Cryptanalysis of the Peregrine Lattice-Based

Signature Scheme

PKC 2024

Xiuhan Lin, Moeto Suzuki, Shiduo Zhang, Thomas Espitau, Yang Yu,
Mehdi Tibouchi, Masayuki Abe

SRR

KYOTO UNIVERSITY

i#44% ‘"SHIELD ©) NTT

1/31

The Cryptanalysis of Peregrine

o Target: Peregrine!

o the first round of the Korean PQC competition candidate in 2023

 https://www.kpqc.or.kr/competition.html.
2/31

https://www.kpqc.or.kr/competition.html.

The Cryptanalysis of Peregrine

o Target: Peregrine!

o the first round of the Korean PQC competition candidate in 2023

@ Technique: “parallelepiped-learning” +“lattice decoding”

o parallelepiped-learning = the approximate key found
o lattice decoding = fully recovers the secret from the approximations

 https://www.kpqc.or.kr/competition.html.
2/31

https://www.kpqc.or.kr/competition.html.

The Cryptanalysis of Peregrine

o Target: Peregrine!

o the first round of the Korean PQC competition candidate in 2023

@ Technique: “parallelepiped-learning” +“lattice decoding”

o parallelepiped-learning = the approximate key found
e lattice decoding = fully recovers the secret from the approximations

@ Cost: the signature samples required for practical attacks

e ~ 25,000 for the reference implementation
e ~ 11 million for the specification version

 https://www.kpqc.or.kr/competition.html.
2/31

https://www.kpqc.or.kr/competition.html.

Background
The Peregrine signature scheme

Learning a hidden transformation

Practical key recovery attack

3/31

Background

4/31

. A lattice £ is a discrete subgroup
* of R™,

5/31

. A lattice £ is a discrete subgroup

* of R™.
t b * A lattice is generated by its basis
. . B = (b, - ,b,) € R™*" je.

L(B) = {Xi zbi | zi € Z}.

5/31

A lattice £ is a discrete subgroup
of R™,

A lattice is generated by its basis
B = (by,---,b,) € R™*" ie.
L(B) = {XiL zibi [z € Z}.

L has infinitely many bases
B is good, G is bad.

5/31

Parallelepiped

Each basis defines a parallelepiped P(B) = {XB | x € { 3 2) }

6/31

Parallelepiped

Each basis defines a parallelepiped P(B) = {XB | x € { 3 2) }

Babai's round-off algorithm outputs v € £ such that v —t € P.

6/31

Hash-and-sign construction

Hash-and-sign
@ signing: to solve the approximate closest vector problem (CVP)
@ evolution: GGH, NTRUSign — GPV — Falcon, Mitaka

7/31

Hash-and-sign construction

Hash-and-sign
@ signing: to solve the approximate closest vector problem (CVP)
@ evolution: GGH, NTRUSign — GPV — Falcon, Mitaka

GGH, NTRUSign use deterministic round-off algorithm to solve the CVP.
e v —t € P(B), the distribution of signatures leaks information of B
e broken by parallelepiped-learning attacks [NR06)]?

Parallelepiped. Insecure!

2[NR06]: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev:
7/31

GPV framework

[GPVO08]? presented a provably secure framework.
@ deterministic round-off algorithm =- trapdoor sampler
@ randomizing the rounding with random Gaussian sampling on lattice

@ the distribution of signatures is independent of the secret

Gaussian

3[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.
8/31

Falcon

Falcon signature scheme®
selected by NIST for standardization in 2022
initiated with GPV framework over NTRU lattices

[~
@ advantages: low bandwidth, good efficiency
9

disadvantages: complicated, due to Gaussian sampling and
floating-point operations

*nttps://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms? 2022
9/31

https://csrc.nist.gov/Projects/post-quantum-cryptography/ selected-algorithms-2022

Falcon

Falcon signature scheme®
@ selected by NIST for standardization in 2022
@ initiated with GPV framework over NTRU lattices
@ advantages: low bandwidth, good efficiency

o disadvantages: complicated, due to Gaussian sampling and
floating-point operations

Designing a simpler and comparably efficient variant of Falcon is a
tempting choice!

*nttps://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms? 2022
9/31

https://csrc.nist.gov/Projects/post-quantum-cryptography/ selected-algorithms-2022

The Peregrine signature scheme

10/31

Peregrine

Peregrine signature scheme
@ one of candidates in the 1st round of the KPQC competition
@ the high speed version of Falcon
@ Gaussian sampling ¥, centered binomial distribution «

@ simpler, along with comparable efficiency, easy to mask

Peregrine does not offer a proof of security!!!

11/31

The procedure of signing

The signing of Peregrine is in essence the randomized version of Babai's
round-off algorithm.
@ by adding a binomial vector (J1, J3), instead of using Gaussian
distribution

Signing

Input: NTRU trapdoor basis B, center c.

Output: random lattice point s € £L(B) — c.
v () = (Bl Bf®)

7Z = LB_IC-| + (J1, JQ)

2:

3 v= Bz
#2 S=V-—cC
5. return s

The centered binomial distribution B,, is defined over [—§, 5] N Z.

12/31

Signature distribution

Practical distribution

$1 Ri—Jy n
We have (s) =By, - <R2 - J2> where (Ri, Ro) ~ U([—1/2,1/2)").

2

13/31

Signature distribution

Practical distribution

$1 Ri—Jy n
We have (s) =By, - <R2 - J2> where (Ri, Ro) ~ U([—1/2,1/2)").

2

o the distribution of (s, s2) is a hidden linear transformation (i.e. By)
of a known distribution

13/31

Signature distribution

Practical distribution

S1 . . Rl—Jl . 7
We have <32> =By, <R2 —J2> where (Ri, Ro) ~ U([—1/2,1/2)").

o the distribution of (s, s2) is a hidden linear transformation (i.e. By)
of a known distribution

@ we perform practical key recovery attacks against Peregrine by
learning the hidden linear transformation

13/31

Secret key leakage

The Peregrine signatures are always in adjacent parallelepipeds, rather
than a sole parallelepiped.

Adjacent parallelepipeds v Sole parallelepiped %

14/31

Secret key leakage

The Peregrine signatures are always in adjacent parallelepipeds, rather
than a sole parallelepiped.

Adjacent parallelepipeds v Sole parallelepiped %

Peregrine are also insecure!!!

14/31

Secret key leakage

The Peregrine signatures are always in adjacent parallelepipeds, rather
than a sole parallelepiped.

Adjacent parallelepipeds v Sole parallelepiped %

Peregrine are also insecure!!!
@ the distribution of signatures would leak information of the secret key
@ learn the hidden transformation by parallelepiped-learning of [NR06]

14 /31

Concrete parameters

In this work, we focus on the parameter set of Peregrine-512.

15/31

Concrete parameters

In this work, we focus on the parameter set of Peregrine-512.

There are some discrepancies between the reference implementation and
the official specification of Peregrine.

15/31

Concrete parameters

In this work, we focus on the parameter set of Peregrine-512.

There are some discrepancies between the reference implementation and
the official specification of Peregrine.
o key generation:

e in the specification, the coefficients of (f,g) are drawn from Bsyg, and
it checks if the Gram—Schmidt norms of By , are less than 1.17,/q
e in the reference implementation, this check is commented out

15/31

Concrete parameters

In this work, we focus on the parameter set of Peregrine-512.

There are some discrepancies between the reference implementation and
the official specification of Peregrine.
o key generation:
e in the specification, the coefficients of (f,g) are drawn from Bsyg, and
it checks if the Gram—Schmidt norms of By , are less than 1.17,/q
e in the reference implementation, this check is commented out
o the signing:
o the specification suggests 111 = o = 26
o the reference implementation in effect use (p1, p2) = (6,0)

15/31

Learning a hidden transformation

16/31

Parallelepiped-learning of [NR06] revisit

Definition 1 (The Hidden Parallelepiped Problem)

Given B = (by,...,b,) € GL,(R) and a certain number of independent
parallelepiped samples y = Bx with x < U([—1,1]), find an
approximation of +b;'s.

17/31

Parallelepiped-learning of [NR06] revisit

Definition 1 (The Hidden Parallelepiped Problem)

Given B = (by,...,b,) € GL,(R) and a certain number of independent
parallelepiped samples y = Bx with x < U([—1,1]), find an
approximation of +b;'s.

Solving the Hidden Parallelepiped Problem
e the covariance leakage: K = B - Cov[xx'] - B = BB!/3
@ the approximate Gram matrix: K = 3K = BB!
e compute factor L = P* such that K~! = PP!
@ by multiplying L, C = LB is orthogonal
@ the local minima =£c; can be solved by gradient descent

@ by multiplying L™, the approximation of +b; found

17/31

Hidden Transformation Problem

The Nguyen-Regev parallelepiped-learning attack [NRO6] can be extended
to more general Hidden Transformation Problem (HTP).

18/31

Hidden Transformation Problem

The Nguyen-Regev parallelepiped-learning attack [NR06] can be extended
to more general Hidden Transformation Problem (HTP).

Definition 2 (HTPp)

Let D be a public distribution over R™. Given a hidden matrix
B = (by,...,b,) € GL,(R) and a certain number of independent
samples y = Bx with x < D, find an approximation of +b;'s.

18/31

Hidden Transformation Problem

The Nguyen-Regev parallelepiped-learning attack [NRO6] can be extended
to more general Hidden Transformation Problem (HTP).

Definition 2 (HTPp)

Let D be a public distribution over R™. Given a hidden matrix
B = (by,...,b,) € GL,(R) and a certain number of independent
samples y = Bx with x « D, find an approximation of +b;'s.

For Peregrine,

P =

U([-1/2,1/2)) + B,, for1<i<n/2
U([-1/2,1/2)) + B, forn/2+1<i<n.

18/31

Key recovery algorithm

Our key recovery algorithm
@ distribution deformation

@ gradient descent

19/31

Step 1: Distribution deformation

The covariance leakage
e Cov[D(B)] =B Cov|D] - B
@ helps to reduce the general HTP to the case in which the covariance
leakage is I,

20/31

Step 1: Distribution deformation

The covariance leakage
e Cov[D(B)] = B-Cov[D]- B!
@ helps to reduce the general HTP to the case in which the covariance
leakage is I,

The procedure of distribution deformation
@ the covariance leakage K = Cov[D(B)]
e compute L = P! such that PP/ = K~!
e C = LB such that Cov[D(C)] =1,
e C is orthogonal when Cov[D] =1,

20/31

Step 1: Distribution deformation

The covariance leakage
e Cov[D(B)] =B Cov|D] - Bt

@ helps to reduce the general HTP to the case in which the covariance
leakage is I,

The procedure of distribution deformation
@ the covariance leakage K = Cov[D(B)]
e compute L = P? such that PP = K~!
e C = LB such that Cov|[D(C)] =1,

e C is orthogonal when Cov|[D] =1,

Distribution deformation reduces the HTP instance regarding (D,)
the one regarding (D, C) such that Cov[D(C)] =1I,, and Cov[D| =

20/31

Step 2: Gradient descent

Let o; = E[2}]. The fourth moment of D(C) and its gradient:

n

Mpycya(w) = 3[[w* = 3 (3 = ai){ei, w)*,
i=1
VMD(C)A(W) = 12w — 2(12 — 40z¢)<Ci, W>3CZ‘.
i=1

21/31

Step 2: Gradient descent

Let o; = E[2}]. The fourth moment of D(C) and its gradient:

Mpcya(w) =3|w[* =D (3 = a;)(ci, w)*,
i=1
VMp(cya(w) = 12w — 2(12 — 4a;)(c;, w)3c;.
i=1

Suppose that o;; < 3 for all 1 < i < n, the local minimum of Mpc) 4(W)
over all unit vectors w is obtained at +c,...,+c,. There are no other
local minima.

21/31

Step 2: Gradient descent

Let o; = E[2}]. The fourth moment of D(C) and its gradient:

Mpcya(w) = 3|lw|* =D (3 — ai){ci, w)*,
=1
VMpcya(w) = 12w — Y (12 — o) (cs, w)c;.
i=1

Suppose that o;; < 3 for all 1 < i < n, the local minimum of Mpc) 4(W)
over all unit vectors w is obtained at +cy,...,+c,. There are no other
local minima.

Therefore, the local minima c; can be solved by gradient descent[TW20]°.

5[TW20]: One bit is all it takes: a devastating timing attack on BLISS's non-constant time-sign flips. Tibouchi and:Wallet.
21/31

The case of [NR06]

In [NRO6], D = U([—1,1]), the fourth moment function:

2 n
Mpcya(w) = *|| I* - T - Z(Ci7W>4=
and its gradient:
8 n
VMpcya(w) = 5 *5 > (e w
=1

22/31

The case of Peregrine

For specification version, p; = pg = 26:

2346 &
W _ 4 4040 RV
D(C),4(w) 3”WH 31205 i§:1<csz>)
9384 &
M = 12w — ——) 3¢
A4 D(C),4(W) w 31205 Z.:1<cl,w> c;

For reference implementation version, (u1, pu2) = (6,0):

n/2

546 6
MD(C)A(W) = 3”WH4 - @ <Cz‘,W>4 - 5 Z (ci,w)‘l,
i=1 i=n/2+1
2184 12 94 2
VMD(C)A(W) = 12w — —— (Ci7W>3Ci - — Z <ci,w>3ci.
1805 = 5 iy

23/31

Practical key recovery attacks

24 /31

Lattice decoding of [Pre23]

Let b = (b)), b(2)) € LyTry be the secret vector and b’ = (o)1), (¥')(2))
be the approximation of b.

25/31

Lattice decoding of [Pre23]

Let b = (b(l), b(2)) € LnTrRu be the secret vector and b’ = ((b’)(l), (b’)(2))
be the approximation of b.

Prest’s decoding technique [Pre23]°
@ Selecting a certain threshold ¢ € (0,1/2)

o For e =b’ — b, at least half of the coefficients of e are in [—¢,¢]
o No coefficients of e in absolute norm exceeds 1 — ¢

6[Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest.

25/31

Lattice decoding of [Pre23]

Let b = (b(l), b(2)) € LnTrRu be the secret vector and b’ = ((b’)(l), (b’)(2))
be the approximation of b.

Prest’s decoding technique [Pre23]°
@ Selecting a certain threshold ¢ € (0,1/2)

o For e =b’ — b, at least half of the coefficients of e are in [—¢,¢]
o No coefficients of e in absolute norm exceeds 1 — ¢

o The difference d = [b'] —b = (dV),d?)

e zeros in at least n/2 coefficients

6[Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest.

25/31

Lattice decoding of [Pre23]

Let b = (b(l), b(2)) € LnTrRu be the secret vector and b’ = ((b’)(l), (b’)(2))
be the approximation of b.

Prest’s decoding technique [Pre23]°
@ Selecting a certain threshold ¢ € (0,1/2)

o For e =b’ — b, at least half of the coefficients of e are in [—¢,¢]
o No coefficients of e in absolute norm exceeds 1 — ¢

o The difference d = [b'] —b = (dV),d?)
e zeros in at least n/2 coefficients
o for NTRU equation,) + b(®) . b = 0 mod ¢, then

[(b’)(ﬂ + {(b’)@)] h=d® +d® . hmod q.

6[Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest.

25/31

Lattice decoding of [Pre23]

Let b = (b(l), b(2)) € LnTrRu be the secret vector and b’ = ((b’)(l), (b’)(2))
be the approximation of b.

Prest’s decoding technique [Pre23]°
@ Selecting a certain threshold ¢ € (0,1/2)

o For e =b’ — b, at least half of the coefficients of e are in [—¢,¢]
o No coefficients of e in absolute norm exceeds 1 — ¢

o The difference d = [b'] —b = (dV),d?)
e zeros in at least n/2 coefficients
o for NTRU equation,) + b(®) . b = 0 mod ¢, then

[(b’)(ﬂ + {(b’)@)] h=d® +d® . hmod q.

The secret b can be fully recovered by solving linear system for d.

6[Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest.

25/31

Probability-based guessing strategy

Our approach is slightly different from the trick of [Pre23].

26/31

Probability-based guessing strategy

Our approach is slightly different from the trick of [Pre23].
o Without exploiting a threshold ¢

@ Selecting n/2 coefficients which are correctly rounded with the
highest probability

26/31

Probability-based guessing strategy

Our approach is slightly different from the trick of [Pre23].
o Without exploiting a threshold e

@ Selecting n/2 coefficients which are correctly rounded with the
highest probability

Lemma 2

Let b/ ~ N (b,a?) for some unknown integer center b, and known standard
deviation . Let x = b' — |b']. The probability that |b'| = b is given by:

_ po ()
Yolz) = po(z + Z)

where we let as usual p,(t) = exp (— t?/(20?)).

26/31

Probability-based guessing strategy

Our approach is slightly different from the trick of [Pre23].
@ Without exploiting a threshold e

@ Selecting n/2 coefficients which are correctly rounded with the
highest probability

Let b/ ~ N (b,a?) for some unknown integer center b, and known standard
deviation o. Let x = b' — |b']. The probability that |b'| = b is given by:

__ po(2)
)=t D)

where we let as usual py(t) = exp (— t*/(20?)).

The standard deviation is inversely proportional to required signatures N:
o~ C,/VN and constant C, can be derived by curve fitting.

26/31

Experimental results

For reference implementation
@ signature samples: =~ 25,000

@ running time: < 0.5 hours

N x 1073 10
Instance 1 0
Instance 2 0
Instance 3 0
Instance 4 0
Instance 5 0
Instance 6 0
0
0
0
0

—_
ot
\)
o

25 30 35 40 45 50

Instance 7
Instance 8
Instance 9
Instance 10

[en) Nenll Hen) Nevl Hen) Nev) Hen) Nev] Ban) New)
[e=] Neoll Hen) Nevl Hen) Nev) Ran) I O} B New)
O W R WWOoO|IW RN
DO O O | O =] O Q| O
QU O | | O O O x| | Ot
O Ot Ot O Ot O Ot O Ot Ot
U O O Ot Ot Ot Ot Ot Ot s
Ul Ot Ot Ot Ot Ot Ot O] Ot Ot

27/31

Experimental results

For the specification version
@ signature samples: ~ 11 million

@ running time: < 20 hours

Nx1076% 3
Instance 1 0
Instance 2 0
Instance 3 0
Instance 4 0
Instance 5 0
0
0
0
0
0

—_
—_
—
w
—_
ot

20

Instance 6
Instance 7
Instance 8
Instance 9
Instance 10

olololoololololo|olwv
olo|lololololololo ol
olojlo|lo|lololololololv
w|lo| || —lwlo|lolo|w
| o] ol wo| otf wo| po| ot x| on
ot o po| o] ot o x| ot o on
i | ot en| ot en| ar| | an| en| o
ot o | | | e | | e en

28/31

Conclusion

29/31

Conclusion

We present practical key recovery attacks against Peregrine.

@ we can practically break two versions of Peregrine-512 by using a
relatively small number of signatures in a few hours

@ The same attack can be extended to the case of Peregrine-1024

30/31

Conclusion

We present practical key recovery attacks against Peregrine.

@ we can practically break two versions of Peregrine-512 by using a
relatively small number of signatures in a few hours

@ The same attack can be extended to the case of Peregrine-1024

More efficient countermeasures against statistical attacks need further
investigations!

30/31

Thank you!

31/31

