Benoît Libert Zama April 16, 2024

Vector Commitments with Proofs of Smallness: Short Range Proofs and More

PKC 2024 - Sydney

Outline

Vector Commitments: Applications and Prior Work

VC with Short Proofs of Smallness Building Block: Short Proof of Binarity

Applications Constant-size Range Proofs Short Proofs for RLWE Ciphertexts

Vector Commitments

Let a vector $(x_1, \ldots, x_n) \in \mathbb{R}^n$ over a ring R. A commitment

 $C = Com(x_1, \ldots, x_n)$

can be **concisely** opened to x_i for any $i \in [n]$

$$[x_1, x_2, \dots, x_n]$$
 ind_i $(x_1, \dots, x_n) \coloneqq x_i$

• |C| and |openings| should have size $O(\lambda \cdot polylog(n))$

• Applications:

- Zero-knowledge databases with short proofs (Catalano et al., Eurocrypt'08; L.-Yung, TCC'10)
- Verifiable data streaming [KSS+16], authenticated dictonaries [TXN20], cryptocurrencies [TAB+20], blockchain transactions [GRWZ20]

Prior Work on VCs (non-exhaustive)

- Folklore with O(log n)-size openings via Merkle trees and CRHF
- Constructions with O(1)-size openings
 - From pairings and q-type assumptions (L.-Yung, TCC'10; Kate et αl., AC'10)
 - From CDH and hidden order groups (Catalano-Fiore, PKC'13; Boneh-Bünz-Fisch; Crypto'19)
 - From lattices (Peikert et al., TCC'21; Albrecht et al., Crypto'22; Wee-Wu, EC'23; ...,...)
- Over rings from compressed Σ-protocols (Attema et al., TCC'22)
- Extensions
 - Functional commitments for linear functions (L.-Ramanna-Yung, ICALP'16) and beyond (de Castro-Peikert, EC'23; Wee-Wu, EC'23)
 - Subvector openings (Lai-Malavolta, Crypto'19)
 - Proof aggregation (Gorbunov et al., CCS'20; Campanelli et al., AC'20)

Contributions: Short Proofs of Smallness for Committed Vectors

- Direct O(1)-size proofs that a committed $\vec{x} = (x_1, \dots, x_n)$ is small:
 - $\vec{x} \in \{0, 1\}^n$ using 2 group elements
 - $\|\vec{\mathbf{x}}\|_{\infty} \leq B$ using 3 group elements
 - $\|\vec{x}\|_2 \leq B$ using 6 group elements
 - x has small Hamming weight using 4 group elements
- Applications: short proofs (only 3 group elements) showing
 - (Batched) range membership: $\forall i \in [n] : x_i \in [-B_i, B_i]$
 - Validity of RLWE/FHE ciphertexts, plaintext (in)equalities, plaintext Hamming weight

Building Block: Short Proof of Binarity

Builds on vector commitments (L.-Yung, TCC'10):

Uses a structured

$$crs = \left(g, \{ g_i = g^{(\alpha^i)} \}_{i \in [2n] \setminus \{n+1\}}, \{ \hat{g}_i = \hat{g}^{(\alpha^i)} \}_{i \in [n]} \right)$$

• Commitment to $\vec{x} \in \mathbb{Z}_p^n$

$$C = g^{\gamma} \cdot \prod_{i=1}^{n} g_i^{x_i} = g^{\gamma + \sum_{i=1}^{n} x_i \cdot (\alpha^i)}$$

is opened at position $i \in [n]$ by revealing $\pi_i \in \mathbb{G}$ s.t.

$$e(C, \hat{g}_{n+1-i}) = e(g_1, \hat{g}_n)^{x_i} \cdot e(\pi_i, \hat{g})$$

• Extends to prove $\langle \vec{x}, \vec{y} \rangle = z$ for public $\vec{y}, z \in \mathbb{Z}_p$

$$e(C, \prod_{i=1}^{n} \hat{g}_{n+1-i}^{y_i}) = e(g_1, \hat{g}_n)^{\langle \overline{x}, \overline{y} \rangle} \cdot e(\prod_{i=1}^{n} \pi_i^{y_i}, \hat{g})$$

Building Block: Short Proof of Binarity

Builds on vector commitments (L.-Yung, TCC'10):

Uses a structured

$$crs = \left(g, \{ g_i = g^{(\alpha^i)} \}_{i \in [2n] \setminus \{n+1\}}, \{ \hat{g}_i = \hat{g}^{(\alpha^i)} \}_{i \in [n]} \right)$$

• Commitment to $\vec{x} \in \mathbb{Z}_p^n$

$$C = g^{\gamma} \cdot \prod_{i=1}^{n} g_i^{x_i} = g^{\gamma + \sum_{i=1}^{n} x_i \cdot (\alpha^i)}$$

is opened at position $i \in [n]$ by revealing $\pi_i \in \mathbb{G}$ s.t.

$$e(C, \hat{g}_{n+1-i}) = e(g_1, \hat{g}_n)^{x_i} \cdot e(\pi_i, \hat{g})$$

• Extends to prove $\langle \vec{x}, \vec{y} \rangle = z$ for public $\vec{y}, z \in \mathbb{Z}_p$

$$e(C, \prod_{i=1}^{n} \hat{g}_{n+1-i}^{y_i}) = e(g_1, \hat{g}_n)^{\langle \bar{x}, \bar{y} \rangle} \cdot e(\prod_{i=1}^{n} \pi_i^{y_i}, \hat{g})$$

- **Goal:** prove that $\hat{C} = \hat{g}^{\gamma + \sum_{i=1}^{n} x_i \cdot (\alpha^i)}$ commits to some $\vec{x} \in \{0, 1\}^n$
- Prover shows that $\vec{y} = H(\hat{C}) \in \mathbb{Z}_p^n$ satisfies

$$\langle \vec{y} \circ (\vec{x} - \vec{1}), \vec{x} \rangle = \sum_{i=1}^{n} y_i \cdot \underbrace{x_i \cdot (x_i - 1)}_{= 0} = 0$$

• Idea: Verifiably commit to $\vec{y} \circ \vec{x}$ (in reversed order) via

$$C_{y} = g^{r} \cdot \prod_{i=1}^{n} g_{n+1-i}^{\mathsf{x}_{i}, \mathsf{y}_{i}} = g^{r+\sum_{i=1}^{n} \mathsf{x}_{i}, \mathsf{y}_{i}, (\alpha^{n+1-i})}$$

Then, generate π_y s.t.

$$e\left(C_{y} \mid \prod_{i=1}^{n} g_{n+1-i}^{\gamma_{i}}, \hat{C}\right) = e\left(g_{1}, \hat{g}_{n}\right)^{(\overline{y} \circ (\overline{x} - \overline{1}), \overline{x})} \cdot e(\pi_{y}, \hat{g}_{n})^{(\overline{y} \circ (\overline{x} - \overline{1}), \overline{x})}$$

- **Goal:** prove that $\hat{C} = \hat{g}^{\gamma + \sum_{i=1}^{n} x_i \cdot (\alpha^i)}$ commits to some $\vec{x} \in \{0, 1\}^n$
- Prover shows that $\vec{y} = H(\hat{C}) \in \mathbb{Z}_p^n$ satisfies

$$\langle \vec{y} \circ (\vec{x} - \vec{1}), \vec{x} \rangle = \sum_{i=1}^{n} y_i \cdot \underbrace{x_i \cdot (x_i - 1)}_{= 0} = 0$$

• Idea: Verifiably commit to $\vec{y} \circ \vec{x}$ (in reversed order) via

$$C_{y} = g^{r} \cdot \prod_{i=1}^{n} g_{n+1-i}^{\mathsf{x}_{i} \cdot \mathsf{y}_{i}} = g^{r+\sum_{i=1}^{n} \mathsf{x}_{i} \cdot \mathsf{y}_{i} \cdot (\alpha^{n+1-i})}$$

• Then, generate π_y s.t.

$$e(C_{y} / \prod_{i=1}^{n} g_{n+1-i}^{y_{i}}, \hat{C}) = e(g_{1}, \hat{g}_{n})^{(\vec{y} \circ (\vec{x} - \vec{1}), \vec{x})} \cdot e(\pi_{y}, \hat{g}_{n+1-i})$$

- **Goal:** prove that $\hat{C} = \hat{g}^{\gamma + \sum_{i=1}^{n} x_i \cdot (\alpha^i)}$ commits to some $\vec{x} \in \{0, 1\}^n$
- Prover shows that $\vec{y} = H(\hat{C}) \in \mathbb{Z}_p^n$ satisfies

$$\langle \vec{y} \circ (\vec{x} - \vec{1}), \vec{x} \rangle = \sum_{i=1}^{n} y_i \cdot \underbrace{x_i \cdot (x_i - 1)}_{= 0} = 0$$

• Idea: Verifiably commit to $\vec{y} \circ \vec{x}$ (in reversed order) via

$$C_{y} = g^{r} \cdot \prod_{i=1}^{n} g_{n+1-i}^{x_{i} \cdot y_{i}} = g^{r+\sum_{i=1}^{n} x_{i} \cdot y_{i} \cdot (\alpha^{n+1-i})}$$

• Then, generate π_y s.t.

$$e(C_{y} / \prod_{i=1}^{n} g_{n+1-i}^{y_{i}}, \hat{C}) = e(g_{1}, \hat{g}_{n})^{\langle \vec{y} \circ (\vec{x} - \vec{1}), \vec{x} \rangle} \cdot e(\pi_{y}, \hat{g}_{n+1-i})^{\langle \vec{y} \circ (\vec{x} - \vec{1}), \vec{x} \rangle}$$

• Final step: prove that

$$C_{y} = g^{r} \cdot \prod_{i=1}^{n} g_{n+1-i}^{x_{i} \cdot y_{i}}$$

is really a commitment to the reversed $\vec{y} \circ \vec{x}$ where

$$\hat{C} = \hat{g}^{\gamma} \cdot \prod_{i=1}^{n} g_{i}^{\chi_{i}}$$

- Can be done using one element $\pi_{eq} \in \mathbb{G}$ using proof aggregation as in PointProofs (Gorbunov et al., CCS'20)
- Further aggregation compresses π_y , π_{eq} into one $\pi \in \mathbb{G}$;

Final proof of binarity consists of $(C_y, \pi) \in \mathbb{G}^2$

Application 1: Range proofs

Problem: Given a commitment $C = g^{v} \cdot h^{r}$ to $v \in \mathbb{Z}$, prove that $v \in [0, 2^{\ell} - 1]$

- Standard technique: prove that $\exists v_i \in \{0, 1\}$ s.t. $v = \sum_{i=1}^{\ell} v_i \cdot 2^{i-1}$ (proof size $O(\lambda \cdot \ell)$ in the standard approach)
- BulletProofs (Bünz *et al.*, IEEE S&P 2018): proof size $O(\lambda \cdot \log \ell)$
- Existing solution (Boneh *et al.*, https://hackmd.io/@dabo/B1U4kx8XI) with proof size O(1) (i.e., $O(\lambda)$ bits) using polynomial commitments

New construction with shorter proofs

- Proofs (live in $\hat{\mathbb{G}} \times \mathbb{G}^2$) as short as in SNARKs
- Proof of simulation-extractability in the AGM+ROM

a

Application 1: Range proofs

Problem: Given a commitment $C = g^{\nu} \cdot h^r$ to $\nu \in \mathbb{Z}$, prove that $\nu \in [0, 2^{\ell} - 1]$

- Standard technique: prove that $\exists v_i \in \{0, 1\}$ s.t. $v = \sum_{i=1}^{\ell} v_i \cdot 2^{i-1}$ (proof size $O(\lambda \cdot \ell)$ in the standard approach)
- BulletProofs (Bünz et al., IEEE S&P 2018): proof size $O(\lambda \cdot \log \ell)$
- Existing solution (Boneh *et al.*, https://hackmd.io/@dabo/B1U4kx8XI) with proof size O(1) (i.e., $O(\lambda)$ bits) using polynomial commitments

New construction with shorter proofs

- Proofs (live in $\hat{\mathbb{G}} \times \mathbb{G}^2$) as short as in SNARKs
- Proof of simulation-extractability in the AGM+ROM

Application 1: Range proofs

Problem: Given a commitment $C = g^{\nu} \cdot h^r$ to $\nu \in \mathbb{Z}$, prove that $\nu \in [0, 2^{\ell} - 1]$

- Standard technique: prove that $\exists v_i \in \{0, 1\}$ s.t. $v = \sum_{i=1}^{\ell} v_i \cdot 2^{i-1}$ (proof size $O(\lambda \cdot \ell)$ in the standard approach)
- BulletProofs (Bünz *et al.*, IEEE S&P 2018): proof size $O(\lambda \cdot \log \ell)$
- Existing solution (Boneh *et al.*, https://hackmd.io/@dabo/B1U4kx8XI) with proof size O(1) (i.e., $O(\lambda)$ bits) using polynomial commitments

New construction with shorter proofs

- Proofs (live in $\hat{\mathbb{G}} \times \mathbb{G}^2$) as short as in SNARKs
- Proof of simulation-extractability in the AGM+ROM

Range Proof: Intuition

Let a Pedersen commitment $\hat{C}_x = \hat{g}_1^x \cdot \hat{g}^r$ to $x \in [0, 2^{\ell} - 1]$,

• Let the binary representation $\vec{x} = (x_1, \dots, x_\ell, 0, \dots, 0)$ of x and compute

$$\hat{C} = \hat{g}^{\gamma} \cdot \prod_{i=1}^{\ell} \hat{g}_i^{x_i}$$

with a proof of binarity (C_y , π_{bin})

• Prove knowledge of $x = \langle \vec{x}, (1, 2, \dots, 2^{l-1}, \mathbf{0}^{n-l}) \rangle$, $\pi_x \in \mathbb{G}$ and $r \in \mathbb{Z}_p$ s.t.

$$e\Big(\prod_{i=1}^{\ell} g_{n+1-i}^{2^{i-1}}, \hat{C}\Big) = e(g_1, \hat{g}_n)^{\times} \cdot e(\pi_{\times}, \hat{g}) \qquad \wedge \qquad \hat{C}_{\times} = \hat{g}_1^{\times} \cdot \hat{g}^r$$

• Aggregating all π elements yields a proof (\hat{C}, C_y, π) of 3 group elements

Range Proof: Intuition

Let a Pedersen commitment $\hat{C}_x = \hat{g}_1^x \cdot \hat{g}^r$ to $x \in [0, 2^{\ell} - 1]$,

• Let the binary representation $\vec{x} = (x_1, \dots, x_l, 0, \dots, 0)$ of x and compute

$$\hat{C} = \hat{g}^{\gamma} \cdot \prod_{i=1}^{\ell} \hat{g}_i^{x_i}$$

with a proof of binarity (C_y , π_{bin})

• Prove knowledge of $x = \langle \vec{x}, (1, 2, \dots, 2^{l-1}, \mathbf{0}^{n-l}) \rangle$, $\pi_x \in \mathbb{G}$ and $r \in \mathbb{Z}_p$ s.t.

$$e\Big(\prod_{i=1}^{l} g_{n+1-i}^{2^{i-1}}, \hat{C}\Big) = e(g_1, \hat{g}_n)^{\mathsf{x}} \cdot e(\pi_{\mathsf{x}}, \hat{g}) \quad \land \quad \hat{C}_{\mathsf{x}} = \hat{g}_1^{\mathsf{x}} \cdot \hat{g}^r$$

• Aggregating all π elements yields a proof (\hat{C}, C_y, π) of 3 group elements

Range Proof: Security

Theorem

The scheme is **simulation-extractable** in the AGM+ROM under the (2n, n)-DLOG assumption: hardness of computing $\alpha \in \mathbb{Z}_p$ given

$$(g, \{g^{(\alpha^i)}\}_{i \in [2n]}, \{\hat{g}^{(\alpha^i)}\}_{i \in [n]})$$

- Reduction \mathcal{B} simulates without using $g_{n+1} = g^{(\alpha^{n+1})}$
 - \Rightarrow AGM representation of \mathcal{A} 's proof π^* does not depend on g_{n+1}
- If extractor fails, \mathcal{B} obtains another representation of π^* that depends on g_{n+1}
 - \Rightarrow reveals α as a root of a non-zero polynomial
- *Trapdoor-less* simulator programs random oracles as a function of previously-chosen aggregation coefficients

Range Proof: Comparisons

	CRS size	Proof size	Prover cost	Verifier cost
[BFGW20] + [KZG10]	$(4n+2) \times \mathbb{G} + 4 \times \hat{\mathbb{G}} $	$3 \times \mathbb{G} + 4 \times \mathbb{Z}_p $	5 <i>n</i> exp _G	3P + 4exp _Ĝ
Groth16	3 <i>C</i> × G	$1 \times \hat{\mathbb{G}} + 2 \times \mathbb{G} $	$4 \mathcal{C} \exp_{\mathbb{G}}$	3P + <i>O</i> (1)exp _Ĝ
	$ \mathcal{C} \times \hat{\mathbb{G}} $		$ C \exp_{\hat{G}}$	
New scheme	2 <i>n</i> × G	$1 \times \hat{\mathbb{G}} + 2 \times \mathbb{G} $	3n exp _G	4P + 2 <i>n</i> exp _G
	n × Ĝ		<i>n</i> mult _Ĝ	<i>n</i> exp _Ĝ

Figure: Comparison among constant-size range proofs

- Groth16 and BFGW+KZG have O(1) verification time
- We have the same proof size as Groth16 with the smallest prover cost

[BFGW20] D. Boneh, B. Fisch, A. Gabizon, Z. Williamson. A simple range proof from polynomial commitments. https://hackmd.io/@dabo/B1U4kx8XI

[KZG10] A. Kate, G. Zaverucha, I. Goldberg. Constant-size commitments to polynomials and their applications. Asiacrypt'10

Application 2: Lattice Statements

Problem: Let $R = \mathbb{Z}[X]/(X^d + 1)$ and $R_q = R/(qR)$ for a modulus q

For public $\vec{t}, \vec{a}_1, \ldots, \vec{a}_M \in R_a^N$, prove knowledge of $s_1, \ldots, s_M \in R$ s.t.

 $\sum_{i=1}^{M} \vec{a}_i \cdot s_i = \vec{t} \mod q$

with $||s_i||_{\infty} \leq B_i \quad \forall i \in [M]$

- Allows proving (R)LWE relations (including validity of FHE ciphertexts)
- Can be handled in different ways:
 - MPC-in-the-head [IKOS07], Fiat-Shamir-with-Abort [Lyu09], Stern-like protocols [LNSW13]
 - In the discrete-log setting: via zk-SNARKs [Gro16] or directly [dLS19]

Short Proofs for RLWE Ciphertexts

Idea (del Pino-Lyubashevsky-Seiler; PKC'19): consider the statement over $\mathbb{Z}[X]/(X^d + 1)$

with $||s_i||_{\infty} \leq B_i$ and $||\vec{r}||_{\infty} \leq \frac{d \cdot M}{2} \cdot \max_i (B_i)$

- Commit to $((s_1, \ldots, s_M) | \vec{r})$ in a DLOG-hard group G of order $p \gg q$
- Prove that $||s_i||_{\infty} \ll p$ and $||\vec{r}||_{\infty} \ll p$
- Prove that

$$\sum_{i=1}^{M} \vec{a}_i \cdot s_i = \vec{t} + \vec{r} \cdot q \mod (p, X^d + 1)$$

Short Proofs for RLWE Ciphertexts

• Rewrite the statement as a linear relation with binary witness

$$\underbrace{\left[\tilde{\mathbf{A}}_{1} \ \dots \ \tilde{\mathbf{A}}_{M} \ | \ -q \cdot \left(\mathbf{I} \otimes (1, 2, 4, \dots)\right)\right]}_{\triangleq \tilde{\mathbf{A}}} \cdot \underbrace{\left[\tilde{\mathbf{S}}_{1} \\ \vdots \\ \vec{\mathbf{S}}_{M} \\ \vec{\mathbf{\Gamma}}_{1} \\ \vdots \\ \vec{\mathbf{\Gamma}}_{N} \\ \vdots \\ \vec{\mathbf{N}}_{N} \\ \doteq \mathbf{W}} = \tilde{\mathbf{t}} \ \text{mod} \ p, \tag{1}$$

- Prove that a committed $\mathbf{\tilde{w}} \in \{0, 1\}^n$ is binary and satisfies (1)
- (1) is turned into an inner product relation $(\vec{\theta}^{\top} \cdot \tilde{\mathbf{A}}, \tilde{\mathbf{w}}) = \vec{\theta}^{\top} \cdot \tilde{\mathbf{t}} \mod p$ for a random $\vec{\theta}$
 - $(\vec{\theta}^{\top} \cdot \vec{\mathbf{A}} \text{ computable in } O(d \cdot \log d) \text{ time when } \{\vec{\mathbf{A}}_i\}_{i=1}^M \text{ are structured})$

Short Proofs for RLWE Ciphertexts

• Aggregation yields a proof $(\hat{C}, C_y, \pi) \in \hat{\mathbb{G}} \times \mathbb{G}^2$ satisfying

$$e(\pi, \hat{g}) = e\left(C_{y}^{\delta_{y}} \cdot \underbrace{\prod_{i=1}^{n} g_{n+1-i}^{(\delta_{eq}, t_{i}-\delta_{y}) \cdot y_{i}+\delta_{\theta} \cdot \bar{a}_{\theta}[i]}}_{\triangleq C_{h}}, \hat{C}\right) \cdot e\left(C_{y}^{\delta_{eq}}, \underbrace{\prod_{i=1}^{n} \hat{g}_{i}^{t_{i}}}_{\triangleq \hat{C}_{t}}\right)^{-1} \cdot e(g_{1}, \hat{g}_{n})^{-t_{\theta} \cdot \delta_{\theta}},$$

- Verifier **V** computes O(n) exponentiations where $n = |\tilde{w}|$
- Tradeoff with O(1) exponentiations for **V** and proofs in $(\hat{\mathbb{G}} \times \mathbb{G}^2)^2$:
 - Prover **P** computes C_h and \hat{C}_t as KZG commitments
 - Then generates KZG evaluation proofs on a random point (cf. Schwartz-Zippel)
 - V only computes 2n field multiplications

Comparison with SNARKs

Proving validity of an [LPR10] ciphertext with $q \approx 2^{64}$ and d = 1024

- Shortest SNARKs (Groth; EC'16): weak simulation-extractability (AGM), arithmetic circuit with 150,000 R1CS constraints
 - Structured CRS of 50116 KB
 - P computes ≈ 1, 300, 000 exponentiations in G (assuming exponentiations in Ĝ are 3x as expensive as in G)
 - V computes ≈ 4096 exponentiations
- New solution: simulation-extractability in the AGM+ROM
 - Structured CRS of 25000 KB
 - P computes 900, 000 exponentiations in G; V computes 8 exp. in G
 - Can prove other statements without changing the CRS
 - Implem. on BLS12-381 curves for proving validity of (Joye, CT-RSA'24) with n ≈ 65000: P runs in 3.9s (on laptop using 12 cores), V in 50ms

Summary

- Direct constructions of VC with concise proofs of smallness:
 - Binarity, low norm, or low Hamming weight
 - Security proofs in the AGM+ROM
- Applications:
 - Range proofs with O(1)-size proofs (3 group elements)
 - Short proofs for RLWE ciphertexts
 - Proofs made of 3 group elements, but O(n) exponentiations to verify
 - Proofs containing 6 group elements, but O(1) exponentiations to verify

Under integration in Zama's fhEVM

Questions?