
Benôıt Libert
Zama

April 16, 2024

Vector Commitments with Proofs of
Smallness: Short Range Proofs and
More
PKC 2024 - Sydney



PK
C
20

24

2

Outline

Vector Commitments: Applications and Prior Work

VC with Short Proofs of Smallness
Building Block: Short Proof of Binarity

Applications
Constant-size Range Proofs
Short Proofs for RLWE Ciphertexts



PK
C
20

24

3

Vector Commitments
Let a vector (1, . . . , n) ∈ Rn over a ring R. A commitment

C = Com(1, . . . , n)

can be concisely opened to  for any  ∈ [n]

|C| and |openngs| should have size O(λ · polylog(n))

Applications:

Zero-knowledge databases with short proofs
(Catalano et al., Eurocrypt’08; L.-Yung, TCC’10)

Verifiable data streaming [KSS+16], authenticated dictonaries [TXN20], cryptocurrencies
[TAB+20], blockchain transactions [GRWZ20]
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PriorWork on VCs (non-exhaustive)
Folklore with O(logn)-size openings via Merkle trees and CRHF

Constructions with O(1)-size openings

From pairings and q-type assumptions (L.-Yung, TCC’10; Kate et al., AC’10)

From CDH and hidden order groups
(Catalano-Fiore, PKC’13; Boneh-Bünz-Fisch; Crypto’19)

From lattices
(Peikert et al., TCC’21; Albrecht et al., Crypto’22; Wee-Wu, EC’23; ..., . . . )

Over rings from compressed -protocols (Attema et al., TCC’22)

Extensions

Functional commitments for linear functions (L.-Ramanna-Yung, ICALP’16)
and beyond (de Castro-Peikert, EC’23; Wee-Wu, EC’23)

Subvector openings (Lai-Malavolta, Crypto’19)

Proof aggregation (Gorbunov et al., CCS’20; Campanelli et al., AC’20)
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Contributions: Short Proofs of Smallness
for Committed Vectors

Direct O(1)-size proofs that a committed ⃗ = (1, . . . , n) is small:

⃗ ∈ {0,1}n using 2 group elements

∥⃗∥∞ ≤ B using 3 group elements

∥⃗∥2 ≤ B using 6 group elements

⃗ has small Hamming weight using 4 group elements

Applications: short proofs (only 3 group elements) showing

(Batched) range membership: ∀ ∈ [n] :  ∈ [−B, B]

Validity of RLWE/FHE ciphertexts, plaintext (in)equalities, plaintext Hamming weight
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Building Block: Short Proof of Binarity
Builds on vector commitments (L.-Yung, TCC’10):

Uses a structured

crs =
�

g, {g = g(α
)}∈[2n]\{n+1}, {ĝ = ĝ(α

)}∈[n]
�

Commitment to ⃗ ∈ Zn
p

C = gγ ·
n
∏

=1

g

 = gγ+
∑n
=1  ·(α

)

is opened at position  ∈ [n] by revealing π ∈G s.t.

e(C, ĝn+1− ) = e(g1, ĝn) · e(π, ĝ)

Extends to prove 〈⃗, y⃗〉 = z for public y⃗, z ∈ Zp

e
�

C,
n
∏

=1

ĝ
y
n+1− 
�

= e(g1, ĝn)〈⃗,y⃗〉 · e
�

n
∏

=1

π
y
 , ĝ
�
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Short Proof of Binarity

Goal: prove that Ĉ = ĝγ+
∑n
=1  ·(α

) commits to some ⃗ ∈ {0,1}n

Prover shows that y⃗ = H(Ĉ) ∈ Zn
p
satisfies




y⃗ ◦ (⃗ − 1⃗) , ⃗
�

=
n
∑

=1

y ·  · ( − 1)
︸ ︷︷ ︸

= 0

= 0

Idea: Verifiably commit to y⃗ ◦ ⃗ (in reversed order) via

Cy = gr ·
n
∏

=1

g
 ·y
n+1−  = gr+

∑n
=1  ·y ·(α

n+1− )

Then, generate πy s.t.

e
�

Cy

À

n
∏

=1

g
y
n+1−  , Ĉ
�

= e(g1, ĝn)

=0
︷ ︸︸ ︷

〈y⃗ ◦ (⃗ − 1⃗), ⃗〉 · e(πy, ĝ)
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Short Proof of Binarity

Final step: prove that

Cy = gr ·
n
∏

=1

g
 ·y
n+1− 

is really a commitment to the reversed y⃗ ◦ ⃗where

Ĉ = ĝγ ·
n
∏

=1

g



Can be done using one element πeq ∈G using proof aggregation as in PointProofs
(Gorbunov et al., CCS’20)

Further aggregation compresses πy, πeq into one π ∈G;

Final proof of binarity consists of (Cy, π) ∈G2
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Application 1: Range proofs

Problem: Given a commitment C = g · hr to  ∈ Z, prove that  ∈ [0,2ℓ − 1]

Standard technique: prove that ∃ ∈ {0,1} s.t.  =
∑ℓ

=1  · 2
−1

(proof size O(λ · ℓ) in the standard approach)

BulletProofs (Bünz et al., IEEE S&P 2018): proof size O(λ · log ℓ)

Existing solution (Boneh et al., https://hackmd.io/@dabo/B1U4kx8XI) with
proof size O(1) (i.e., O(λ) bits) using polynomial commitments

New constructionwith shorter proofs

Proofs (live in Ĝ× G2) as short as in SNARKs

Proof of simulation-extractability in the AGM+ROM

https://hackmd.io/@dabo/B1U4kx8XI
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Range Proof: Intuition
Let a Pedersen commitment Ĉ = ĝ1 · ĝ

r to  ∈ [0,2ℓ − 1],

Let the binary representation ⃗ = (1, . . . , ℓ,0, . . . ,0) of  and compute

Ĉ = ĝγ ·
ℓ
∏

=1

ĝ



with a proof of binarity (Cy, πbin)

Prove knowledge of  = 〈⃗, (1,2, . . . ,2ℓ−1,0n−ℓ)〉, π ∈G and r ∈ Zp s.t.

e
�

ℓ
∏

=1

g2
−1

n+1−  , Ĉ
�

= e(g1, ĝn) · e(π, ĝ) ∧ Ĉ = ĝ1 · ĝ
r

Aggregating all π elements yields a proof (Ĉ, Cy, π) of 3 group elements
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ĝ



with a proof of binarity (Cy, πbin)

Prove knowledge of  = 〈⃗, (1,2, . . . ,2ℓ−1,0n−ℓ)〉, π ∈G and r ∈ Zp s.t.

e
�

ℓ
∏

=1

g2
−1

n+1−  , Ĉ
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Range Proof: Security
Theorem
The scheme is simulation-extractable in the AGM+ROM under the (2n, n)-DLOG assumption:
hardness of computing α ∈ Zp given

�

g, {g(α
)}∈[2n] , {ĝ(α

)}∈[n]
�

Reduction B simulates without using gn+1 = g(α
n+1)

⇒ AGM representation ofA’s proof π⋆ does not depend on gn+1

If extractor fails, B obtains another representation of π⋆ that depends on gn+1

⇒ reveals α as a root of a non-zero polynomial

Trapdoor-less simulator programs random oracles as a function of previously-chosen
aggregation coefficients
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Range Proof: Comparisons

CRS size Proof size Prover cost Verifier cost
[BFGW20] + [KZG10] (4n + 2) × |G| + 4 × |Ĝ| 3 × |G| + 4 × |Zp | 5n exp

G
3P + 4exp

Ĝ

Groth16 3|C| × |G| 1 × |Ĝ| + 2 × |G| 4|C| exp
G

3P + O(1)exp
Ĝ

|C| × |Ĝ| |C| exp
Ĝ

New scheme 2n × |G| 1 × |Ĝ| + 2 × |G| 3n exp
G

4P + 2n exp
G

n × |Ĝ| nmlt
Ĝ

n exp
Ĝ

Figure: Comparison among constant-size range proofs

Groth16 and BFGW+KZG have O(1) verification time

We have the same proof size as Groth16 with the smallest prover cost

[BFGW20] D. Boneh, B. Fisch, A. Gabizon, Z. Williamson. A simple range proof from polynomial
commitments. https://hackmd.io/@dabo/B1U4kx8XI
[KZG10] A. Kate, G. Zaverucha, I. Goldberg. Constant-size commitments to polynomials and
their applications. Asiacrypt’10

https://hackmd.io/@dabo/B1U4kx8XI
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Application 2: Lattice Statements
Problem: Let R = Z[X]/(Xd + 1) and Rq = R/(qR) for a modulus q

For public t⃗, ⃗1, . . . , ⃗M ∈ RN
q
, prove knowledge of s1, . . . , sM ∈ R s.t.

M
∑

=1

⃗ · s = t⃗ mod q

with ∥s∥∞ ≤ B ∀ ∈ [M]

Allows proving (R)LWE relations (including validity of FHE ciphertexts)

Can be handled in different ways:

- MPC-in-the-head [IKOS07], Fiat-Shamir-with-Abort [Lyu09], Stern-like protocols [LNSW13]

- In the discrete-log setting: via zk-SNARKs [Gro16] or directly [dLS19]
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Short Proofs for RLWE Ciphertexts
Idea (del Pino-Lyubashevsky-Seiler; PKC’19): consider the statement over Z[X]/(Xd + 1)

M
∑

=1

⃗ · s = t⃗
︸︷︷︸

remainder

+ r⃗
︸︷︷︸

quotient

· q mod (Xd + 1)

with ∥s∥∞ ≤ B and ∥r⃗∥∞ ≤ d·M
2 ·mx (B)

Commit to
�

(s1, . . . , sM) | r⃗
�

in a DLOG-hard groupG of order p≫ q

Prove that ∥s∥∞ ≪ p and ∥r⃗∥∞ ≪ p

Prove that
M
∑

=1

⃗ · s = t⃗ + r⃗ · q mod (p,Xd + 1)
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Short Proofs for RLWE Ciphertexts
Rewrite the statement as a linear relation with binary witness

�

Ã1 . . . ÃM | −q ·
�

 ⊗ (1,2,4, . . .)
� �

︸ ︷︷ ︸

≜ Ã

·





















s⃗1
...
s⃗M
r⃗1
...
r⃗N





















︸ ︷︷ ︸

≜ w̃

= t̃ mod p, (1)

Prove that a committed w̃ ∈ {0,1}n is binary and satisfies (1)

(1) is turned into an inner product relation 〈θ⃗⊤ · Ã, w̃〉 = θ⃗⊤ · t̃ mod p for a random θ⃗

(θ⃗⊤ · Ã computable in O(d · logd) time when {Ã}M=1 are structured)
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Short Proofs for RLWE Ciphertexts
Aggregation yields a proof (Ĉ, Cy, π) ∈ Ĝ× G2 satisfying

e(π, ĝ) = e
�

Cy
δy ·

n
∏

=1

g
(δeq ·t −δy)·y+δθ ·⃗θ[ ]
n+1− 

︸ ︷︷ ︸

≜ Ch

, Ĉ
�

· e
�

Cy
δeq ,

n
∏

=1

ĝ
t


︸ ︷︷ ︸

≜ Ĉt

�−1
· e(g1, ĝn)−tθ ·δθ ,

Verifier V computes O(n) exponentiations where n = |w̃|

Tradeoff with O(1) exponentiations for V and proofs in (Ĝ× G2)2:

- Prover P computes Ch and Ĉt as KZG commitments

- Then generates KZG evaluation proofs on a random point (cf. Schwartz-Zippel)

V only computes 2n field multiplications
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Comparisonwith SNARKs
Proving validity of an [LPR10] ciphertext with q ≈ 264 and d = 1024

Shortest SNARKs (Groth; EC’16): weak simulation-extractability (AGM),
arithmetic circuit with 150,000 R1CS constraints

Structured CRS of 50116 KB

P computes ≈ 1,300,000 exponentiations inG
(assuming exponentiations in Ĝ are 3x as expensive as inG)

V computes ≈ 4096 exponentiations

New solution: simulation-extractability in the AGM+ROM

Structured CRS of 25000 KB

P computes 900,000 exponentiations inG; V computes 8 exp. inG

Can prove other statements without changing the CRS

Implem. on BLS12-381 curves for proving validity of (Joye, CT-RSA’24) with n ≈ 65000:
P runs in 3.9s (on laptop using 12 cores), V in 50ms
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Summary
Direct constructions of VC with concise proofs of smallness:

Binarity, low norm, or low Hamming weight

Security proofs in the AGM+ROM

Applications:

Range proofs with O(1)-size proofs (3 group elements)

Short proofs for RLWE ciphertexts

- Proofs made of 3 group elements, but O(n) exponentiations to verify

- Proofs containing 6 group elements, but O(1) exponentiations to verify

Under integration in Zama’s fhEVM
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Questions?


	Vector Commitments: Applications and Prior Work
	VC with Short Proofs of Smallness
	Building Block: Short Proof of Binarity

	Applications
	Constant-size Range Proofs
	Short Proofs for RLWE Ciphertexts


