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Differential Cryptanalysis [Bs90]
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Linear Cryptanalysis [Mat93]
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Integral Cryptanalysis [Lai94; Knu94; KW02]
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Integral Cryptanalysis [Lai94; Knu94; KW02]
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How to Find Distinguishers

@ By hand
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How to Find Distinguishers

@ By hand
£ Dedicated solvers

23 General-purpose solvers:

m  SAT/SMT (Boolean SATisfiability/Sat. Modulo Theories)
= MILP (Mixed Integer Linear Programming)
=  CP (Constraint Programming)
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Finding Distinguishers with MILP/SAT Solvers

x‘



Basic Approach

A Model constraints that characterize correct characteristics/solutions

m  Coarse-grained: truncated patterns (which S-boxes are active?)

m  Fine-grained: precise differences/masks

&fe Model cost (if applicable)

Express the search goal: any one / all / best / good solution(s)?
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Mixed-Integer Linear Program (MILP)

Linear Programming (LP) is a method to solve optimization problems

on the real-valued, positive decision variables x € RY, x > 0

with a linear objective function (min or max) f(x) = c'x = 3.7, ¢xx;

under J linear constraints (s.t.) Ax < b, i.e., Zf’zl ax; < bjforl <j < J:

max {c'x | Ax < b Ax >0}
xR
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Mixed-Integer Linear Program (MILP)

Linear Programming (LP) is a method to solve optimization problems
= on the real-valued, positive decision variablesx € RY x > 0

= with a linear objective function (min or max) f(x) = c'x = 327 . cix;

= under J linear constraints (s.t.) Ax < b, i.e., Zf’zl ax; < bjforl <j < J:

max {c'x | Ax < b Ax >0}
xR

Mixed-Integer Linear Programming (MILP) allows some of the decision
variables to be constrained to integer values: x € Z/ x R,
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LP vs. MILP
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LP vs. MILP
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MILP - Example application: AES [MWGP11; WW11]
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MILP - Example application: AES [MWGP11; WW11]

Y
a
™

a mHseMHHsr ™ MCI

(BRI

Variables: 1 binary variable per state byte (active/inactive)

® AddRoundKey: input = output
= SubBytes: input = output, cost = sum(inputs)
= ShiftRows: variable renaming

= MixColumns: for each active column: sum(inputs) + sum(outputs) > 5 (= B)
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MILP - Example application: AES [MwGP11]

Variables:
= S,jj €{0,1}:IsS-boxinrow i, columnjinround r active?

= M, € {0,1}:Is MixColumns in round r active?
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MILP - Example application: AES [MwGP11]

Variables:
= S,jj €{0,1}:IsS-boxinrow i, columnjinround r active?

= M, € {0,1}:Is MixColumns in round r active?

Linear Program:

min Z Srij (Min # active S-boxes)
riij

st. B-M,; < ZS,, (i+/)%4 + ZS,+1 ij <8-M,; (Foreach MixColumns)

ZSO ij>1 (Non-triviality)
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MILP - Example application: AES - Code in sagemath

#!/usr/bin/env sage

rounds = range (4)

p = MixedIntegerLinearProgram(maximization=False)
S = p.new_variable(name=’sbox’, binary=True)

M = p.new_variable(name=’mcol’, binary=True)

for r in rounds:
for j in [0..3]:
activecells = sum(S[r,i,(i+j)%4] for i imn [0..3]) \
+ sum(S[r+1,i,j] for i in [0..3])
p.add_constraint (6*xM[r,j] <= activecells <= 8xM[r,j])
p-add_constraint (sum(S[0,i,j] for i in [0..3] for j in [0..3]) >= 1)

p.set_objective (sum(S[r,i,j] for r in rounds for i in [0..3] \
for j in [0..3]))

p-solve()

print (p.get_objective_value(), p.get_values(S))
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MILP - Advanced models

= Modeling more complex relations of “allowed transitions” accurately

m  Activity patterns for linear layers: XOR, near-MDS matrices [ABD+23], ...
= DDT/LAT for bitwise S-box models [SHW+14b; SHW+14a], ARX [FWG+16]

= Need to translate vertex representation into half-space representation

inputs 0,0 — outputd

. L+ >0
inputsCl, @ — outputl

XOR : ) L+0>1,
inputsl,[] — outputl

L+02>1

inputsm, @ — outputCorm

= For large tables, this becomes very heavy (e.g., 8-bit S-boxes [AST+17; SW23])
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SAT/SMT/CP - Different Levels of Convenience

SAT (Satisfiability) Solvers: Find valid solution or prove unsatisfiability of CNF
/\ \/ i with literals ¢;; € {vi;, =i }
i

Example solvers: MiniSAT, lingeling, and a myriad others
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SAT (Satisfiability) Solvers: Find valid solution or prove unsatisfiability of CNF
/\ \/ i with literals ¢;; € {vi;, =i }
i

Example solvers: MiniSAT, lingeling, and a myriad others

SMT (Sat. Modulo Theories) Solvers: Accept a more general grammar
including bitvector operations such as integer addition.

Example solvers: STP (“Simple Theorem Prover”), ...

CP (Constraint Programming) Solvers: Accept an even more general
grammar (depends on solver).

Example solvers/frameworks: MiniZinc, Z3, Choco, ...
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SAT/SMT/CP for Finding Distinguishers [MP13; kol14]

© Solves a constraint satisfaction problem, may not be optimal

m  “Emulate” optimization: “is there a solution betterthan X, X + 1, X +2,...?”

Useful to find valid solutions under some constraints

®  Finding characteristics that follow a given truncated pattern
m  Finding solutions for other crypto problems (preimage, ...)

@ Not so efficient for some more complex problems

= Not so good for modelling a cost sum or optimization [EME22]
= Not perfectly parallelizable
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Dedicated Algorithms
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Dedicated Tools for Hash Functions: Examples

= SHA-1:HashClash
O https://github.com/cr-marcstevens/hashclash

= SHA-2:nldtool
O https://github.com/iaikkrypto/nldtool

= SHA-3:KeccakTools
() https://github.com/KeccakTeam/KeccakTools
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Dedicated Guess-and-Determine Search

m  Guess-and-Determine Search is a general search strategy

m  Traverse search tree to find a valid solution
m  SAT solvers use it on CNF level

m  Thisis an example on small (differential) circuits

X17
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Dedicated Guess-and-Determine Search

m  Guess-and-Determine Search is a general search strategy

m  Traverse search tree to find a valid solution
m  SAT solvers use it on CNF level

m  Thisis an example on small (differential) circuits

m nldtool: Automated search for characteristics and solutions AX

m  Hash collision search
= Application example: SHA-2 [MNS11; MNS13; DEM15]

X

0
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Guess-and-Determine Search Algorithm

while there are undetermined bits do
Decision (Guessing)
Pick an undetermined bit
Constrain this bit
Deduction (Propagating)
Propagate the new information to other variables and equations
if no inconsistency is detected, goto step 1
Correction (Backtracking)
if possible, apply a different constraint to this bit, goto step 3

A else undo guesses until this critical bit can be resolved
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Example: Semi-Free-Start Collision for 39-step SHA-512
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Example: Semi-Free-Start Collision for 39-step SHA-512
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Example: Semi-Free-Start Collision for 39-step SHA-512

v® VG Search strategy:

1. Fix high-probability parts

m Active words with some
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Example: Semi-Free-Start Collision for 39-step SHA-512

Search strategy:
1. Fix high-probability parts
2. Fixsigned differences

3. Find message pair

m Active bits [n,u]

o Inactive bits [-]
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Optimized Key Recovery Attacks
R



The Need for Tools

© Key recovery has long been ignored

© Fewer choices to make for the attacker

..but...
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The Need for Tools

© Key recovery has long been ignored

© Fewer choices to make for the attacker
...but...

Optimizations involve choices and tradeoffs
Precise evaluation is tedious

“Optimal” distinguisher doesn’t guarantee optimal attack
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Optimizing (Only) the Key-Recovery Steps: Examples

m  Guess-and-determine attacks:
= Autoguess [HE22a] ©)¢

%https://github.com/hadipourh/autoguess
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m  Guess-and-determine attacks:
= Autoguess [HE22a] ©)¢

= Differential cryptanalysis:
= keyrecoverytool [Nag22] ©) ©
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Optimizing (Only) the Key-Recovery Steps: Examples

m  Guess-and-determine attacks:
= Autoguess [HE22a] ©)¢

= Differential cryptanalysis:
= keyrecoverytool [Nag22] ©) ©
= KYRYDI [BDD+24] ©) ¢

= Integral cryptanalysis:
m  Graph-based [HE22b] ©) ¢

%https://github.com/hadipourh/autoguess

bhttps ://extgit.iaik.tugraz.at/castle/tool/keyrecoverytool
‘https://gitlab.inria.fr/capsule/kyrydi

dhttps ://github.com/hadipourh/mpt

6
m Ciphertext nibbles of Cf, “
B Whitening key nibbles of K, .
® Internal nibbles of F1,(Kr,Cr)
® Internal key nibbles of K7, Nt E ) seac
Preprocessed key and ciphertext nibbles "
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Optimizing (Only) the Key-Recovery Steps: Examples

m  Guess-and-determine attacks:
Autoguess [HE22a] ©) ¢

= Differential cryptanalysis:

= Integral cryptanalysis:

Graph-based [HE22b] ©) ¢
AutoPSy [HSE23] ) ¢

keyrecoverytool [Nag22] ©) ©
KYRYDI [BDD+24] ©) ¢
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Why Optimizing Full Key Recovery Attacks is Challenging

S Preferably use a joint model for distinguisher and key recovery

> Only works for satisfiability-based distinguishers
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Why Optimizing Full Key Recovery Attacks is Challenging

S Preferably use a joint model for distinguisher and key recovery

> Only works for satisfiability-based distinguishers

B Complexity formulas are often complicated

> Mix of polynomial/exponential terms; simplified assumptions
@ Multi-step processes lead to heavy models
&, Very different types of key schedules

# Many different optimizations and strategies
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Impossibility-based Distinguishers

Some distinguishers are based on the non-existence of a valid characteristic:

= Differential > Impossible differentials Z Ex
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Impossibility-based Distinguishers

Some distinguishers are based on the non-existence of a valid characteristic:

mu(X)

= Differential > Impossible differentials E

= Linear> Zero-correlation linear approximations

s

= Integral> Division/monomial trail; ZC-based integrals
7rV(Y)

However, models for full attacks need solution-based distinguisher models
(or a quantified language like QSAT)
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Two Ways of Modelling Impossibility

O Unsatisfiability-based: AJ.EVWWWWMJ

> First specify distinguisher, then check

> Precise, but potentially slow

24/29



Two Ways of Modelling Impossibility

O Unsatisfiability-based: AJ.EWWWWMJ

> First specify distinguisher, then check

> Precise, but potentially slow

-based: AJ({ w)

> Find distinguisher that misses in the middle ¥

Y
> Typically efficient, but less precise P
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Example: Finding Full ID/ZC/Integral Attacks [HSE23]

= Impossible-differential (ID) attacks

Bronzero Wany  Binvolved Baif. o}
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Example: Finding Full ID/ZC/Integral Attacks [HSE23]

= Impossible-differential (ID) attacks

m  Zero-correlation (ZC) attacks

Bnonzero Wany  Mlinvolved in key-recovery
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Example: Finding Full ID/ZC/Integral Attacks [HSE23]

= Impossible-differential (ID) attacks

m  Zero-correlation (ZC) attacks

m  ZC-based integral attacks*

Lx
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Minitislround  Many  Mnonzero  Mlintegral Blkeybranch1 ke branch2  Hlactive tweak
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Frameworks

&



What exactly is a “Framework”?

Judging from paper titles, we have a plethora of frameworks, but ...

Generality & Applicability
Reuseability & Extensibility

Maintainability & Verifiability
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Frameworks: Examples

L CryptoSMT [K6l14; AK18] ©) https://github.com/kste/cryptosmt

m Differential/linear trails, clustering, key/preimage recovery,...;
based on SMT (STP, Boolector, CryptoMiniSat)

L2 CASCADA[RR22]€) https://github.com/ranea/CASCADA

m Differential/linear trails, impossible differentials/zero-correlation, ...;
based on SMT

L CLAASP [BGG+23] ©) https://github.com/Crypto-TII/claasp

= All of the above, neural tests; supports many solvers
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Frameworks: Challenges

=  Cipher representation

m  Based on building blocks? As a DAG? Software/hardware code?

m Efficiency vs. precision

= Simplicity vs. dedicated optimizations
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Frameworks: Challenges

Cipher representation

m  Based on building blocks? As a DAG? Software/hardware code?

m Efficiency vs. precision
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Conclusion

£ Tools and solvers can help find attacks and derive bounds

Q_ Very active area with many open challenges

More efficient and precise models

Application to other design paradigms and attack techniques
Modeling full attacks (not just the distinguisher)

Frameworks and reuseability
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