Cryptanalysis of the Peregrine Lattice-Based Signature Scheme

PKC 2024

Xiuhan Lin, Moeto Suzuki, Shiduo Zhang, Thomas Espitau, Yang Yu, Mehdi Tibouchi, Masayuki Abe

- Target: Peregrine¹
 - the first round of the Korean PQC competition candidate in 2023

¹https://www.kpqc.or.kr/competition.html.

- Target: Peregrine¹
 - the first round of the Korean PQC competition candidate in 2023
- Technique: "parallelepiped-learning" + "lattice decoding"
 - $\bullet\ parallelepiped-learning \Rightarrow$ the approximate key found
 - lattice decoding \Rightarrow fully recovers the secret from the approximations

¹https://www.kpqc.or.kr/competition.html.

- Target: Peregrine¹
 - the first round of the Korean PQC competition candidate in 2023
- Technique: "parallelepiped-learning" + "lattice decoding"
 - parallelepiped-learning \Rightarrow the approximate key found
 - lattice decoding \Rightarrow fully recovers the secret from the approximations
- Cost: the signature samples required for practical attacks
 - $\approx 25,000$ for the reference implementation
 - $\bullet~\approx 11$ million for the specification version

¹https://www.kpqc.or.kr/competition.html.

- Background
- The Peregrine signature scheme
- Learning a hidden transformation
- Practical key recovery attack

Background

Lattice

A lattice ${\mathcal L}$ is a discrete subgroup of ${\mathbb R}^m.$

Lattice

A lattice \mathcal{L} is a discrete subgroup of \mathbb{R}^m .

A lattice is generated by its basis $\mathbf{B} = (\mathbf{b}_1, \cdots, \mathbf{b}_n) \in \mathbb{R}^{m \times n}, \text{ i.e.}$ $\mathcal{L}(\mathbf{B}) = \{\sum_{i=1}^n x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}\}.$

Lattice

A lattice \mathcal{L} is a discrete subgroup of \mathbb{R}^m .

A lattice is generated by its basis $\mathbf{B} = (\mathbf{b}_1, \cdots, \mathbf{b}_n) \in \mathbb{R}^{m \times n}, \text{ i.e.}$ $\mathcal{L}(\mathbf{B}) = \{\sum_{i=1}^n x_i \mathbf{b}_i \mid x_i \in \mathbb{Z}\}.$

 \mathcal{L} has infinitely many bases **B** is good, **G** is bad.

Parallelepiped

Each basis defines a parallelepiped $\mathcal{P}(\mathbf{B}) = \left\{ \mathbf{x}\mathbf{B} \mid \mathbf{x} \in \left[-\frac{1}{2}, \frac{1}{2}\right]^n \right\}.$

Parallelepiped

Each basis defines a parallelepiped $\mathcal{P}(\mathbf{B}) = \left\{ \mathbf{x}\mathbf{B} \mid \mathbf{x} \in \left[-\frac{1}{2}, \frac{1}{2}\right]^n \right\}.$

Babai's round-off algorithm outputs $\mathbf{v} \in \mathcal{L}$ such that $\mathbf{v} - \mathbf{t} \in \mathcal{P}$.

Hash-and-sign

- signing: to solve the approximate closest vector problem (CVP)
- \bullet evolution: GGH, NTRUSign \rightarrow GPV \rightarrow Falcon, Mitaka

Hash-and-sign

- signing: to solve the approximate closest vector problem (CVP)
- evolution: GGH, NTRUSign \rightarrow GPV \rightarrow Falcon, Mitaka

GGH, NTRUSign use deterministic round-off algorithm to solve the CVP.

- $\mathbf{v}-\mathbf{t}\in\mathcal{P}(\mathbf{B}),$ the distribution of signatures leaks information of \mathbf{B}
- broken by parallelepiped-learning attacks [NR06]²

²[NR06]: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Nguyen and Regev + 4 🗄 + 🗦 🥏 🔶 🤉

[GPV08]³ presented a provably secure framework.

- \bullet deterministic round-off algorithm \Rightarrow trapdoor sampler
- randomizing the rounding with random Gaussian sampling on lattice
- the distribution of signatures is independent of the secret

Gaussian

³[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

Falcon signature scheme⁴

- selected by NIST for standardization in 2022
- initiated with GPV framework over NTRU lattices
- advantages: low bandwidth, good efficiency
- **disadvantages:** complicated, due to Gaussian sampling and floating-point operations

⁴https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithmg#2022 ≧ ▶ (≧ ▶ (≧ ▶ (≧ ∧ Q (

Falcon signature scheme⁴

- selected by NIST for standardization in 2022
- initiated with GPV framework over NTRU lattices
- advantages: low bandwidth, good efficiency
- **disadvantages:** complicated, due to Gaussian sampling and floating-point operations

Designing a simpler and comparably efficient variant of Falcon is a tempting choice!

⁴https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithmg#2022 ≧ ► < ≧ ► ♡ Q (

The Peregrine signature scheme

Peregrine signature scheme

- one of candidates in the 1st round of the KPQC competition
- the high speed version of Falcon
- Gaussian sampling ✗, centered binomial distribution ✓
- simpler, along with comparable efficiency, easy to mask

Peregrine does not offer a proof of security!!!

The procedure of signing

The signing of Peregrine is in essence the randomized version of Babai's round-off algorithm.

 \bullet by adding a binomial vector $(J_1,J_2),$ instead of using Gaussian distribution

Signing

Input: NTRU trapdoor basis \mathbf{B} , center \mathbf{c} .

 $\label{eq:output: random lattice point $\mathbf{s} \in \mathcal{L}(\mathbf{B}) - \mathbf{c}$.}$

$$: (J_1, J_2) \leftarrow (B_{\mu_1}^{n/2}, B_{\mu_2}^{n/2})$$

$$\mathbf{z} = [\mathbf{B}^{-1}\mathbf{c}] + (J_1, J_2)$$

- 3: $\mathbf{v} = \mathbf{B}\mathbf{z}$
- 4: $\mathbf{s} = \mathbf{v} \mathbf{c}$
- 5: return s

The centered binomial distribution B_{μ} is defined over $\left[-\frac{\mu}{2}, \frac{\mu}{2}\right] \cap \mathbb{Z}$.

イロン イロン イヨン イヨン 三日

Practical distribution

We have
$$\binom{s_1}{s_2} = \mathbf{B}_{f,g} \cdot \binom{R_1 - J_1}{R_2 - J_2}$$
 where $(R_1, R_2) \sim U([-1/2, 1/2)^n)$.

Practical distribution

We have
$$\binom{s_1}{s_2} = \mathbf{B}_{f,g} \cdot \binom{R_1 - J_1}{R_2 - J_2}$$
 where $(R_1, R_2) \sim U([-1/2, 1/2)^n)$.

• the distribution of (s_1, s_2) is a hidden linear transformation (i.e. $\mathbf{B}_{f,g}$) of a known distribution

Practical distribution

We have
$$\binom{s_1}{s_2} = \mathbf{B}_{f,g} \cdot \binom{R_1 - J_1}{R_2 - J_2}$$
 where $(R_1, R_2) \sim U([-1/2, 1/2)^n)$.

- the distribution of (s_1, s_2) is a hidden linear transformation (i.e. $\mathbf{B}_{f,g}$) of a known distribution
- we perform practical key recovery attacks against Peregrine by learning the hidden linear transformation

The Peregrine signatures are always in adjacent parallelepipeds, rather than a sole parallelepiped.

Sole parallelepiped X

The Peregrine signatures are always in adjacent parallelepipeds, rather than a sole parallelepiped.

Adjacent parallelepipeds 🗸

Peregrine are also insecure!!!

Secret key leakage

The Peregrine signatures are always in adjacent parallelepipeds, rather than a sole parallelepiped.

Adjacent parallelepipeds 🖌 🦳 Sole pa

Sole parallelepiped 🗙

< ロ > < 同 > < 回 > < 回 >

Peregrine are also insecure!!!

- the distribution of signatures would leak information of the secret key
- learn the hidden transformation by parallelepiped-learning of [NR06]

There are some discrepancies between the reference implementation and the official specification of Peregrine.

There are some discrepancies between the reference implementation and the official specification of Peregrine.

- key generation:
 - in the specification, the coefficients of (f,g) are drawn from B_{26} , and it checks if the Gram–Schmidt norms of $\mathbf{B}_{f,g}$ are less than $1.17\sqrt{q}$
 - in the reference implementation, this check is commented out

There are some discrepancies between the reference implementation and the official specification of Peregrine.

- key generation:
 - in the specification, the coefficients of (f,g) are drawn from B_{26} , and it checks if the Gram–Schmidt norms of $\mathbf{B}_{f,g}$ are less than $1.17\sqrt{q}$
 - in the reference implementation, this check is commented out
- the signing:
 - the specification suggests $\mu_1=\mu_2=26$
 - the reference implementation in effect use $(\mu_1, \mu_2) = (6, 0)$

Learning a hidden transformation

Definition 1 (The Hidden Parallelepiped Problem)

Given $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathrm{GL}_n(\mathbb{R})$ and a certain number of independent parallelepiped samples $\mathbf{y} = \mathbf{B}\mathbf{x}$ with $\mathbf{x} \leftarrow U([-1, 1])$, find an approximation of $\pm \mathbf{b}_i$'s.

Definition 1 (The Hidden Parallelepiped Problem)

Given $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathrm{GL}_n(\mathbb{R})$ and a certain number of independent parallelepiped samples $\mathbf{y} = \mathbf{B}\mathbf{x}$ with $\mathbf{x} \leftarrow U([-1, 1])$, find an approximation of $\pm \mathbf{b}_i$'s.

Solving the Hidden Parallelepiped Problem

- the covariance leakage: $\mathbf{K} = \mathbf{B} \cdot \mathbf{Cov}[\mathbf{xx}^t] \cdot \mathbf{B}^t = \mathbf{BB}^t/3$
- the approximate Gram matrix: $\mathbf{K} = 3\mathbf{K} = \mathbf{B}\mathbf{B}^t$
- compute factor $\mathbf{L} = \mathbf{P}^t$ such that $\mathbf{K}^{-1} = \mathbf{P}\mathbf{P}^t$
- \bullet by multiplying ${\bf L},\, {\bf C}={\bf L}{\bf B}$ is orthogonal
- the local minima $\pm \mathbf{c}_i$ can be solved by gradient descent
- by multiplying \mathbf{L}^{-1} , the approximation of $\pm \mathbf{b}_i$ found

The Nguyen-Regev parallelepiped-learning attack [NR06] can be extended to more general *Hidden Transformation Problem* (HTP).

The Nguyen-Regev parallelepiped-learning attack [NR06] can be extended to more general *Hidden Transformation Problem* (HTP).

Definition 2 (HTP_D)

Let D be a public distribution over \mathbb{R}^n . Given a hidden matrix $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathrm{GL}_n(\mathbb{R})$ and a certain number of independent samples $\mathbf{y} = \mathbf{B}\mathbf{x}$ with $\mathbf{x} \leftarrow D$, find an approximation of $\pm \mathbf{b}_i$'s.

The Nguyen-Regev parallelepiped-learning attack [NR06] can be extended to more general *Hidden Transformation Problem* (HTP).

Definition 2 (HTP_D)

Let D be a public distribution over \mathbb{R}^n . Given a hidden matrix $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathrm{GL}_n(\mathbb{R})$ and a certain number of independent samples $\mathbf{y} = \mathbf{B}\mathbf{x}$ with $\mathbf{x} \leftarrow D$, find an approximation of $\pm \mathbf{b}_i$'s.

For Peregrine,

$$D_i = \begin{cases} U([-1/2, 1/2)) + B_{\mu_1} & \text{for } 1 \le i \le n/2; \\ U([-1/2, 1/2)) + B_{\mu_2} & \text{for } n/2 + 1 \le i \le n. \end{cases}$$

Our key recovery algorithm

- distribution deformation
- gradient descent

The covariance leakage

- $\mathbf{Cov}[D(\mathbf{B})] = \mathbf{B} \cdot \mathbf{Cov}[D] \cdot \mathbf{B}^t$
- helps to reduce the general HTP to the case in which the covariance leakage is \mathbf{I}_n

The covariance leakage

- $\mathbf{Cov}[D(\mathbf{B})] = \mathbf{B} \cdot \mathbf{Cov}[D] \cdot \mathbf{B}^t$
- helps to reduce the general HTP to the case in which the covariance leakage is In

The procedure of distribution deformation

- the covariance leakage $\mathbf{K} = \mathbf{Cov}[D(\mathbf{B})]$
- \bullet compute $\mathbf{L}=\mathbf{P}^t$ such that $\mathbf{P}\mathbf{P}^t=\mathbf{K}^{-1}$
- $\mathbf{C} = \mathbf{LB}$ such that $\mathbf{Cov}[D(\mathbf{C})] = \mathbf{I}_n$
- C is orthogonal when $\mathbf{Cov}[D] = \mathbf{I}_n$

Step 1: Distribution deformation

The covariance leakage

- $\mathbf{Cov}[D(\mathbf{B})] = \mathbf{B} \cdot \mathbf{Cov}[D] \cdot \mathbf{B}^t$
- helps to reduce the general HTP to the case in which the covariance leakage is \mathbf{I}_n

The procedure of distribution deformation

- the covariance leakage $\mathbf{K} = \mathbf{Cov}[D(\mathbf{B})]$
- compute $\mathbf{L} = \mathbf{P}^t$ such that $\mathbf{P}\mathbf{P}^t = \mathbf{K}^{-1}$
- $\mathbf{C} = \mathbf{LB}$ such that $\mathbf{Cov}[D(\mathbf{C})] = \mathbf{I}_n$
- C is orthogonal when $\mathbf{Cov}[D] = \mathbf{I}_n$

Distribution deformation reduces the HTP instance regarding (D, \mathbf{B}) to the one regarding (D, \mathbf{C}) such that $\mathbf{Cov}[D(\mathbf{C})] = \mathbf{I}_n$ and $\mathbf{Cov}[D] = \mathbf{I}_n$.

Let $\alpha_i = \mathbb{E}[z_i^4]$. The fourth moment of $D(\mathbf{C})$ and its gradient:

$$M_{D(\mathbf{C}),4}(\mathbf{w}) = 3 \|\mathbf{w}\|^4 - \sum_{i=1}^n (3 - \alpha_i) \langle \mathbf{c}_i, \mathbf{w} \rangle^4,$$

$$\nabla M_{D(\mathbf{C}),4}(\mathbf{w}) = 12\mathbf{w} - \sum_{i=1}^n (12 - 4\alpha_i) \langle \mathbf{c}_i, \mathbf{w} \rangle^3 \mathbf{c}_i.$$

Let $\alpha_i = \mathbb{E}[z_i^4]$. The fourth moment of $D(\mathbf{C})$ and its gradient:

$$M_{D(\mathbf{C}),4}(\mathbf{w}) = 3 \|\mathbf{w}\|^4 - \sum_{i=1}^n (3 - \alpha_i) \langle \mathbf{c}_i, \mathbf{w} \rangle^4,$$

$$\nabla M_{D(\mathbf{C}),4}(\mathbf{w}) = 12\mathbf{w} - \sum_{i=1}^n (12 - 4\alpha_i) \langle \mathbf{c}_i, \mathbf{w} \rangle^3 \mathbf{c}_i.$$

Lemma 1

Suppose that $\alpha_i < 3$ for all $1 \le i \le n$, the local minimum of $M_{D(\mathbf{C}),4}(\mathbf{w})$ over all unit vectors \mathbf{w} is obtained at $\pm \mathbf{c}_1, \ldots, \pm \mathbf{c}_n$. There are no other local minima.

Step 2: Gradient descent

Let $\alpha_i = \mathbb{E}[z_i^4]$. The fourth moment of $D(\mathbf{C})$ and its gradient:

$$M_{D(\mathbf{C}),4}(\mathbf{w}) = 3 \|\mathbf{w}\|^4 - \sum_{i=1}^n (3 - \alpha_i) \langle \mathbf{c}_i, \mathbf{w} \rangle^4,$$

$$\nabla M_{D(\mathbf{C}),4}(\mathbf{w}) = 12\mathbf{w} - \sum_{i=1}^n (12 - 4\alpha_i) \langle \mathbf{c}_i, \mathbf{w} \rangle^3 \mathbf{c}_i.$$

Lemma 1

Suppose that $\alpha_i < 3$ for all $1 \le i \le n$, the local minimum of $M_{D(\mathbf{C}),4}(\mathbf{w})$ over all unit vectors \mathbf{w} is obtained at $\pm \mathbf{c}_1, \ldots, \pm \mathbf{c}_n$. There are no other local minima.

Therefore, the local minima c_i can be solved by gradient descent[TW20]⁵.

 $^{^{5}}$ [TW20]: One bit is all it takes: a devastating timing attack on BLISS's non-constant time sign flips. Tibouchi and Wallet \sim $^{\circ}$

In [NR06], D = U([-1, 1]), the fourth moment function:

$$M_{D(\mathbf{C}),4}(\mathbf{w}) = \frac{1}{3} \|\mathbf{w}\|^4 - \frac{2}{15} \sum_{i=1}^n \langle \mathbf{c}_i, \mathbf{w} \rangle^4,$$

and its gradient:

$$\nabla M_{D(\mathbf{C}),4}(\mathbf{w}) = \frac{4}{3}\mathbf{w} - \frac{8}{15}\sum_{i=1}^{n} \langle \mathbf{c}_i, \mathbf{w} \rangle^3 \mathbf{c}_i.$$

The case of Peregrine

For specification version, $\mu_1 = \mu_2 = 26$:

$$M_{D(\mathbf{C}),4}(\mathbf{w}) = 3 \|\mathbf{w}\|^4 - \frac{2346}{31205} \sum_{i=1}^n \langle \mathbf{c}_i, \mathbf{w} \rangle^4,$$

$$\nabla M_{D(\mathbf{C}),4}(\mathbf{w}) = 12\mathbf{w} - \frac{9384}{31205} \sum_{i=1}^n \langle \mathbf{c}_i, \mathbf{w} \rangle^3 \mathbf{c}_i.$$

For reference implementation version, $(\mu_1, \mu_2) = (6, 0)$:

$$M_{D(\mathbf{C}),4}(\mathbf{w}) = 3\|\mathbf{w}\|^4 - \frac{546}{1805} \sum_{i=1}^{n/2} \langle \mathbf{c}_i, \mathbf{w} \rangle^4 - \frac{6}{5} \sum_{i=n/2+1}^n \langle \mathbf{c}_i, \mathbf{w} \rangle^4,$$

$$\nabla M_{D(\mathbf{C}),4}(\mathbf{w}) = 12\mathbf{w} - \frac{2184}{1805} \sum_{i=1}^{n/2} \langle \mathbf{c}_i, \mathbf{w} \rangle^3 \mathbf{c}_i - \frac{24}{5} \sum_{i=n/2+1}^n \langle \mathbf{c}_i, \mathbf{w} \rangle^3 \mathbf{c}_i.$$

Practical key recovery attacks

Let $\mathbf{b} = (b^{(1)}, b^{(2)}) \in \mathcal{L}_{\mathsf{NTRU}}$ be the secret vector and $\mathbf{b}' = ((b')^{(1)}, (b')^{(2)})$ be the approximation of \mathbf{b} .

Let $\mathbf{b} = (b^{(1)}, b^{(2)}) \in \mathcal{L}_{\mathsf{NTRU}}$ be the secret vector and $\mathbf{b}' = ((b')^{(1)}, (b')^{(2)})$ be the approximation of \mathbf{b} .

Prest's decoding technique [Pre23]⁶

- Selecting a certain threshold $\varepsilon \in (0,1/2)$
 - For e = b' b, at least half of the coefficients of e are in $[-\varepsilon, \varepsilon]$
 - ${\, \bullet \,}$ No coefficients of e in absolute norm exceeds $1-\varepsilon$

 $^{^{6}}$ [Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest. (\Box) (\Box) (\Box) (Ξ) (Ξ) (Ξ) (Ξ) (\Box) (\Box) (\Box) (Ξ) (\Box) (\Box) (Ξ) (\Box) (Ξ)

Let $\mathbf{b} = (b^{(1)}, b^{(2)}) \in \mathcal{L}_{\mathsf{NTRU}}$ be the secret vector and $\mathbf{b}' = ((b')^{(1)}, (b')^{(2)})$ be the approximation of \mathbf{b} .

Prest's decoding technique [Pre23]⁶

- Selecting a certain threshold $\varepsilon \in (0,1/2)$
 - For e = b' b, at least half of the coefficients of e are in $[-\varepsilon, \varepsilon]$
 - $\bullet\,$ No coefficients of ${\bf e}$ in absolute norm exceeds $1-\varepsilon\,$
- \bullet The difference $\mathbf{d} = \lfloor \mathbf{b}' \rceil \mathbf{b} = (d^{(1)}, d^{(2)})$
 - zeros in at least n/2 coefficients

 $^{^{6}}$ [Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest. $4 \square + 4 \square + 4 \square + 4 \equiv + 4 \equiv + 2 = -9 < 0$

Let $\mathbf{b} = (b^{(1)}, b^{(2)}) \in \mathcal{L}_{\mathsf{NTRU}}$ be the secret vector and $\mathbf{b}' = ((b')^{(1)}, (b')^{(2)})$ be the approximation of \mathbf{b} .

Prest's decoding technique [Pre23]⁶

- Selecting a certain threshold $\varepsilon \in (0,1/2)$
 - For e = b' b, at least half of the coefficients of e are in $[-\varepsilon, \varepsilon]$
 - ${\, \bullet \,}$ No coefficients of e in absolute norm exceeds $1-\varepsilon$
- \bullet The difference $\mathbf{d} = \lfloor \mathbf{b}' \rceil \mathbf{b} = (d^{(1)}, d^{(2)})$
 - zeros in at least $n/2\ {\rm coefficients}$
 - for NTRU equation, $b^{(1)} + b^{(2)} \cdot h = 0 \mod q$, then

$$\lfloor (b')^{(1)} \rfloor + \lfloor (b')^{(2)} \rfloor \cdot h = d^{(1)} + d^{(2)} \cdot h \mod q.$$

⁶[Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest. 4 🗆 > 4 🗇 > 4 🥃 > 4 🗟 > > 🦉 🗠 🤍 😷

Let $\mathbf{b} = (b^{(1)}, b^{(2)}) \in \mathcal{L}_{\mathsf{NTRU}}$ be the secret vector and $\mathbf{b}' = ((b')^{(1)}, (b')^{(2)})$ be the approximation of \mathbf{b} .

Prest's decoding technique [Pre23]⁶

- Selecting a certain threshold $\varepsilon \in (0,1/2)$
 - For e = b' b, at least half of the coefficients of e are in $[-\varepsilon, \varepsilon]$
 - ${\, \bullet \,}$ No coefficients of e in absolute norm exceeds $1-\varepsilon$
- \bullet The difference $\mathbf{d} = \lfloor \mathbf{b}' \rceil \mathbf{b} = (d^{(1)}, d^{(2)})$
 - zeros in at least $n/2\ {\rm coefficients}$
 - for NTRU equation, $b^{(1)} + b^{(2)} \cdot h = 0 \mod q$, then

$$\lfloor (b')^{(1)} \rceil + \lfloor (b')^{(2)} \rceil \cdot h = d^{(1)} + d^{(2)} \cdot h \mod q.$$

The secret \mathbf{b} can be fully recovered by solving linear system for \mathbf{d} .

 $^{^{6}}$ [Pre23]: A key-recovery attack against mitaka in the t-probing model. Prest. $\langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle + \langle \Xi \rangle = -9$ \bigcirc \bigcirc

Our approach is slightly different from the trick of [Pre23].

Our approach is slightly different from the trick of [Pre23].

- Without exploiting a threshold ε
- Selecting n/2 coefficients which are correctly rounded with the highest probability

Our approach is slightly different from the trick of [Pre23].

- Without exploiting a threshold ε
- Selecting n/2 coefficients which are correctly rounded with the highest probability

Lemma 2

Let $b' \sim \mathcal{N}(b, \sigma^2)$ for some unknown integer center b, and known standard deviation σ . Let $x = b' - \lfloor b' \rceil$. The probability that $\lfloor b' \rceil = b$ is given by:

$$\psi_{\sigma}(x) = \frac{\rho_{\sigma}(x)}{\rho_{\sigma}(x + \mathbb{Z})}$$

where we let as usual $\rho_{\sigma}(t) = \exp\left(-t^2/(2\sigma^2)\right)$.

Probability-based guessing strategy

Our approach is slightly different from the trick of [Pre23].

- Without exploiting a threshold ε
- Selecting n/2 coefficients which are correctly rounded with the highest probability

Lemma 2

Let $b' \sim \mathcal{N}(b, \sigma^2)$ for some unknown integer center b, and known standard deviation σ . Let $x = b' - \lfloor b' \rceil$. The probability that $\lfloor b' \rceil = b$ is given by:

$$\psi_{\sigma}(x) = \frac{\rho_{\sigma}(x)}{\rho_{\sigma}(x + \mathbb{Z})}$$

where we let as usual $\rho_{\sigma}(t) = \exp\left(-t^2/(2\sigma^2)\right)$.

The standard deviation is inversely proportional to required signatures N: $\sigma \approx C_{\sigma}/\sqrt{N}$ and constant C_{σ} can be derived by curve fitting.

Experimental results

For reference implementation

- signature samples: $\approx 25,000$
- ${\rm \circ}\,$ running time: < 0.5 hours

$N \times 10^{-3}$	10	15	20	25	30	35	40	45	50
Instance 1	0	0	0	2	4	5	5	4	5
Instance 2	0	0	1	1	5	3	5	5	5
Instance 3	0	0	2	3	3	4	5	5	5
Instance 4	0	0	0	0	5	5	5	5	5
Instance 5	0	0	0	3	1	5	5	5	5
Instance 6	0	0	0	3	5	5	5	5	5
Instance 7	0	0	0	1	4	4	5	5	5
Instance 8	0	0	0	3	5	3	5	5	5
Instance 9	0	0	0	0	5	5	5	5	5
Instance 10	0	0	0	4	2	5	5	5	5

Experimental results

For the specification version

- signature samples: ≈ 11 million
- $\bullet\,$ running time: <20 hours

$N \times 10^{-6}$	3	5	7	9	11	13	15	17	20
Instance 1	0	0	0	0	3	5	5	5	5
Instance 2	0	0	0	0	0	4	3	5	5
Instance 3	0	0	0	0	0	5	5	5	5
Instance 4	0	0	0	0	0	2	4	5	5
Instance 5	0	0	0	0	3	3	3	5	5
Instance 6	0	0	0	0	1	5	5	5	5
Instance 7	0	0	0	0	4	3	5	5	5
Instance 8	0	0	0	0	2	3	2	5	5
Instance 9	0	0	0	0	0	5	5	5	5
Instance 10	0	0	0	0	3	3	5	5	5

Conclusion

We present practical key recovery attacks against Peregrine.

- we can practically break two versions of Peregrine-512 by using a relatively small number of signatures in a few hours
- The same attack can be extended to the case of Peregrine-1024

We present practical key recovery attacks against Peregrine.

- we can practically break two versions of Peregrine-512 by using a relatively small number of signatures in a few hours
- The same attack can be extended to the case of Peregrine-1024

More efficient countermeasures against statistical attacks need further investigations!

Thank you!

