Improved Cryptanalysis of HFERP PKC 2024

Max Cartor, Ryann Cartor*, Hiroki Furue, Daniel Smith-Tone

April 15, 2024

In this talk, we provide two attacks on the multivariate cryptosystem $\ensuremath{\mathsf{HFERP}}$

HFE UOV and Rainbow Plus Modifier HFERP

Hidden Field Equations (HFE)

HFE UOV and Rainbow Plus Modifier HFERP

Hidden Field Equations (HFE)

 \mathcal{P}

$$= T \circ F \circ S \text{ where } F = \phi^{-1} \circ f \circ \phi \text{ and}$$

$$f(X) = \sum_{i \leq j}^{q^i + q^j < D} \alpha_{ij} X^{q^i + q^j} + \sum_{q^i < D} \beta_i X^{q^i} + \gamma$$

$$\downarrow f$$

$$F_{q^n} \longrightarrow \mathbb{F}_q^n$$

$$\downarrow \phi^{-1} \qquad \downarrow f$$

$$\mathbb{F}_q^n \longrightarrow \mathbb{F}_q^n \qquad \downarrow \mathcal{F}_q^n \longrightarrow \mathbb{F}_q^n$$

Jaques Patarin, "Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms." Eurocrypt (1996)

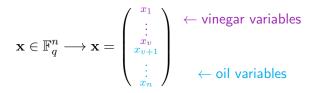
HFE UOV and Rainbow Plus Modifier HFERP

Unbalanced Oil and Vinegar

$$\mathbf{x} \in \mathbb{F}_q^n \longrightarrow \mathbf{x} = egin{pmatrix} x_1 \ dots \ x_{v+1} \ dots \ x_n \end{pmatrix}$$

HFE UOV and Rainbow Plus Modifier HFERP

Unbalanced Oil and Vinegar



HFE UOV and Rainbow Plus Modifier HFERP

Unbalanced Oil and Vinegar

$$\mathbf{x} \in \mathbb{F}_q^n \longrightarrow \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_v \\ x_{v+1} \\ \vdots \\ x_n \end{pmatrix} \quad \leftarrow \text{ oil variables}$$

$$P: \mathbb{F}_q^n \to \mathbb{F}_q^{(v+1)}$$

HFE UOV and Rainbow Plus Modifier HFERP

Unbalanced Oil and Vinegar

$$\mathbf{x} \in \mathbb{F}_q^n \longrightarrow \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_v \\ x_{v+1} \\ \vdots \\ x_n \end{pmatrix} \quad \leftarrow \text{ oil variables}$$

$$P: \mathbb{F}_q^n \to \mathbb{F}_q^{(v+1)}, \quad P = U \circ F \circ T$$

HFE UOV and Rainbow Plus Modifier HFERP

Unbalanced Oil and Vinegar

$$\mathbf{x} \in \mathbb{F}_q^n \longrightarrow \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_v \\ x_{v+1} \\ \vdots \\ x_n \end{pmatrix} \quad \leftarrow \text{ oil variables}$$

$$P: \mathbb{F}_q^n \to \mathbb{F}_q^{(v+1)}, \quad P = U \circ F \circ T, \quad F = (f^{(1)}, \dots, f^{(v+1)})$$

HFE UOV and Rainbow Plus Modifier HFERP

Unbalanced Oil and Vinegar

$$\mathbf{x} \in \mathbb{F}_q^n \longrightarrow \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_v \\ x_{v+1} \\ \vdots \\ x_n \end{pmatrix} \quad \leftarrow \text{ oil variables}$$

$$P: \mathbb{F}_q^n \to \mathbb{F}_q^{(v+1)}, \quad P = U \circ F \circ T, \quad F = (f^{(1)}, \dots, f^{(v+1)})$$

$$f^{(k)}(\mathbf{x}) = \sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{ijk} x_i x_j + \sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ijk} x_i x_j + \sum_{i=1}^{n} \gamma_{ik} x_i$$

HFE UOV and Rainbow Plus Modifier HFERP

Unbalanced Oil and Vinegar

$$\mathbf{x} \in \mathbb{F}_q^n \longrightarrow \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_v \\ x_{v+1} \\ \vdots \\ x_n \end{pmatrix} \quad \leftarrow \text{ oil variables}$$

$$P: \mathbb{F}_q^n \to \mathbb{F}_q^{(v+1)}, \quad P = U \circ F \circ T, \quad F = (f^{(1)}, \dots, f^{(v+1)})$$

$$f^{(k)}(\mathbf{x}) = \sum_{i=1}^{v} \sum_{j=i}^{v} \alpha_{ijk} x_i x_j + \sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ijk} x_i x_j + \sum_{i=1}^{n} \gamma_{ik} x_i$$

HFE UOV and Rainbow Plus Modifier HFERP

Rainbow

$$P : \mathbb{F}_{q}^{n} \to \mathbb{F}_{q}^{(v+1)(n-v_{\ell})}, \quad P = U \circ F \circ T, \quad F = \left(F^{(1)}, F^{(2)}, \dots, F^{(v+1)}\right)$$
$$f_{\ell}^{(k)}(\mathbf{x}) = \sum_{i=1}^{v_{\ell}} \sum_{j=1}^{v_{\ell}} \alpha_{ij\ell} x_{i} x_{j} + \sum_{i=1}^{v_{\ell}} \sum_{j=v_{\ell}+1}^{n} \beta_{ij\ell} x_{i} x_{j} + \sum_{i=1}^{n} \gamma_{i\ell} x_{i} + \delta_{\ell}$$
$$0 < v_{1} < v_{2} < \dots < v_{L} < n$$

Ding, Schmidt, "Rainbow, a New Multivariable Polynomial Signature Scheme. Applied Cryptography and Network Security (2005)

HFE UOV and Rainbow Plus Modifier HFERP

Plus Modifier

$$P = \begin{pmatrix} p_1 \\ \vdots \\ p_m \end{pmatrix}$$

HFE UOV and Rainbow Plus Modifier HFERP

Plus Modifier

$$P = \begin{pmatrix} p_1 \\ \vdots \\ p_m \end{pmatrix} \longrightarrow P^+ = \begin{pmatrix} p_1 \\ \vdots \\ p_m \\ p_{m+1} \\ \vdots \\ p_{m+a} \end{pmatrix}$$

HFE UOV and Rainbow Plus Modifier HFERP

HFERP

- Multivariate Encryption Scheme composed of:
 - An instance of HFE
 - A single layer Rainbow map
 - A plus modifier

Ikematsu, Perlner, Smith-Tone, Takagi, Vates, "HFERP - A New Multivariate

HFE UOV and Rainbow Plus Modifier HFERP

HFE UOV and Rainbow Plus Modifier HFERP

$$n = o + d$$
$$m = o + d + s + r$$

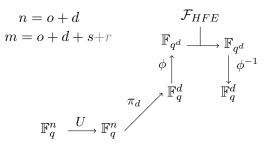
HFE UOV and Rainbow Plus Modifier HFERP

Structure of HFERP

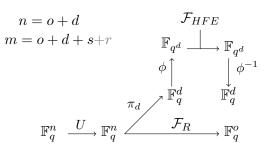
$$n = o + d$$
$$m = o + d + s + r$$

$\mathbb{F}_q^n \xrightarrow{U} \mathbb{F}_q^n$

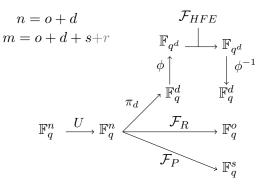
HFE UOV and Rainbow Plus Modifier HFERP



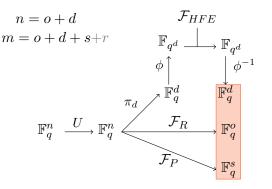
HFE UOV and Rainbow Plus Modifier HFERP



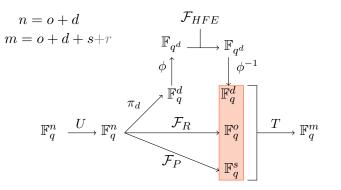
HFE UOV and Rainbow Plus Modifier HFERP



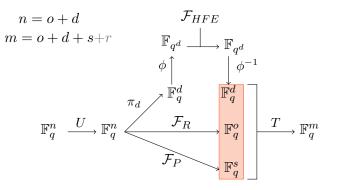
HFE UOV and Rainbow Plus Modifier HFERP



HFE UOV and Rainbow Plus Modifier HFERP



HFE UOV and Rainbow Plus Modifier HFERP



$$P: \mathbb{F}_q^n \to \mathbb{F}_q^m \quad P = T \circ (\mathcal{F}_{HFE} || \mathcal{F}_R || \mathcal{F}_P) \circ U$$

MinRank Background Structure of HFERP Central Maps Simple Attack

MinRank Attacks

MinRank Problem: Given $A_1, \ldots, A_k \in \mathbb{F}_q^{M \times N}$ and positive integer R, find $y_1, \ldots, y_k \in \mathbb{F}_q$ such that

$$\operatorname{rank}\left(\sum_{i=1}^k y_i A_i\right) \leq R.$$

MinRank Background Structure of HFERP Central Maps Simple Attack

MinRank Attacks

MinRank Problem: Given $A_1, \ldots, A_k \in \mathbb{F}_q^{M \times N}$ and positive integer R, find $y_1, \ldots, y_k \in \mathbb{F}_q$ such that

$$\operatorname{\mathsf{rank}}\left(\sum_{i=1}^k y_i A_i\right) \le R.$$

A Few MinRank Algorithms:

- Kipnis, Shamir, "Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization." Crypto, (1999)
- Faugére, Levy-dit-Vehel, Perret, "Cryptanalysis of Minrank." Crypto (2008)
- Bardet, Bros, Cabarcas, Gaborit, Perlner, Smith-Tone, Tillich, Verbel, "Improvements of Algebraic Attacks for Solving the Rank Decoding and Minrank Problems." Asiacrypt (2020)

MinRank Background Structure of HFERP Central Maps Simple Attack

HFE Central Maps

Let $\mathbf{x} \in \mathbb{F}_q^n$, $f_i = (\phi^{-1} \circ \mathcal{F}_{HFE} \circ \phi \circ \pi_d)_i$

MinRank Background Structure of HFERP Central Maps Simple Attack

HFE Central Maps

y:

MinRank Background Structure of HFERP Central Maps Simple Attack

HFE Central Maps

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_i = (\phi^{-1} \circ \mathcal{F}_{HFE} \circ \phi \circ \pi_d)_i$

Consider matrices \mathbf{F}_i such that $f_i(x) = \mathbf{x}^\top \mathbf{F}_i \mathbf{x}$.

MinRank Background Structure of HFERP Central Maps Simple Attack

HFE Central Maps

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_i = (\phi^{-1} \circ \mathcal{F}_{HFE} \circ \phi \circ \pi_d)_i$

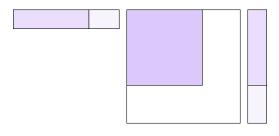
Consider matrices \mathbf{F}_i such that $f_i(x) = \mathbf{x}^\top \mathbf{F}_i \mathbf{x}$.

MinRank Background Structure of HFERP Central Maps Simple Attack

HFE Central Maps

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_i = (\phi^{-1} \circ \mathcal{F}_{HFE} \circ \phi \circ \pi_d)_i$

Consider matrices \mathbf{F}_i such that $f_i(x) = \mathbf{x}^\top \mathbf{F}_i \mathbf{x}$.



MinRank Background Structure of HFERP Central Maps Simple Attack

UOV Central Maps

MinRank Background Structure of HFERP Central Maps Simple Attack

UOV Central Maps

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_k = \sum_{i=1}^v \sum_{j=i}^v \alpha_{ijk} x_i x_j + \sum_{i=1}^v \sum_{j=v+1}^n \beta_{ijk} x_i x_j$.

MinRank Background Structure of HFERP Central Maps Simple Attack

UOV Central Maps

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_k = \sum_{i=1}^v \sum_{j=i}^v \alpha_{ijk} x_i x_j + \sum_{i=1}^v \sum_{j=v+1}^n \beta_{ijk} x_i x_j$.

Consider matrices \mathbf{F}_k such that $f_k(x) = \mathbf{x}^\top \mathbf{F}_k \mathbf{x}$.

MinRank Background Structure of HFERP Central Maps Simple Attack

UOV Central Maps

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_k = \sum_{i=1}^v \sum_{j=i}^v \alpha_{ijk} x_i x_j + \sum_{i=1}^v \sum_{j=v+1}^n \beta_{ijk} x_i x_j$.

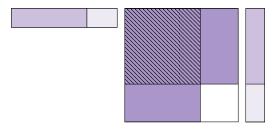
Consider matrices \mathbf{F}_k such that $f_k(x) = \mathbf{x}^\top \mathbf{F}_k \mathbf{x}$.

MinRank Background Structure of HFERP Central Maps Simple Attack

UOV Central Maps

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_k = \sum_{i=1}^v \sum_{j=i}^v \alpha_{ijk} x_i x_j + \sum_{i=1}^v \sum_{j=v+1}^n \beta_{ijk} x_i x_j$.

Consider matrices \mathbf{F}_k such that $f_k(x) = \mathbf{x}^\top \mathbf{F}_k \mathbf{x}$.



MinRank Background Structure of HFERP Central Maps Simple Attack

Plus Polynomials

MinRank Background Structure of HFERP Central Maps Simple Attack

Plus Polynomials

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_k = \sum_{i=1}^n \sum_{j=i}^n \alpha_{ijk} x_i x_j$.

MinRank Background Structure of HFERP Central Maps Simple Attack

Plus Polynomials

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_k = \sum_{i=1}^n \sum_{j=i}^n \alpha_{ijk} x_i x_j$.

Consider matrices \mathbf{F}_k such that $f_k(x) = \mathbf{x}^\top \mathbf{F}_k \mathbf{x}$.

MinRank Background Structure of HFERP Central Maps Simple Attack

Plus Polynomials

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_k = \sum_{i=1}^n \sum_{j=i}^n \alpha_{ijk} x_i x_j$.

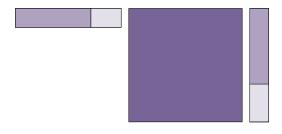
Consider matrices \mathbf{F}_k such that $f_k(x) = \mathbf{x}^\top \mathbf{F}_k \mathbf{x}$.

MinRank Background Structure of HFERP Central Maps Simple Attack

Plus Polynomials

Let
$$\mathbf{x} \in \mathbb{F}_q^n$$
, $f_k = \sum_{i=1}^n \sum_{j=i}^n \alpha_{ijk} x_i x_j$.

Consider matrices \mathbf{F}_k such that $f_k(x) = \mathbf{x}^\top \mathbf{F}_k \mathbf{x}$.



MinRank Background Structure of HFERP Central Maps Simple Attack

Simple Attack of Rainbow

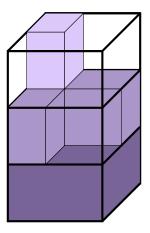
• Find a layer two oil vector y by solving:

$$\begin{cases} P(y) = 0\\ D_x(y) = 0 \end{cases}$$

Beullens, "Breaking rainbow takes a weekend on a laptop." Crypto (2022)

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

HFERP Central Maps



"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Simple Attack on HFERP

- Let P_i be the matrix representation of the i^{th} public key polynomial
 - Choose a random $\mathbf{z} \in \mathbb{F}_q^n$ and create the m imes n matrix

$$A_{\mathbf{z}} = \begin{bmatrix} \mathbf{z}P_1 \\ \mathbf{z}P_2 \\ \vdots \\ \mathbf{z}P_m \end{bmatrix}$$

• Goal: Find a vector $\mathbf{y} \in \mathbb{F}_q^m$ such that

$$\begin{cases} \mathbf{y} \in Ker_L(A_{\mathbf{z}}) \\ Rank(\sum_{i=1}^m y_i P_i) \leq d. \end{cases}$$

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Simple Attack on HFERP Finding y

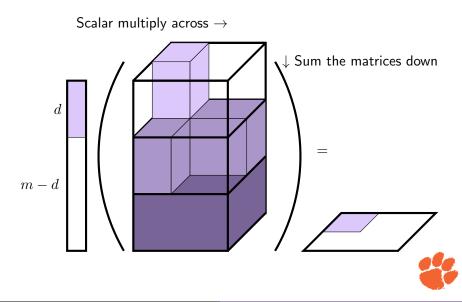
If we can find a $\mathbf{y} \in \mathbb{F}_q^m$, then with high probability,

$$\mathbf{yT} = (\mathbf{a}||\mathbf{b}) \implies \mathbf{y} = (\mathbf{a}||\mathbf{b})\mathbf{T}^{-1},$$

where

- a is a length d vector in the kernel of the upper left $d\times d$ block of $A_{\mathbf{z}}$
- **b** is the length m d = o + r + s zero vector.

"Simple Attack" aka Divide and Conquer Big-Field Support Minors



"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Finding the Oil and Vinegar Spaces

Simple Attack on HFERP: Inverting U

• Once we have a valid $\mathbf y$, compute the n imes n matrix

$$P_{\mathbf{y}} = \sum_{i=1}^{m} y_i P_i.$$

Note:

 $\begin{aligned} \operatorname{rank}(P_{\mathbf{y}}) &\leq d \\ \operatorname{nullity}(P_{\mathbf{y}}) &\geq o \end{aligned}$

• Recall,

$$\label{eq:rank} \begin{split} & \mathsf{rank}(F_{HFE}^{(i)}) = d \\ & \mathsf{nullity}(F_{HFE}^{(i)}) = o \end{split}$$

• Use basis vectors of $\operatorname{Ker}(P_y)$, extend to a basis of \mathbb{F}_q^n .

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Finding the Oil and Vinegar Spaces

Simple Attack on HFERP: Inverting \boldsymbol{U}

We obtain the block matrix

$$\widehat{\mathbf{B}}\mathbf{P}_{\mathbf{y}}\widehat{\mathbf{B}}^{\top} = \begin{bmatrix} \alpha_i \mathbf{P}_{\mathbf{y}} \alpha_j^{\top} & 0 \\ 0 & 0 \end{bmatrix}$$

where $i, j \leq d$.

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Finding the Oil and Vinegar Spaces

Simple Attack on HFERP: Inverting \boldsymbol{U}

We obtain the block matrix

$$\widehat{\mathbf{B}}\mathbf{P}_{\mathbf{y}}\widehat{\mathbf{B}}^{\top} = \begin{bmatrix} \alpha_i \mathbf{P}_{\mathbf{y}} \alpha_j^{\top} & 0 \\ 0 & 0 \end{bmatrix}$$

where $i, j \leq d$.

Observe:

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Finding the Oil and Vinegar Spaces

Simple Attack on HFERP: Inverting U

We obtain the block matrix

$$\widehat{\mathbf{B}} \mathbf{P}_{\mathbf{y}} \widehat{\mathbf{B}}^\top = \begin{bmatrix} \alpha_i \mathbf{P}_{\mathbf{y}} \alpha_j^\top & 0\\ 0 & 0 \end{bmatrix}$$

where $i, j \leq d$.

Observe:

• Only the upper left $d \times d$ block has nonzero entries

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Finding the Oil and Vinegar Spaces

Simple Attack on HFERP: Inverting U

We obtain the block matrix

$$\widehat{\mathbf{B}}\mathbf{P}_{\mathbf{y}}\widehat{\mathbf{B}}^{\top} = \begin{bmatrix} \alpha_i \mathbf{P}_{\mathbf{y}} \alpha_j^{\top} & 0\\ 0 & 0 \end{bmatrix}$$

where $i, j \leq d$.

Observe:

- Only the upper left $d \times d$ block has nonzero entries
- $\widehat{\mathbf{B}}\mathbf{P}_{\mathbf{y}}\widehat{\mathbf{B}}^{\top}$ is a linear combination of HFE maps

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Finding the Oil and Vinegar Spaces

Simple Attack on HFERP: Inverting U

We obtain the block matrix

$$\widehat{\mathbf{B}}\mathbf{P}_{\mathbf{y}}\widehat{\mathbf{B}}^{\top} = \begin{bmatrix} \alpha_i \mathbf{P}_{\mathbf{y}} \alpha_j^{\top} & 0\\ 0 & 0 \end{bmatrix}$$

where $i, j \leq d$.

Observe:

- Only the upper left $d \times d$ block has nonzero entries
- $\widehat{\mathbf{B}}\mathbf{P}_{\mathbf{y}}\widehat{\mathbf{B}}^{\top}$ is a linear combination of HFE maps

Conclusion: We found equivalent U^{-1}

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Inverting T Simple Attack on HFERP

Consider the matrix representation of public key as composition of the secret keys.

$$\mathcal{P} = \mathcal{T} \circ \begin{bmatrix} F_{HFE} \\ F_R \\ F_p \end{bmatrix} \circ \mathcal{U}$$
$$\begin{bmatrix} p_1(\mathbf{x}) \\ \vdots \\ p_m(\mathbf{x}) \end{bmatrix} = \mathcal{T} \circ \begin{bmatrix} \mathbf{x} U F_1 U^\top \mathbf{x}^\top \\ \vdots \\ \mathbf{x} U F_m U^\top \mathbf{x}^\top \end{bmatrix}$$
$$\implies P_i = \sum_{k=1}^m t_{ik} \mathbf{U} \mathbf{F}_k \mathbf{U}^\top = \mathbf{U} \left(\sum_{k=1}^m t_{ik} \mathbf{F}_k \right) \mathbf{U}^\top$$

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Inverting T

$$\widehat{\mathbf{B}} P_i \widehat{\mathbf{B}}^\top = \widehat{\mathbf{B}} \mathbf{U} \left(\sum_{k=1}^m t_{ik} \mathbf{F}_k \right) \mathbf{U}^\top \widehat{\mathbf{B}}^\top \cong \sum_{k=1}^m t_{ik} \mathbf{F}_k$$

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Inverting T

$$\widehat{\mathbf{B}} P_i \widehat{\mathbf{B}}^\top = \widehat{\mathbf{B}} \mathbf{U} \left(\sum_{k=1}^m t_{ik} \mathbf{F}_k \right) \mathbf{U}^\top \widehat{\mathbf{B}}^\top \cong \sum_{k=1}^m t_{ik} \mathbf{F}_k$$

Each $\widehat{\mathbf{B}}P_i\widehat{\mathbf{B}}^{\top}$ is now seen to be a linear combination of the m central maps.

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Structure of each F_k

	$1 \leq k \leq d$	$d+1 \leq k \leq o+r$	$o+r+1 \leq k \leq m$
Structure of \mathbf{F}_k			
$Rank(\mathbf{F}_k) \leq$	d	n	n
Guaranteed zeros	Rows $d \leq i \leq m$	Lower right $o \times o$ submatrix	None
	$Columns\ d \leq j \leq m$		

Table: The table summarizes notable properties of the symmetric matrices corresponding to the F_{HFE} , F_R , and F_P polynomials.

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Divide and Conquer

- We now have equivalent keys for every part of the secret map.
- Invert the HFE maps using Berlekamp's algorithm.
- We know O and V, so invert the UOV maps as they are linear in the oil variables.

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Updated Security

Table: Complexity of the Simple Attack on proposed parameters of HFERP, where $D=3^7+1$ is the degree bound of the HFE central map polynomial.

(q, d, o, r, s)	Claimed	Simple	MinRank
	Sec	Attack	Туре
(3, 42, 21, 15, 17)	80 bit	$3 \cdot 3^{32} \cdot 63^{\omega} \approx 2^{69}$	Search
(3, 63, 21, 11, 10)	80 bit	$3\cdot 3^{21}\cdot 84^\omega\approx 2^{52}$	Search
$(3, 60, o_i = 40, r_i =$	128 bit	$3 \cdot 3^{59} (86^{\omega} + 140^{\omega})$	pprox Lin Alg
23, 40)		2^{115}	

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Big-Field Support Minors

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Big-Field Support Minors

Can apply "big-field support minors" to HFERP in way similar to break of GeMSS.

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Big-Field Support Minors

Can apply "big-field support minors" to HFERP in way similar to break of GeMSS. Makes HFERP even more broken!

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Big-Field Support Minors

Can apply "big-field support minors" to HFERP in way similar to break of GeMSS. Makes HFERP even more broken! (Complexity does depend on D, whereas divide and conquer does not.)

(q, d, o, r, s)	Degree Bound	Claimed	Update	Algth
		Sec	Comp	Туре
(3, 42, 21, 15, 17)	$D = 3^7 + 1$	80 bit	2^{57}	Wiedemann
(3, 63, 21, 11, 10)	$D = 3^7 + 1$	80 bit	2^{59}	Strassen
$(3, 85, o_i = 70, r_i =$	$D = 3^9 + 1$	128 bit	2^{63}	Strasssen
89, 61)				
$(3, 60, o_i = 40, r_i =$	$D = 3^9 + 1$	128 bit	2^{69}	Wiedemann
23, 40)				

Baena, Briaud, Cabarcas, Perlner, Smith-Tone, Verbel, "Improving Support-Minors Rank Attacks: Applications to GeMSS and Rainbow." (2021)

"Simple Attack" aka Divide and Conquer Big-Field Support Minors

Thank you for your attention! Any questions?

https://github.com/maxcartor/HFERP-Cryptanalysis

rcartor@clemson.edu

