Automating the Search for Cryptanalytic Attacks

Maria Eichlseder

m FSE 2024
m Leuven - 26 Mar 2024

> https://iaik.tugraz.at

TU

Grazm

https://iaik.tugraz.at

== Outline

& Motivation

$$ Finding Distinguishers with MILP/SAT Solvers
* Mixed-Integer Linear Programming (MILP)
* Boolean Satisfiability and Constraint Programming (SAT/SMT, CP)

£ Dedicated Algorithms
&, Optimized Key Recovery Attacks

& Frameworks

/29

Motivation

Differential Cryptanalysis [Bs90]

Method

AX

Ex)

AY

3/29

Differential Cryptanalysis [Bs90]

Method

AX

Ex)

AY

Attack Goals

AX
Ex

p

Ayl

AY—D
0

collision,
forgery

AX
Ex

—

AY IIIl

@

key recovery

3/29

Linear Cryptanalysis [Mat93]

Method

Lmear mask (¢
Ex|

)

Linear mask 6

4/29

Linear Cryptanalysis [Mat93]

Method

Lmear mask (¢
Ex|

T

Linear mask 6

Attack Goals

[0} [0}

Ex Ex
p p
5 b 5 [k
M= @
Ci

confidentiality key recovery

4/29

Integral Cryptanalysis [Lai94; Knu94; KW02]

Method

Cube space)%
Ex

deg

Zero-sum =0

5/29

Integral Cryptanalysis [Lai94; Knu94; KW02]

Method

Cube space 1%
Ex

deg

Zero-sum =0

Attack Goals

YV V
Ex Ex
deg deg
©=0_| ©=0
e o
Ci

confidentiality key recovery

5/29

How to Find Distinguishers

@ By hand

6/29

How to Find Distinguishers

@ By hand

£ Dedicated solvers

6/29

How to Find Distinguishers

@ By hand
£ Dedicated solvers

23 General-purpose solvers:

m SAT/SMT (Boolean SATisfiability/Sat. Modulo Theories)
= MILP (Mixed Integer Linear Programming)
= CP (Constraint Programming)

41 maxXx =+ y
% S,
1 .MlLP .
0

/29

Finding Distinguishers with MILP/SAT Solvers

x‘

Basic Approach

A Model constraints that characterize correct characteristics/solutions

m Coarse-grained: truncated patterns (which S-boxes are active?)

m Fine-grained: precise differences/masks

&fe Model cost (if applicable)

Express the search goal: any one / all / best / good solution(s)?

7/29

Mixed-Integer Linear Program (MILP)

Linear Programming (LP) is a method to solve optimization problems

on the real-valued, positive decision variables x € RY, x > 0

with a linear objective function (min or max) f(x) = c'x = 3.7, ¢xx;

under J linear constraints (s.t.) Ax < b, i.e., Zf’zl ax; < bjforl <j < J:

max {c'x | Ax < b Ax >0}
xR

/29

Mixed-Integer Linear Program (MILP)

Linear Programming (LP) is a method to solve optimization problems
= on the real-valued, positive decision variablesx € RY x > 0

= with a linear objective function (min or max) f(x) = c'x = 327 . cix;

= under J linear constraints (s.t.) Ax < b, i.e., Zf’zl ax; < bjforl <j < J:

max {c'x | Ax < b Ax >0}
xR

Mixed-Integer Linear Programming (MILP) allows some of the decision
variables to be constrained to integer values: x € Z/ x R,

/29

LP vs. MILP

9/29

LP vs. MILP

9/29

MILP - Example application: AES [MWGP11; WW11]

Y
a
™

B o M spMiHsrM MCI

I SB‘I

Variables: 1 binary variable per state byte (active/inactive)

10/29

MILP - Example application: AES [MWGP11; WW11]

Y
a
™

a mHseMHHsr ™ MCI

I SB‘I

Variables: 1 binary variable per state byte (active/inactive)

= AddRoundKey:

10/29

MILP - Example application: AES [MWGP11; WW11]

Y
a
™

a mHseMHHsr ™ MCI

I SB‘I

Variables: 1 binary variable per state byte (active/inactive)

® AddRoundKey: input = output

10/29

MILP - Example application: AES [MWGP11; WW11]

Y
a
™

AW > > >
D

B o M spMiHsrM MCI

I SB‘I

Variables: 1 binary variable per state byte (active/inactive)

® AddRoundKey: input = output

= SubBytes:

10/29

MILP - Example application: AES [MWGP11; WW11]

Y
a
™

AW > > >
D

B o M spMiHsrM MCI

I SB‘I

Variables: 1 binary variable per state byte (active/inactive)

® AddRoundKey: input = output

= SubBytes: input = output, cost = sum(inputs)

10/29

MILP - Example application: AES [MWGP11; WW11]

Y
a
™

a mHseMHHsr ™ MCI

I SB‘I

Variables: 1 binary variable per state byte (active/inactive)

® AddRoundKey: input = output
= SubBytes: input = output, cost = sum(inputs)

m ShiftRows:

10/29

MILP - Example application: AES [MWGP11; WW11]

Y
a
™

a mHseMHHsr ™ MCI

I SB‘I

Variables: 1 binary variable per state byte (active/inactive)

® AddRoundKey: input = output
= SubBytes: input = output, cost = sum(inputs)

= ShiftRows: variable renaming

10/29

MILP - Example application: AES [MWGP11; WW11]

Y
a
™

a mHseMHHsr ™ MCI

I SB‘I

Variables: 1 binary variable per state byte (active/inactive)

® AddRoundKey: input = output
= SubBytes: input = output, cost = sum(inputs)
= ShiftRows: variable renaming

® MixColumns:

10/29

MILP - Example application: AES [MWGP11; WW11]

Y
a
™

a mHseMHHsr ™ MCI

(BRI

Variables: 1 binary variable per state byte (active/inactive)

® AddRoundKey: input = output
= SubBytes: input = output, cost = sum(inputs)
= ShiftRows: variable renaming

= MixColumns: for each active column: sum(inputs) + sum(outputs) > 5 (= B)

10/29

MILP - Example application: AES [MwGP11]

Variables:
= S,jj €{0,1}:IsS-boxinrow i, columnjinround r active?

= M, € {0,1}:Is MixColumns in round r active?

11/29

MILP - Example application: AES [MwGP11]

Variables:
= S,jj €{0,1}:IsS-boxinrow i, columnjinround r active?

= M, € {0,1}:Is MixColumns in round r active?

Linear Program:

min Z Srij (Min # active S-boxes)
riij

st. B-M,; < ZS,, (i+/)%4 + ZS,+1 ij <8-M,; (Foreach MixColumns)

ZSO ij>1 (Non-triviality)

11/29

MILP - Example application: AES - Code in sagemath

#!/usr/bin/env sage

rounds = range (4)

p = MixedIntegerLinearProgram(maximization=False)
S = p.new_variable(name=’sbox’, binary=True)

M = p.new_variable(name=’mcol’, binary=True)

for r in rounds:
for j in [0..3]:
activecells = sum(S[r,i,(i+j)%4] for i imn [0..3]) \
+ sum(S[r+1,i,j] for i in [0..3])
p.add_constraint (6*xM[r,j] <= activecells <= 8xM[r,j])
p-add_constraint (sum(S[0,i,j] for i in [0..3] for j in [0..3]) >= 1)

p.set_objective (sum(S[r,i,j] for r in rounds for i in [0..3] \
for j in [0..3]))

p-solve()

print (p.get_objective_value(), p.get_values(S))

12/29

MILP - Advanced models

= Modeling more complex relations of “allowed transitions” accurately

m Activity patterns for linear layers: XOR, near-MDS matrices [ABD+23], ...
= DDT/LAT for bitwise S-box models [SHW+14b; SHW+14a], ARX [FWG+16]

= Need to translate vertex representation into half-space representation

inputs 0,0 — outputd

. L+ >0
inputsCl, @ — outputl

XOR :) L+0>1,
inputsl,[] — outputl

L+02>1

inputsm, @ — outputCorm

= For large tables, this becomes very heavy (e.g., 8-bit S-boxes [AST+17; SW23])

13/29

SAT/SMT/CP - Different Levels of Convenience

SAT (Satisfiability) Solvers: Find valid solution or prove unsatisfiability of CNF
/\ \/ i with literals ¢;; € {vi;, =i }
i

Example solvers: MiniSAT, lingeling, and a myriad others

14/29

SAT/SMT/CP - Different Levels of Convenience
SAT (Satisfiability) Solvers: Find valid solution or prove unsatisfiability of CNF
/\\/&J with literals éizj c {V,‘)j,ﬁv,"j}
i
Example solvers: MiniSAT, lingeling, and a myriad others

SMT (Sat. Modulo Theories) Solvers: Accept a more general grammar
including bitvector operations such as integer addition.

Example solvers: STP (“Simple Theorem Prover”), ...

14/29

SAT/SMT/CP - Different Levels of Convenience

SAT (Satisfiability) Solvers: Find valid solution or prove unsatisfiability of CNF
/\ \/ i with literals ¢;; € {vi;, =i }
i

Example solvers: MiniSAT, lingeling, and a myriad others

SMT (Sat. Modulo Theories) Solvers: Accept a more general grammar
including bitvector operations such as integer addition.

Example solvers: STP (“Simple Theorem Prover”), ...

CP (Constraint Programming) Solvers: Accept an even more general
grammar (depends on solver).

Example solvers/frameworks: MiniZinc, Z3, Choco, ...

14/29

SAT/SMT/CP for Finding Distinguishers [MP13; kol14]

© Solves a constraint satisfaction problem, may not be optimal

m “Emulate” optimization: “is there a solution betterthan X, X + 1, X +2,...?”

Useful to find valid solutions under some constraints

® Finding characteristics that follow a given truncated pattern
m Finding solutions for other crypto problems (preimage, ...)

@ Not so efficient for some more complex problems

= Not so good for modelling a cost sum or optimization [EME22]
= Not perfectly parallelizable

15/29

Dedicated Algorithms
o

Dedicated Tools for Hash Functions: Examples

= SHA-1:HashClash
O https://github.com/cr-marcstevens/hashclash

= SHA-2:nldtool
O https://github.com/iaikkrypto/nldtool

= SHA-3:KeccakTools
() https://github.com/KeccakTeam/KeccakTools

16/29

https://github.com/cr-marcstevens/hashclash
https://github.com/iaikkrypto/nldtool
https://github.com/KeccakTeam/KeccakTools

Dedicated Guess-and-Determine Search

m Guess-and-Determine Search is a general search strategy

m Traverse search tree to find a valid solution
m SAT solvers use it on CNF level

m Thisis an example on small (differential) circuits

X17

17/29

Dedicated Guess-and-Determine Search

m Guess-and-Determine Search is a general search strategy

m Traverse search tree to find a valid solution
m SAT solvers use it on CNF level

m Thisis an example on small (differential) circuits

m nldtool: Automated search for characteristics and solutions AX

m Hash collision search
= Application example: SHA-2 [MNS11; MNS13; DEM15]

X

0

17/29

Guess-and-Determine Search Algorithm

while there are undetermined bits do
Decision (Guessing)
Pick an undetermined bit
Constrain this bit
Deduction (Propagating)
Propagate the new information to other variables and equations
if no inconsistency is detected, goto step 1
Correction (Backtracking)
if possible, apply a different constraint to this bit, goto step 3

A else undo guesses until this critical bit can be resolved

18/29

Example: Semi-Free-Start Collision for 39-step SHA-512

3

b

0

m

;

8

8 V—
12

1

15

16

17

3

20

o Shows state words 4,
2 Ei, W;

27

%

3 m Inputs IV, m;
33

= A E. W:

' ! ! m Output h;

0 i

2

3

19/29

Example: Semi-Free-Start Collision for 39-step SHA-512

VR

V()

2r777

277777777277777777

Starting point:

0.

N

“Local Collision”
with few active
message words

Active words with
differences [7]

No differences [-]
(cancellation required)

No differences [-]

19/29

Example: Semi-Free-Start Collision for 39-step SHA-512

v® VG Search strategy:

1. Fix high-probability parts

m Active words with some
: : differences [7]

m Active bits [n,u,x]

DWW W W W W NN NN N o b s s s
RE RO SR N RN R U S5 NanRERESvo~wonswn o Hbbh

: . ; j o Inactive bits [-]
g E
Y ht

w
womo &

19/29

Example: Semi-Free-Start Collision for 39-step SHA-512

VA

V()

oNonrwNRO LGS

mo
5 "]
gl‘llll o "a |||1L|| -{n‘“" #ﬁ A '.hlt iy
i m | n HII.II
B! ! m |
: e iy
% [
24 1
gg Ai E; W;
? @ 3
L h

Search strategy:
1. Fix high-probability parts

2. Fixsigned differences

m Active bits [n,u]
o Inactive bits [-]

inactive bits [0, 1]

19/29

Example: Semi-Free-Start Collision for 39-step SHA-512

oNonrwNRO LGS

VA

V()

Mo
*lhh i "u ||I‘Ll| Inhllullr“ I#HI:: :ﬁ 'J |
| -l 0 Bl |
Ai E; W;
th) hgf)

Search strategy:
1. Fix high-probability parts
2. Fixsigned differences

3. Find message pair

m Active bits [n,u]
o Inactive bits [-]

inactive bits [0, 1]

19/29

Example: Semi-Free-Start Collision for 39-step SHA-512

3 [VA) [V(E)

;

mo
8

wullhle o "an |||‘Ll| 1 1 !

£ I.I'.r 1|,T' i
E " nr

B! ! |

ig ! q- H

21

gg L

% !

%

%

E

32

i

gg A,' E,' W,'
38

: (4) (E)

: hy hy

Search strategy:
1. Fix high-probability parts
2. Fixsigned differences

3. Find message pair

m Active bits [n,u]
o Inactive bits [-]

inactive bits [0, 1]

19/29

Example: Semi-Free-Start Collision for 39-step SHA-512

3 [VA) [V(E)

;

mo
8

wullhle o "an |||‘Ll| 1 1 !

£ I.I'.r 1|,T' i
E " nr

B! ! |

ig ! q- H

21

gg L

% !

%

%

E

32

i

gg A,' E,' W,'
38

: (4) (E)

: hy hy

Search strategy:
1. Fix high-probability parts
2. Fixsigned differences

3. Find message pair

m Active bits [n,u]
o Inactive bits [-]

inactive bits [0, 1]

19/29

Example: Semi-Free-Start Collision for 39-step SHA-512

Search strategy:
1. Fix high-probability parts
2. Fixsigned differences

3. Find message pair

m Active bits [n,u]

o Inactive bits [-]

4
3
2
1

0

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
7
18
19
20
21
2
23
2
25
2
27
28
29
30
31
2
3
34
35
36
37
38

0

1

2

3

m Fixed inactive bits [0,1]

19/29

Optimized Key Recovery Attacks
R

The Need for Tools

© Key recovery has long been ignored

© Fewer choices to make for the attacker

..but...

20/29

The Need for Tools

© Key recovery has long been ignored

© Fewer choices to make for the attacker
...but...

Optimizations involve choices and tradeoffs
Precise evaluation is tedious

“Optimal” distinguisher doesn’t guarantee optimal attack

20/29

Optimizing (Only) the Key-Recovery Steps: Examples

m Guess-and-determine attacks:
= Autoguess [HE22a] ©)¢

%https://github.com/hadipourh/autoguess

21/29

https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero
https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero

Optimizing (Only) the Key-Recovery Steps: Examples

m Guess-and-determine attacks:
= Autoguess [HE22a] ©)¢

= Differential cryptanalysis:
= keyrecoverytool [Nag22] ©) ©

%https://github.com/hadipourh/autoguess
bhttps ://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool

pt e
Soojoole0] [0 en
EIEIE) 00| 3 2,

[sloefaloo] o w00
9008 00 oojgjoo, 9 90 0 00

00 00 B8] 00
00 00 88l 00

wout.

fwd =3
bwd =41

nix 0

T0[o0[08[00]
‘Ig
4

sbox o
whiwd=l6 wfwd
whwd =45 wbwd=

b 1 ark &

21/29

https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero
https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero

Optimizing (Only) the Key-Recovery Steps: Examples

m Guess-and-determine attacks:
= Autoguess [HE22a] ©) ¢

= Differential cryptanalysis:

= keyrecoverytool [Nag22] ©)°
= KYRYDI[BDD+24] ©)¢

“https://github.com/hadipourh/autoguess
bhttps ://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
‘https://gitlab.inria.fr/capsule/kyrydi

21/29

https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero
https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero

Optimizing (Only) the Key-Recovery Steps: Examples

m Guess-and-determine attacks:
= Autoguess [HE22a] ©)¢

= Differential cryptanalysis:
= keyrecoverytool [Nag22] ©) ©
= KYRYDI [BDD+24] ©) ¢

= Integral cryptanalysis:
m Graph-based [HE22b] ©) ¢

%https://github.com/hadipourh/autoguess

bhttps ://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
‘https://gitlab.inria.fr/capsule/kyrydi

dhttps ://github.com/hadipourh/mpt

6
m Ciphertext nibbles of Cf, “
B Whitening key nibbles of K, .
® Internal nibbles of F1,(Kr,Cr)
® Internal key nibbles of K7, Nt E) seac
Preprocessed key and ciphertext nibbles "

21/29

https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero
https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero

Optimizing (Only) the Key-Recovery Steps: Examples

m Guess-and-determine attacks:
Autoguess [HE22a] ©) ¢

= Differential cryptanalysis:

= Integral cryptanalysis:

Graph-based [HE22b] ©) ¢
AutoPSy [HSE23]) ¢

keyrecoverytool [Nag22] ©) ©
KYRYDI [BDD+24] ©) ¢

X Vo STKe Zu Wio Xy Yu o STKw _Zu vy Xg
" = " & .

nttps
brtt
ps
Chttps
Inee
ps
ehttps

://github.
://extgit.
://gitlab.
://github.
://github.

com/hadipourh/autoguess

iaik.tugraz.at/castle/tool/keyrecoverytool

inria.fr/capsule/kyrydi

com/hadipourh/mpt

com/hadipourh/zero

Minitialround ~ Many Mnonzero Mintegral Plkeybranch1 [dkeybranch2 Mactive tweak

21/29

https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero
https://github.com/hadipourh/autoguess
https://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
https://gitlab.inria.fr/capsule/kyrydi
https://github.com/hadipourh/mpt
https://github.com/hadipourh/zero

Why Optimizing Full Key Recovery Attacks is Challenging

S Preferably use a joint model for distinguisher and key recovery

> Only works for satisfiability-based distinguishers

22/29

Why Optimizing Full Key Recovery Attacks is Challenging

S Preferably use a joint model for distinguisher and key recovery

> Only works for satisfiability-based distinguishers

B Complexity formulas are often complicated

> Mix of polynomial/exponential terms; simplified assumptions

22/29

Why Optimizing Full Key Recovery Attacks is Challenging
S Preferably use a joint model for distinguisher and key recovery
> Only works for satisfiability-based distinguishers

B Complexity formulas are often complicated

> Mix of polynomial/exponential terms; simplified assumptions

e Multi-step processes lead to heavy models

22/29

Why Optimizing Full Key Recovery Attacks is Challenging
S Preferably use a joint model for distinguisher and key recovery
> Only works for satisfiability-based distinguishers

B Complexity formulas are often complicated

> Mix of polynomial/exponential terms; simplified assumptions

e Multi-step processes lead to heavy models

&, Very different types of key schedules

22/29

Why Optimizing Full Key Recovery Attacks is Challenging

S Preferably use a joint model for distinguisher and key recovery

> Only works for satisfiability-based distinguishers

B Complexity formulas are often complicated

> Mix of polynomial/exponential terms; simplified assumptions
@ Multi-step processes lead to heavy models
&, Very different types of key schedules

Many different optimizations and strategies

22/29

Impossibility-based Distinguishers

Some distinguishers are based on the non-existence of a valid characteristic:

= Differential > Impossible differentials Z Ex

23/29

Impossibility-based Distinguishers

Some distinguishers are based on the non-existence of a valid characteristic:

= Differential > Impossible differentials E

= Linear> Zero-correlation linear approximations

-}

23/29

Impossibility-based Distinguishers

Some distinguishers are based on the non-existence of a valid characteristic:

mu(X)

= Differential > Impossible differentials E

= Linear> Zero-correlation linear approximations

s

= Integral> Division/monomial trail; ZC-based integrals
7rV(Y)

However, models for full attacks need solution-based distinguisher models
(or a quantified language like QSAT)

23/29

Two Ways of Modelling Impossibility

O Unsatisfiability-based: AJ.EVWWWWMJ

> First specify distinguisher, then check

> Precise, but potentially slow

24/29

Two Ways of Modelling Impossibility

O Unsatisfiability-based: AJ.EWWWWMJ

> First specify distinguisher, then check

> Precise, but potentially slow

-based: AJ({ w)

> Find distinguisher that misses in the middle ¥

Y
> Typically efficient, but less precise P

24/29

Example: Finding Full ID/ZC/Integral Attacks [HSE23]

= Impossible-differential (ID) attacks

Bronzero Wany Binvolved Baif. o}

25/29

Example: Finding Full ID/ZC/Integral Attacks [HSE23]

= Impossible-differential (ID) attacks

m Zero-correlation (ZC) attacks

Bnonzero Wany Mlinvolved in key-recovery

25/29

Example: Finding Full ID/ZC/Integral Attacks [HSE23]

= Impossible-differential (ID) attacks

m Zero-correlation (ZC) attacks

m ZC-based integral attacks*

Lx

sc|
7. 477 4

Minitislround Many Mnonzero Mlintegral Blkeybranch1 ke branch2 Hlactive tweak

25/29

Frameworks

&

What exactly is a “Framework”?

Judging from paper titles, we have a plethora of frameworks, but ...

Generality & Applicability
Reuseability & Extensibility

Maintainability & Verifiability

26/29

Frameworks: Examples

L CryptoSMT [K6l14; AK18] ©) https://github.com/kste/cryptosmt

m Differential/linear trails, clustering, key/preimage recovery,...;
based on SMT (STP, Boolector, CryptoMiniSat)

L2 CASCADA[RR22]€) https://github.com/ranea/CASCADA

m Differential/linear trails, impossible differentials/zero-correlation, ...;
based on SMT

L CLAASP [BGG+23] ©) https://github.com/Crypto-TII/claasp

= All of the above, neural tests; supports many solvers

27/29

https://github.com/kste/cryptosmt
https://github.com/ranea/CASCADA
https://github.com/Crypto-TII/claasp

Frameworks: Challenges

= Cipher representation

m Based on building blocks? As a DAG? Software/hardware code?

m Efficiency vs. precision

= Simplicity vs. dedicated optimizations

28/29

Frameworks: Challenges

Cipher representation

m Based on building blocks? As a DAG? Software/hardware code?

m Efficiency vs. precision

= Simplicity vs. dedicated optimizations

= Meta-challenges: Conflicting incentives in academia

28/29

Conclusion

£ Tools and solvers can help find attacks and derive bounds

Q_ Very active area with many open challenges

More efficient and precise models

Application to other design paradigms and attack techniques
Modeling full attacks (not just the distinguisher)

Frameworks and reuseability

29/29

Bibliography |

[ABD+23]

[AK18]

[AST+17]

[BDD+24]

[BGG+23]

Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam Ghosh, Marcel Nageler,
and Francesco Regazzoni. The QARMAv2 Family of Tweakable Block Ciphers. IACR Trans. Symmetric
Cryptol. 2023.3 (2023), pp. 25-73. pOI: 10.46586/T0SC.V2023.13.25-73.

Ralph Ankele and Stefan Kolbl. Mind the Gap - A Closer Look at the Security of Block Ciphers against
Differential Cryptanalysis. SAC 2018. Vol. 11349. LNCS. Springer, 2018, pp. 163-190. pol:
10.1007/978-3-030-10970-7_8.

Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M. Youssef. MILP Modeling for
(Large) S-boxes to Optimize Probability of Differential Characteristics. IACR Transactions on
Symmetric Cryptology 2017.4 (2017), pp. 99-129. boI: 10.13154/tosc.v2017.14.99-129.

Christina Boura, Nicolas David, Patrick Derbez, Rachelle Heim Boissier, and Maria Naya-Plasencia. A
generic algorithm for efficient key recovery in differential attacks - and its associated tool. IACR
Cryptol. ePrint Arch. (2024), p. 288. URL: https://eprint.iacr.org/2024/288.

Emanuele Bellini, David Gérault, Juan Grados, Yun Ju Huang, Rusydi H. Makarim, Mohamed Rachidi, and
Sharwan K. Tiwari. CLAASP: A Cryptographic Library for the Automated Analysis of Symmetric
Primitives. SAC 2023. Vol. 14201. LNCS. Springer, 2023, pp. 387-408. pol:
10.1007/978-3-031-53368-6_19.

https://doi.org/10.46586/TOSC.V2023.I3.25-73
https://doi.org/10.1007/978-3-030-10970-7_8
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://eprint.iacr.org/2024/288
https://doi.org/10.1007/978-3-031-53368-6_19

Bibliography I

[BS90]

[DEM15]

[EME22]

[FWG+16]

[HE22a]

[HE22b]

Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Advances in
Cryptology - CRYPTO 1990. Vol. 537. LNCS. Springer, 1990, pp. 2-21. poI: 10.1007/3-540-38424-3_1.

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Analysis of SHA-512/224 and SHA-512/256.
Advances in Cryptology - ASIACRYPT 2015. Vol. 9453. LNCS. Springer, 2015, pp. 612-630. DOI:
10.1007/978-3-662-48800-3_25.

Johannes Erlacher, Florian Mendel, and Maria Eichlseder. Bounds for the Security of Ascon against
Differential and Linear Cryptanalysis. IACR Trans. Symmetric Cryptol. 2022.1 (2022), pp. 64-87. pol:
10.46586/T0SC.V2022.11.64-87. URL: https://doi.org/10.46586/tosc.v2022.i1.64-87.

Kai Fu, Meigin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. MILP-Based Automatic Search Algorithms for
Differential and Linear Trails for Speck. Fast Software Encryption - FSE 2016. Vol. 9783. LNCS. Springer,
2016, pp. 268-288. p0I: 10.1007/978-3-662-52993-5_14.

Hosein Hadipour and Maria Eichlseder. Autoguess: A Tool for Finding Guess-and-Determine Attacks
and Key Bridges. ACNS 2022. Vol. 13269. LNCS. Springer, 2022, pp. 230-250. bot:
10.1007/978-3-031-09234-3_12.

Hosein Hadipour and Maria Eichlseder. Integral Cryptanalysis of WARP based on Monomial Prediction.
IACR Trans. Symmetric Cryptol. 2022.2 (2022), pp. 92-112. poI: 10.46586/T0SC.V2022.12.92-112.

https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.46586/TOSC.V2022.I1.64-87
https://doi.org/10.46586/tosc.v2022.i1.64-87
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-031-09234-3_12
https://doi.org/10.46586/TOSC.V2022.I2.92-112

Bibliography Il

[HSE23]

[Knu94]

[Kol14]

[KW02]

[Lai94]

[Mat93]

Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the Impossible: Automated Search
for Full Impossible-Differential, Zero-Correlation, and Integral Attacks. EUROCRYPT 2023. Vol. 14007.
LNCS. Springer, 2023, pp. 128-157. DoI: 10.1007/978-3-031-30634-1_5.

Lars R. Knudsen. Truncated and Higher Order Differentials. Fast Software Encryption - FSE 1994.
Vol. 1008. LNCS. Springer, 1994, pp. 196-211. pbol: 10.1007/3-540-60590-8_16.

Stefan Kolbl. CryptoSMT: An easy to use tool for cryptanalysis of symmetric primitives. 2014. URrL:
https://github.com/kste/cryptosmt.

Lars R. Knudsen and David Wagner. Integral Cryptanalysis. Fast Software Encryption - FSE 2002.
Vol. 2365. LNCS. Springer, 2002, pp. 112-127. pol: 10.1007/3-540-45661-9_9.

Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis. Communications and
Cryptography: Two Sides of One Tapestry. Vol. 276. International Series in Engineering and Computer
Science. Kluwer Academic Publishers, 1994, pp. 227-233. p0oI: 10.1007/978-1-4615-2694-0_23.

Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. Advances in Cryptology - EUROCRYPT
1993. Vol. 765. LNCS. Springer, 1993, pp. 386-397. D0I: 10.1007/3-540-48285-7_33.

https://doi.org/10.1007/978-3-031-30634-1_5
https://doi.org/10.1007/3-540-60590-8_16
https://github.com/kste/cryptosmt
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/3-540-48285-7_33

Bibliography IV

[MNS11]

[MNS13]

[MP13]

[MWGP11]

[Nag22]

[RR22]

Florian Mendel, Tomislav Nad, and Martin Schléffer. Finding SHA-2 Characteristics: Searching through
a Minefield of Contradictions. Advances in Cryptology - ASIACRYPT 2011. Vol. 7073. LNCS. Springer,
2011, pp. 288-307. p0I: 10.1007/978-3-642-25385-0_16.

Florian Mendel, Tomislav Nad, and Martin Schlaffer. Improving Local Collisions: New Attacks on
Reduced SHA-256. Advances in Cryptology - EUROCRYPT 2013. Vol. 7881. LNCS. Springer, 2013,
pp. 262-278.D001: 10.1007/978-3-642-38348-9_16.

Nicky Mouha and Bart Preneel. Towards Finding Optimal Differential Characteristics for ARX:
Application to Salsa20. IACR Cryptology ePrint Archive, Report 2013/328. 2013.

Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and Linear Cryptanalysis Using
Mixed-Integer Linear Programming. Information Security and Cryptology - Inscrypt 2011. Vol. 7537.
LNCS. Springer, 2011, pp. 57-76. DOI: 10.1007/978-3-642-34704-7_5.

Marcel Nageler. Automatic cryptanlysis of block ciphers: Finding efficient key-recovery attacks.
MA thesis. Graz University of Technology, 2022. po1: 10.3217/n8ehm-dgj71.

Adrian Ranea and Vincent Rijmen. Characteristic automated search of cryptographic algorithms for
distinguishing attacks (CASCADA). IET Inf. Secur. 16.6 (2022), pp. 470-481. poI: 10.1049/ISE2.12077.
URL:https://doi.org/10.1049/ise2.12077.

https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.3217/n8ehm-dgj71
https://doi.org/10.1049/ISE2.12077
https://doi.org/10.1049/ise2.12077

Bibliography V

[SHW+14a]

[SHW+14b]

[SW23]

[Ww11]

Siwei Sun, Lei Hu, Meigin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Danping Shi, Ling Song, and
Kai Fu. Towards Finding the Best Characteristics of Some Bit-oriented Block Ciphers and Automatic
Enumeration of (Related-key) Differential and Linear Characteristics with Predefined Properties.
IACR Cryptology ePrint Archive, Report 2014/747. 2014.

Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Automatic Security
Evaluation and (Related-key) Differential Characteristic Search: Application to SIMON, PRESENT,
LBlock, DES(L) and Other Bit-Oriented Block Ciphers. Advances in Cryptology - ASIACRYPT 2014.
Vol. 8873. LNCS. Springer, 2014, pp. 158-178. pol: 10.1007/978-3-662-45611-8_9.

Ling Sun and Meigin Wang. SoK: Modeling for Large S-boxes Oriented to Differential Probabilities and
Linear Correlations. IACR Trans. Symmetric Cryptol. 2023.1 (2023), pp. 111-151. pol:
10.46586/T0SC.V2023.11.111-151.

Shengbao Wu and Mingsheng Wang. Security Evaluation against Differential Cryptanalysis for Block
Cipher Structures. IACR Cryptology ePrint Archive, Report 2011/551. 2011.

https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.46586/TOSC.V2023.I1.111-151

	Motivation
	
	Finding Distinguishers with MILP/SAT Solvers
	
	Mixed-Integer Linear Programming (MILP)
	Boolean Satisfiability and Constraint Programming (SAT/SMT, CP)

	Dedicated Algorithms
	
	Optimized Key Recovery Attacks
	
	Frameworks
	
	References

