia B. Margi.

The MARVIN message authentication code and the LETTERSOUP

authenticated encryption scheme.

Security and Communication Networks, 2(2):165–180, 2009.

A. J. Stam.

Distance between sampling with and without replacement.

Statistica Neerlandica, 32(2):81–91, 1978.

15 / 15

	Introduction
	EliHash and EliMAC
	Instantiation
	Conclusion

