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Building Block: Short Proof of Binarity

Constant-size Range Proofs
Short Proofs for RLWE Ciphertexts




Let a vector (x1,...,Xn) € R? over aring R. Acommitment
C=Com(x1,...,Xn)

can be concisely opened to x; foranyie[n]

ind; (xy, .., x5) = x;
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o |C| and |openings| should have size O(A - polylog(n))
o Applications:

Zero-knowledge databases with short proofs
(Catalano etal., Eurocrypt’68; L.-Yung, TCC’10)

Verifiable data streaming [KSS+16], authenticated dictonaries [TXN20], cryptocurrencies
[TAB+20], blockchain transactions [GRWZ20]
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o Folklore with O(log n)-size openings via Merkle trees and CRHF

o Constructions with O(1)-size openings
From pairings and q-type assumptions (L.-Yung, TCC’'10; Kate etal., AC'10)

From CDH and hidden order groups
(Catalano-Fiore, PKC’13; Boneh-Biinz-Fisch; Crypto’19)

From lattices
(Peikert etal., TCC'21; Albrecht etal., Crypto’22; Wee-Wu, EC'23; ...,...

@ Over rings from compressed Z-protocols (Attema etal., TCC’'22)

o Extensions

Functional commitments for linear functions (L. -Ramanna-Yung, ICALP’16)
and beyond (de Castro-Peikert, EC’23; Wee-Wu, EC'23)

Subvector openings (Lai-Malavolta, Crypto’'19)
Proof aggregation (Gorbunov et al., CCS’'20; Campanelli etal., AC’20)
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o Direct O(1)-size proofs that a committed X = (x1, ..., Xxp) is small:

X € {0, 1}" using 2 group elements

IXllo < B using 3 group elements
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[IX]l2 < B using 6 group elements

X has small Hamming weight using 4 group elements

o Applications: short proofs (only 3 group elements) showing
(Batched) range membership: Vie [n] : x; € [-B;, Bi]

Validity of RLWE /FHE ciphertexts, plaintext (in)equalities, plaintext Hamming weight
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Builds on vector commitments (L.-Yung, TCC'10):

o Uses a structured
crs= ( 9, 19 = 9 Yier2n\tn+13, {80 = 0 Yierm )
o CommitmenttoX € Zz

n .
C=g". l_[gi(‘ = gy"'ZT:l xi-(a)
i=1
is opened at position i € [n] by revealing m; € G s.t.

e(C, gn+1-1) = e(g1, Gn)i - e(m;, §)
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Builds on vector commitments (L.-Yung, TCC'10):

o Uses a structured
CI’S:(g, {9i= 9( )}z€[2n]\{n+1}, {6i= Q(GL)}ie[n])

o CommitmenttoX € Zg

n
: n . i
C=g"- l_[ g),(‘ = 97+2I=1 xi(a)
i1
is opened at position i € [n] by revealing m; € G s.t.
e(C, gn+1-0) = e(g1, Gn)t - e(m;, §)

o Extends to prove (X, y) = z for publicy,z€ Z,

n
a1 ) =elgr, d)%N - e([ [, 4)
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o Goal: prove that € = _c“;”z'ij:lx"'(“i) commits to some X € {0, 1}”

o Prover shows that y = H(C) € Z) satisfies

*0 -‘—-:[,-.zn i X i_l :0
(yo(x-1),%) ;yx (fo )
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o Goal: prove that € = _c“;”z'ij:lx"'(“i) commits to some X € {0, 1}”

o Prover shows that y = H(C) € Z) satisfies

yo(X-— -:[ i Xi i—-1)=0
(yo(x- Zy X+ (xi— 1)

=0

o Idea: Verifiably commit to ¥ o X (in reversed order) via

n
o XiVi S xpyi(an+i-
Cy_g | |gn‘+1‘l g Z,,l i-yi-( )
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Goal: prove that € = _c“;”z'ij:lx"'(“i) commits to some X € {0, 1}”

©

o Prover shows that y = H(C) € Z) satisfies

yo(X— 1 i i 1_1—
(yo(x- Zy X+ (xi— 1)

=0
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o Idea: Verifiably commit to ¥ o X (in reversed order) via

n
o XiVi S xpyi(an+i-
Cy_g | |gn‘+1‘l g Z,,l i-yi-( )

(]

Then, generate my s.t.
=0
—_——

n -
e(Cy / I |g}r;i+1—i , é) =e(g1, )V X -1).%) . o(n, §)
i=1
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o Final step: prove that
n
&=9g" l_[ niii

is really a commitment to the reversed y o X where
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o Can be done using one element m.q € G using proof aggregation as in PointProofs
(Gorbunov et al.,CCS’20)

o Further aggregation compresses my, eq into one m € G;

Final proof of binarity consists of (Cy, m) € G2
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Problem: Given a commitment C=gv-h" to v € Z, prove that v e [0, 2/ — 1]

o Standard technique: prove that 3v;€ {0,1} s.t. v= Zle v 21
(proof size O(X - £) in the standard approach)



https://hackmd.io/@dabo/B1U4kx8XI
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Problem: Given a commitment C=gv-h" to v € Z, prove that v e [0, 2/ — 1]

o Standard technique: prove that 3v;€ {0,1} s.t. v= Zle v 21
(proof size O(X - £) in the standard approach)

o BulletProofs (Biinz et al., IEEE S&P 2018): proof size O(X - log{)

o Existing solution (Boneh et al., https://hackmd.io/@dabo/B1U4kx8XI) with
proof size O(1) (i.e., O(X) bits) using polynomial commitments
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Problem: Given a commitment C=gv-h" to v € Z, prove that v e [0, 2/ — 1]

o Standard technique: prove that 3v;€ {0,1} s.t. v= Zle v 21
(proof size O(X - £) in the standard approach)

o BulletProofs (Biinz et al., IEEE S&P 2018): proof size O(X - log{)

o Existing solution (Boneh et al., https://hackmd.io/@dabo/B1U4kx8XI) with
proof size O(1) (i.e., O(X) bits) using polynomial commitments

o Proofs (live in G x G2) as short as in SNARKs

o Proof of simulation-extractability in the AGM+ROM


https://hackmd.io/@dabo/B1U4kx8XI
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Let a Pedersen commitment Cy = Q’{ -§" toxe[0,2f-1],

o Let the binary representation X = (x1,...,x4,0,...,0) of xand compute

with a proof of binarity (Cy, Tpin)

o Prove knowledge of x = (%, (1,2,...,2!71,0" 1)), nyeGandrez, sit.

'

i-1 A A Py A A A

e(l 19,27;1_1-16‘)=e(g1,gn)x-e(nx,g) A =679
i=1
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Let a Pedersen commitment Cy = Q’{ -§" toxe[0,2f-1],

o Let the binary representation X = (x1,...,x4,0,...,0) of xand compute

with a proof of binarity (Cy, Tpin)

o Prove knowledge of x = (%, (1,2,...,2!71,0" 1)), nyeGandrez, sit.
L -1 A N
e(l_[grzwl—i’c)=e(glr§n)x'e(ﬂx:§) A Cx =g)1('§r
i=1

o Aggregating all m elements yields a proof (C, Cy, m) of 3 group elements
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The scheme is simulation-extractable in the AGM+ROM under the (2n, n)-DLOG assumption:
hardness of computing a € Z, given

(Q, {g(a[)}ie[Zn], {g(a[)}ie[n])

o Reduction B simulates without using gn+1 = g™

= AGM representation of A’s proof m* does not depend on gn+1
o If extractor fails, B obtains another representation of n* that depends on gn+1
= reveals a as a root of a non-zero polynomial

o Trapdoor-less simulator programs random oracles as a function of previously-chosen
aggregation coefficients
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CRS size Proof size Prover cost Verifier cost
[BFGW20] + [KZG10] | (4n+2)x|G|+4 x |G| | 3x |G|+ 4 x |Zp| 5n expg 3P + 4expg
Grothl6 3|C| x |G| 1x |G| +2x |G| 4|C| expg 3P+ O(1)expg
Ic] x |G| IC| expg
New scheme 2n x |G| 1x|G|+2x |G| 3n expg 4P + 2n expg
nx |G| n multg n expg

Comparison among constant-size range proofs

o Grothl6 and BFGW+KZG have O(1) verification time

o We have the same proof size as Groth16 with the smallest prover cost

[BFGW20] D. Boneh, B. Fisch, A. Gabizon, Z. Williamson. A simple range proof from polynomial
commitments. https://hackmd.io/@dabo/B1U4kx8XI

[KZG10] A. Kate, G. Zaverucha, I. Goldberg. Constant-size commitments to polynomials and
their applications. Asiacrypt’10



https://hackmd.io/@dabo/B1U4kx8XI
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Problem: Let R = Z[ X]/(X? + 1) and Rq = R/(gR) for a modulus g

For publict, dy,...,dy € Rg, prove knowledge of s1,...,sy € R s.t.
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with [|sille < B; Vi€ [M]

o Allows proving (R)LWE relations (including validity of FHE ciphertexts)

o Can be handled in different ways:

MPC-in-the-head [IKOSO07], Fiat-Shamir-with-Abort [Lyu09], Stern-like protocols [LNSW13]
In the discrete-log setting: via zk-SNARKs [Gro16] or directly [dLS19]
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Idea (del Pino-Lyubashevsky-Seiler; PKC’'19): consider the statement over Z[X]/(X9 + 1)

f + F g mod(X9+1)
~—~— ~—~—
remainder quotient

with [ISillee < B and [IFlle < %7 - max; (B:)

o Committo ((s1,...,Sm)|F)inaDLOG-hard group G of order p > g
o Prove that ||si]l < p and ||F]le < p

o Prove that

M
>lai-si=t+F-q mod (p,X?+1)

]
_
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o Rewrite the statement as a linear relation with binary witness

[Ar ... Av | -g-(1®(1,2,4,..)) ] =t modp,

A

1>

o Prove that a committed w € {0, 1}” is binary and satisfies (1)
o (1)is turned into an inner product relation (67 - A, \vit) =87 -t mod p for a random &8

(8T - A computable in O(d - log d) time when {Ai}?il are structured)
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o Aggregation yields a proof (C, Cy, m) € G x G? satisfying

n n
~ (beq-ti—by)-yi+bg-doli] A Atiy—L ot
e(n,9) = (¢, - [ [gpei ™™ ,C)-e(cy’en, [ ]67) " -elgr, gn) %,
i=1 i=1
~——
=Ch 26

o Verifier Vcomputes O(n) exponentiations where n = ||

o Tradeoff with O(1) exponentiations for V and proofs in (G x G2)2:
Prover P computes C, and ¢+ as KZG commitments

Then generates KZG evaluation proofs on a random point (cf. Schwartz-Zippel)

V only computes 2n field multiplications
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Proving validity of an [LPR10] ciphertext with g ~ 2%% and d = 1024

o Shortest SNARKs (Groth; EC’16): weak simulation-extractability (AGM),
arithmetic circuit with 150, 000 R1CS constraints

Structured CRS of 50116 KB

P computes =~ 1, 300, 000 equnentiations inG
(assuming exponentiations in G are 3x as expensive as in G)
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V computes ~ 4096 exponentiations

o New solution: simulation-extractability in the AGM+ROM

Structured CRS of 25000 KB
P computes 900, 000 exponentiations in G; V computes 8 exp. in G
Can prove other statements without changing the CRS

Implem. on BLS12-381 curves for proving validity of (Joye, CT-RSA’24)with n~ 65000:
P runs in 3.9s (on laptop using 12 cores), V in 50ms
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o Direct constructions of VC with concise proofs of smallness:

Binarity, low norm, or low Hamming weight

Security proofs in the AGM+ROM

o Applications:
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Range proofs with O(1)-size proofs (3 group elements)

Short proofs for RLWE ciphertexts
Proofs made of 3 group elements, but O(n) exponentiations to verify

Proofs containing 6 group elements, but O(1) exponentiations to verify

Under integration in Zama’s fhEVM
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Questions?
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