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The Cryptanalysis of Peregrine

o Target: Peregrine!

o the first round of the Korean PQC competition candidate in 2023
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The Cryptanalysis of Peregrine

o Target: Peregrine!

o the first round of the Korean PQC competition candidate in 2023

@ Technique: “parallelepiped-learning” +“lattice decoding”

o parallelepiped-learning = the approximate key found
e lattice decoding = fully recovers the secret from the approximations

@ Cost: the signature samples required for practical attacks

e ~ 25,000 for the reference implementation
e ~ 11 million for the specification version

 https://www.kpqc.or.kr/competition.html.
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A lattice £ is a discrete subgroup
of R™,

A lattice is generated by its basis
B = (by,---,b,) € R™*" ie.
L(B) = {XiL zibi [z € Z}.

L has infinitely many bases
B is good, G is bad.
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Parallelepiped

Each basis defines a parallelepiped P(B) = {XB | x € { 3 2) }
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Parallelepiped

Each basis defines a parallelepiped P(B) = {XB | x € { 3 2) }

Babai's round-off algorithm outputs v € £ such that v —t € P.
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@ signing: to solve the approximate closest vector problem (CVP)
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Hash-and-sign construction

Hash-and-sign
@ signing: to solve the approximate closest vector problem (CVP)
@ evolution: GGH, NTRUSign — GPV — Falcon, Mitaka

GGH, NTRUSign use deterministic round-off algorithm to solve the CVP.
e v —t € P(B), the distribution of signatures leaks information of B
e broken by parallelepiped-learning attacks [NR06)]?

Parallelepiped. Insecure!

2[NR06]: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev:
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GPV framework

[GPVO08]? presented a provably secure framework.
@ deterministic round-off algorithm =- trapdoor sampler
@ randomizing the rounding with random Gaussian sampling on lattice

@ the distribution of signatures is independent of the secret

Gaussian

3[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.
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Falcon

Falcon signature scheme®
selected by NIST for standardization in 2022
initiated with GPV framework over NTRU lattices

[~
@ advantages: low bandwidth, good efficiency
9

disadvantages: complicated, due to Gaussian sampling and
floating-point operations

*nttps://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms? 2022
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Falcon

Falcon signature scheme®
@ selected by NIST for standardization in 2022
@ initiated with GPV framework over NTRU lattices
@ advantages: low bandwidth, good efficiency

o disadvantages: complicated, due to Gaussian sampling and
floating-point operations

Designing a simpler and comparably efficient variant of Falcon is a
tempting choice!

*nttps://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms? 2022
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The Peregrine signature scheme
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Peregrine

Peregrine signature scheme
@ one of candidates in the 1st round of the KPQC competition
@ the high speed version of Falcon
@ Gaussian sampling ¥, centered binomial distribution «

@ simpler, along with comparable efficiency, easy to mask

Peregrine does not offer a proof of security!!!

11/31



The procedure of signing

The signing of Peregrine is in essence the randomized version of Babai's
round-off algorithm.
@ by adding a binomial vector (J1, J3), instead of using Gaussian
distribution

Signing

Input: NTRU trapdoor basis B, center c.

Output: random lattice point s € £L(B) — c.
v () = (Bl Bf®)

7Z = LB_IC-| + (J1, JQ)

2:

3 v= Bz
#2 S=V-—cC
5. return s

The centered binomial distribution B,, is defined over [—§, 5] N Z.
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Signature distribution

Practical distribution

$1 Ri—Jy n
We have (s ) =By, - <R2 - J2> where (Ri, Ro) ~ U([—1/2,1/2)").

2
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$1 Ri—Jy n
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o the distribution of (s, s2) is a hidden linear transformation (i.e. By )
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Signature distribution

Practical distribution

S1 . . Rl—Jl . 7
We have <32> =By, <R2 —J2> where (Ri, Ro) ~ U([—1/2,1/2)").

o the distribution of (s, s2) is a hidden linear transformation (i.e. By )
of a known distribution

@ we perform practical key recovery attacks against Peregrine by
learning the hidden linear transformation

13/31



Secret key leakage

The Peregrine signatures are always in adjacent parallelepipeds, rather
than a sole parallelepiped.

Adjacent parallelepipeds v Sole parallelepiped %
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Secret key leakage

The Peregrine signatures are always in adjacent parallelepipeds, rather
than a sole parallelepiped.

Adjacent parallelepipeds v Sole parallelepiped %

Peregrine are also insecure!!!
@ the distribution of signatures would leak information of the secret key
@ learn the hidden transformation by parallelepiped-learning of [NR06]

14 /31



Concrete parameters

In this work, we focus on the parameter set of Peregrine-512.
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Concrete parameters

In this work, we focus on the parameter set of Peregrine-512.

There are some discrepancies between the reference implementation and
the official specification of Peregrine.
o key generation:
e in the specification, the coefficients of (f,g) are drawn from Bsyg, and
it checks if the Gram—Schmidt norms of By , are less than 1.17,/q
e in the reference implementation, this check is commented out
o the signing:
o the specification suggests 111 = o = 26
o the reference implementation in effect use (p1, p2) = (6,0)

15/31



Learning a hidden transformation
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Parallelepiped-learning of [NR06] revisit

Definition 1 (The Hidden Parallelepiped Problem)

Given B = (by,...,b,) € GL,(R) and a certain number of independent
parallelepiped samples y = Bx with x < U([—1,1]), find an
approximation of +b;'s.

17/31



Parallelepiped-learning of [NR06] revisit

Definition 1 (The Hidden Parallelepiped Problem)

Given B = (by,...,b,) € GL,(R) and a certain number of independent
parallelepiped samples y = Bx with x < U([—1,1]), find an
approximation of +b;'s.

Solving the Hidden Parallelepiped Problem
e the covariance leakage: K = B - Cov[xx'] - B = BB!/3
@ the approximate Gram matrix: K = 3K = BB!
e compute factor L = P* such that K~! = PP!
@ by multiplying L, C = LB is orthogonal
@ the local minima =£c; can be solved by gradient descent

@ by multiplying L™, the approximation of +b; found

17/31



Hidden Transformation Problem

The Nguyen-Regev parallelepiped-learning attack [NRO6] can be extended
to more general Hidden Transformation Problem (HTP).
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Hidden Transformation Problem

The Nguyen-Regev parallelepiped-learning attack [NRO6] can be extended
to more general Hidden Transformation Problem (HTP).

Definition 2 (HTPp)

Let D be a public distribution over R™. Given a hidden matrix
B = (by,...,b,) € GL,(R) and a certain number of independent
samples y = Bx with x « D, find an approximation of +b;'s.

For Peregrine,

P =

U([-1/2,1/2)) + B,, for1<i<n/2
U([-1/2,1/2)) + B, forn/2+1<i<n.
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Key recovery algorithm

Our key recovery algorithm
@ distribution deformation

@ gradient descent
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Step 1: Distribution deformation

The covariance leakage
e Cov[D(B)] =B Cov|D] - B
@ helps to reduce the general HTP to the case in which the covariance
leakage is I,
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The covariance leakage
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Step 1: Distribution deformation

The covariance leakage
e Cov[D(B)] =B Cov|D] - Bt

@ helps to reduce the general HTP to the case in which the covariance
leakage is I,

The procedure of distribution deformation
@ the covariance leakage K = Cov[D(B)]
e compute L = P? such that PP = K~!
e C = LB such that Cov|[D(C)] =1,

e C is orthogonal when Cov|[D] =1,

Distribution deformation reduces the HTP instance regarding (D, )
the one regarding (D, C) such that Cov[D(C)] =1I,, and Cov[D| =
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Step 2: Gradient descent

Let o; = E[2}]. The fourth moment of D(C) and its gradient:

n

Mpycya(w) = 3[[w* = 3 (3 = ai){ei, w)*,
i=1
VMD(C)A(W) = 12w — 2(12 — 40z¢)<Ci, W>3CZ‘.
i=1
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Suppose that o;; < 3 for all 1 < i < n, the local minimum of Mpc) 4(W)
over all unit vectors w is obtained at +c,...,+c,. There are no other
local minima.
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Step 2: Gradient descent

Let o; = E[2}]. The fourth moment of D(C) and its gradient:

Mpcya(w) = 3|lw|* =D (3 — ai){ci, w)*,
=1
VMpcya(w) = 12w — Y (12 — o) (cs, w)c;.
i=1

Suppose that o;; < 3 for all 1 < i < n, the local minimum of Mpc) 4(W)
over all unit vectors w is obtained at +cy,...,+c,. There are no other
local minima.

Therefore, the local minima c; can be solved by gradient descent[TW20]°.

5[TW20]: One bit is all it takes: a devastating timing attack on BLISS's non-constant time-sign flips. Tibouchi and:Wallet.
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The case of [NR06]

In [NRO6], D = U([—1,1]), the fourth moment function:

2 n
Mpcya(w) = *|| I* - T - Z(Ci7W>4=
and its gradient:
8 n
VMpcya(w) = 5 *5 > (e w
=1
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The case of Peregrine

For specification version, p; = pg = 26:

2346 &
W _ 4 4040 RV
D(C),4(w) 3”WH 31205 i§:1<csz> )
9384 &
M = 12w — —— ) 3¢
A4 D(C),4(W) w 31205 Z.:1<cl,w> c;

For reference implementation version, (u1, pu2) = (6,0):

n/2

546 6
MD(C)A(W) = 3”WH4 - @ <Cz‘,W>4 - 5 Z (ci,w)‘l,
i=1 i=n/2+1
2184 12 94 2
VMD(C)A(W) = 12w — —— (Ci7W>3Ci - — Z <ci,w>3ci.
1805 = 5 iy
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Practical key recovery attacks
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Lattice decoding of [Pre23]

Let b = (b)), b(2)) € LyTry be the secret vector and b’ = (o)1), (¥')(2))
be the approximation of b.
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Lattice decoding of [Pre23]

Let b = (b(l), b(2)) € LnTrRu be the secret vector and b’ = ((b’)(l), (b’)(2))
be the approximation of b.

Prest’s decoding technique [Pre23]°
@ Selecting a certain threshold ¢ € (0,1/2)

o For e =b’ — b, at least half of the coefficients of e are in [—¢,¢]
o No coefficients of e in absolute norm exceeds 1 — ¢

6[Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest.
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Lattice decoding of [Pre23]

Let b = (b(l), b(2)) € LnTrRu be the secret vector and b’ = ((b’)(l), (b’)(2))
be the approximation of b.

Prest’s decoding technique [Pre23]°
@ Selecting a certain threshold ¢ € (0,1/2)

o For e =b’ — b, at least half of the coefficients of e are in [—¢,¢]
o No coefficients of e in absolute norm exceeds 1 — ¢

o The difference d = [b'] —b = (dV),d?)
e zeros in at least n/2 coefficients
o for NTRU equation, ) + b(®) . b = 0 mod ¢, then

[(b’)(ﬂ + {(b’)@)] h=d® +d® . hmod q.

The secret b can be fully recovered by solving linear system for d.

6[Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest.
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Probability-based guessing strategy

Our approach is slightly different from the trick of [Pre23].
o Without exploiting a threshold e

@ Selecting n/2 coefficients which are correctly rounded with the
highest probability

Lemma 2

Let b/ ~ N (b,a?) for some unknown integer center b, and known standard
deviation . Let x = b' — |b']. The probability that |b'| = b is given by:

_ po ()
Yolz) = po(z + Z)

where we let as usual p,(t) = exp ( — t?/(20?)).
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Probability-based guessing strategy

Our approach is slightly different from the trick of [Pre23].
@ Without exploiting a threshold e

@ Selecting n/2 coefficients which are correctly rounded with the
highest probability

Let b/ ~ N (b,a?) for some unknown integer center b, and known standard
deviation o. Let x = b' — |b']. The probability that |b'| = b is given by:

__ po(2)
)=t D)

where we let as usual py(t) = exp (— t*/(20?)).

The standard deviation is inversely proportional to required signatures N:
o~ C,/VN and constant C, can be derived by curve fitting.
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Experimental results

For reference implementation
@ signature samples: =~ 25,000

@ running time: < 0.5 hours
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Experimental results

For the specification version
@ signature samples: ~ 11 million

@ running time: < 20 hours

Nx1076% 3
Instance 1 0
Instance 2 0
Instance 3 0
Instance 4 0
Instance 5 0
0
0
0
0
0

—_
—_
—
w
—_
ot

20

Instance 6
Instance 7
Instance 8
Instance 9
Instance 10

olololoololololo|olwv
olo|lololololololo ol
olojlo|lo|lololololololv
w|lo| || —lwlo|lolo|w
| o] ol wo| otf wo| po| ot x| on
ot o po| o] ot o x| ot o on
i | ot en| ot en| ar| | an| en| o
ot o | | | e | | e en

28/31



Conclusion

29/31



Conclusion

We present practical key recovery attacks against Peregrine.

@ we can practically break two versions of Peregrine-512 by using a
relatively small number of signatures in a few hours

@ The same attack can be extended to the case of Peregrine-1024
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Conclusion

We present practical key recovery attacks against Peregrine.

@ we can practically break two versions of Peregrine-512 by using a
relatively small number of signatures in a few hours

@ The same attack can be extended to the case of Peregrine-1024

More efficient countermeasures against statistical attacks need further
investigations!
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Thank you!
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