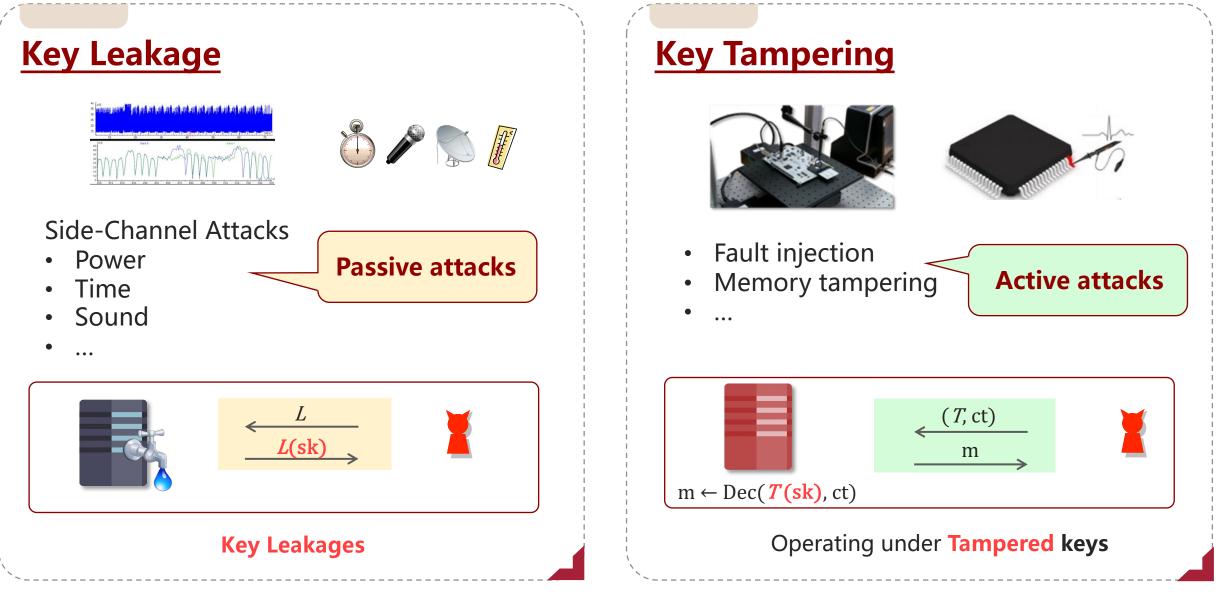
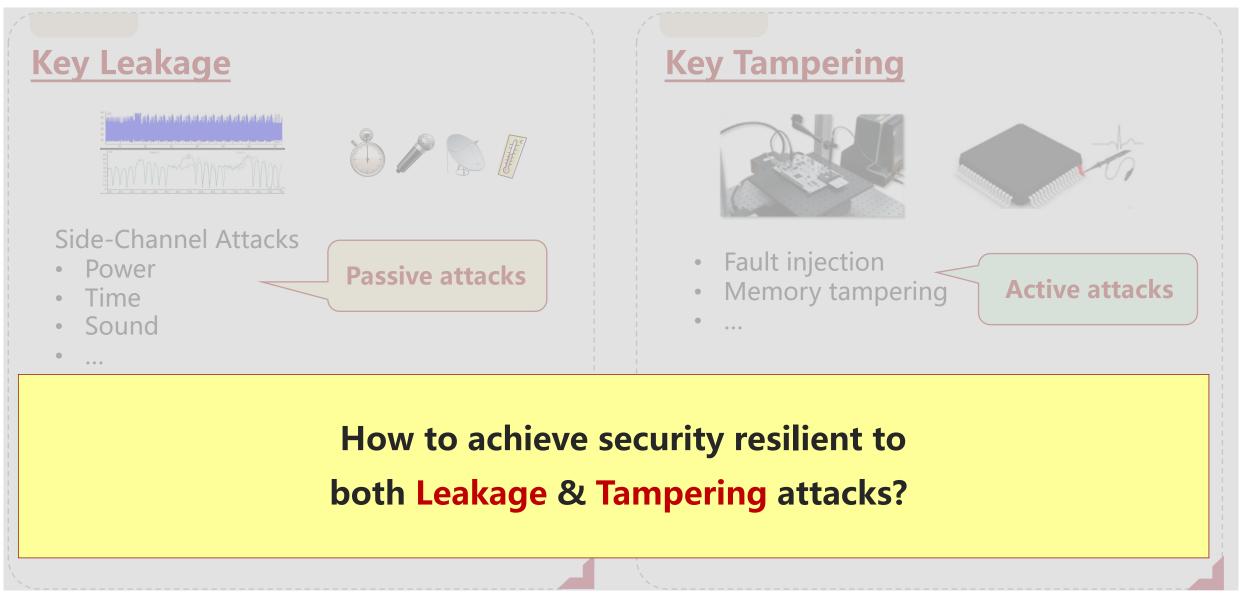

More Efficient Public-Key Cryptography with Leakage and Tamper Resilience

Shuai Han, Shengli Liu, Dawu Gu

Shanghai Jiao Tong University PKC 2024, Sydney, Australia


Leakage & Tampering Attacks


Leakage & Tampering Attacks

Leakage & Tampering Attacks

① CTL model (Continual Tampering & Leakage)

[Kalai et al., C11]

- + **Strong** security guarantee: **Continual** tampering & leakage attacks
- Require additional mechanisms: Key-updating or Self-destruct

Schemes	Efficiency	
SIG [Kalai et al., C11]	signature > 20 group elements	
CCA-PKE [Fujisaki-Xagawa, AC16]	ciphertext > 8 group elements	

- Rely on heavy tools:

tSE-NIZK (true-Simulation Extractable NIZK)

or OT-LF (One-Time Lossy Filter)

[Dodis et al., AC10]

[Qin-Liu, AC13]

② **BLT model (Bounded Leakage & Tampering)**

- **Mild** security guarantee:
 - Leakage: Bounded amount
 - Tampering: Bounded number, No post-challenge, Arbitrary functions
- + No additional mechanisms

Schemes

SIG [Faonio-Venturi, AC16] [Dodis et al., AC10]		
CCA-PKE [Faonio-Venturi, AC16] [Qin-Liu, AC13]	ciphertext > 19 group elements	

- Rely on heavy tools: tSE-NIZK or OT-LF

[Naor-Segev, C09]

[Damgård et al., AC13]

Efficiency

③ **sLTR model (strong Leakage & Tampering-Resilience)** [Sun et al., ACNS19]

- **Mild** security guarantee:
 - Leakage: Bounded amount

- [Naor-Segev, C09]
- Tampering: Unbounded number, Allow post-challenge tampering,

For specific functions (e.g., T_{affine})

[Bellare-Kohno, EC03]

+ No additional mechanisms

Schemes	Efficiency	
CCA-PKE [Sun et al., ACNS19]	ciphertext > 20 group elements	

- Rely on heavy tools: tSE-NIZK

④ pcBLT model (post-challenge BLT)

[Chakraborty-Rangan, CT-RSA19]

- **Mild** security guarantee:
 - Leakage: Bounded amount
 - **Tampering**: Bounded number, Allow post-challenge tampering, For arbitrary functions
- Require additional mechanisms: Split-state

Schemes	Efficiency	
CCA-PKE [Chakraborty-Rangan, CT-RSA19]	ciphertext > 20 group elements	

- Rely on heavy tools: tSE-NIZK

Schemes	Efficiency	Model
SIG [Kalai et al., C11]	signature > 20 group elements	CTL
CCA-PKE [Fujisaki-Xagawa, AC16]	ciphertext > 8 group elements	CTL
SIG [Faonio-Venturi, AC16] [Dodis et al., AC10]	signature > 34 group elements	BLT
CCA-PKE [Faonio-Venturi, AC16] [Qin-Liu, AC13]	ciphertext > 19 group elements	BLT
CCA-PKE [Sun et al., ACNS19]	ciphertext > 20 group elements	sLTR
CCA-PKE [Chakraborty-Rangan, CT-RSA19]	ciphertext > 20 group elements	pcBLT

All rely on somewhat heavy tools like tSE-NIZK or OT-LF!

Schemes	Efficiency	Model
SIG [Kalai et al., C11]	signature > 20 group elements	CTL
CCA-PKE [Fujisaki-Xagawa, AC16]	ciphertext > 8 group elements	CTL
SIG [Faonio-Venturi, AC16] [Dodis et al., AC10]	signature > 34 group elements	BLT
CCA-PKE [Faonio-Venturi, AC16] [Qin-Liu, AC13]	ciphertext > 19 group elements	BLT
CCA-PKE [Sun et al., ACNS19]	ciphertext > 20 group elements	sLTR
CCA-PKE [Chakraborty-Rangan, CT-RSA19]	ciphertext > 20 group elements	pcBLT

All rely on somewhat heavy tools like tSE-NIZK or OT-LF!

How to achieve security resilient to

both Leakage & Tampering attacks, More efficiently?

Contributions: More Efficient SIG and CCA-PKE in the LTR Setting

Schemes	Efficiency	Model
SIG [Kalai et al., C11]	signature > 20 group elements	CTL
CCA-PKE [Fujisaki-Xagawa, AC16]	ciphertext > 8 group elements	CTL
SIG [Faonio-Venturi, AC16] [Dodis et al., AC10]	signature > 34 group elements	BLT
CCA-PKE [Faonio-Venturi, AC16] [Qin-Liu, AC13]	ciphertext > 19 group elements	BLT
CCA-PKE [Sun et al., ACNS19]	ciphertext > 20 group elements	sLTR
CCA-PKE [Chakraborty-Rangan, CT-RSA19]	ciphertext > 20 group elements	pcBLT
Our SIG		orter sLTR
Our CCA-PKE	ciphertext = 6 group elements 1.3	-3.3× orter
	5/10	

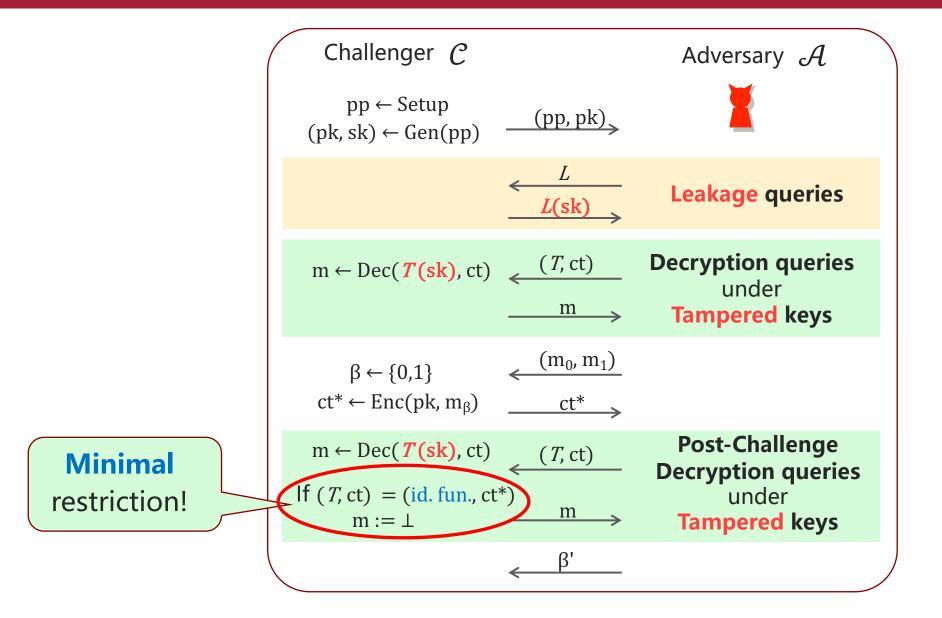
11

Contributions: More Efficient SIG and CCA-PKE in the LTR Setting

Schemes	Efficiency	Model
Our SIG	signature = 4 group elements	5~8× sLTR
Our CCA-PKE	ciphertext = 6 group elements	sLTR 1.3~3.3×
		shorter

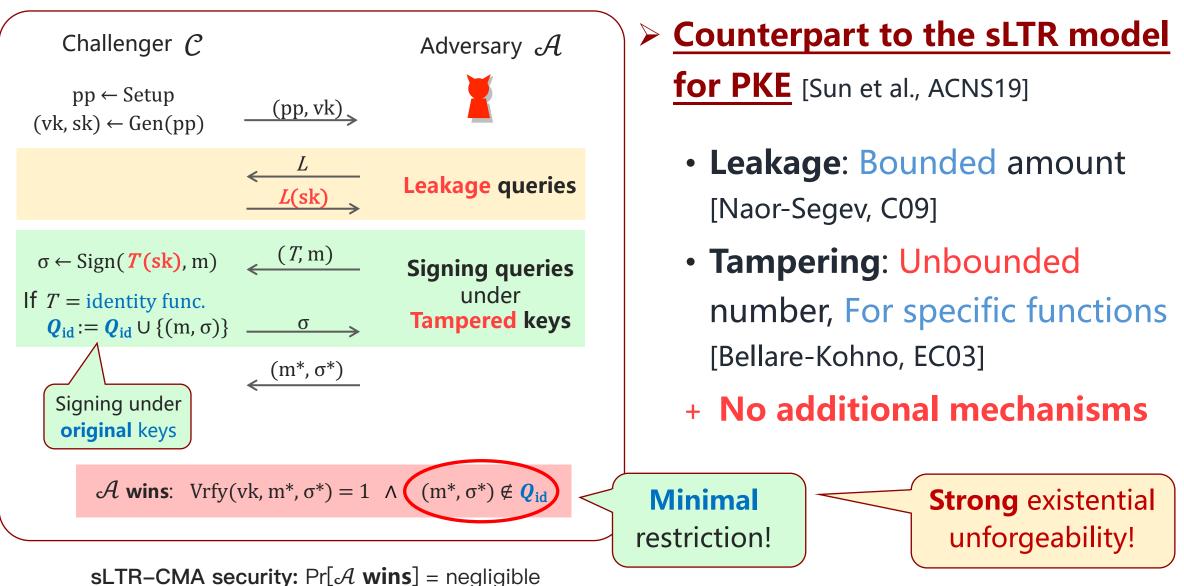
Features

- **Direct** construction over asymmetric pairing groups
- Based on the standard MDDH (including SXDH, k-Linear) assumptions
- In the standard model
- Leakage rate: 1/4 o(1) (our SIG) or 1/3 o(1) (our CCA-PKE)
- **Tampering** functions: **affine functions** T_{affine}



01- **sLTR Security Model**

02- Our SIG Construction

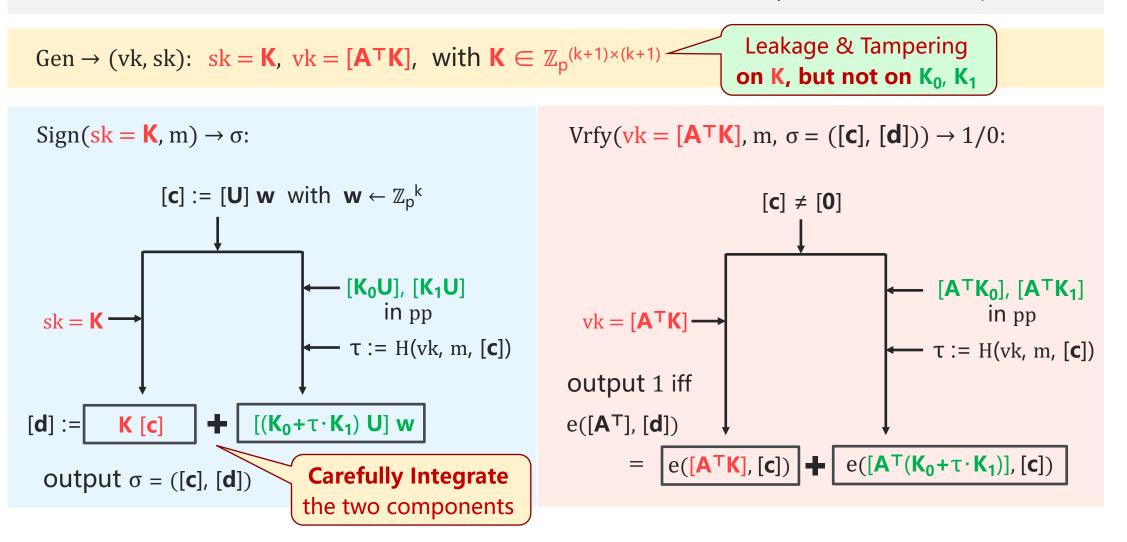

03- Our CCA-PKE Construction

Recap: sLTR model for PKE [Sun et al., ACNS19]

sLTR-CCA security: $| Pr[\beta' = \beta] - 1/2 |$ = negligible

sLTR model (strong Leakage & Tampering-Resilience) for SIG

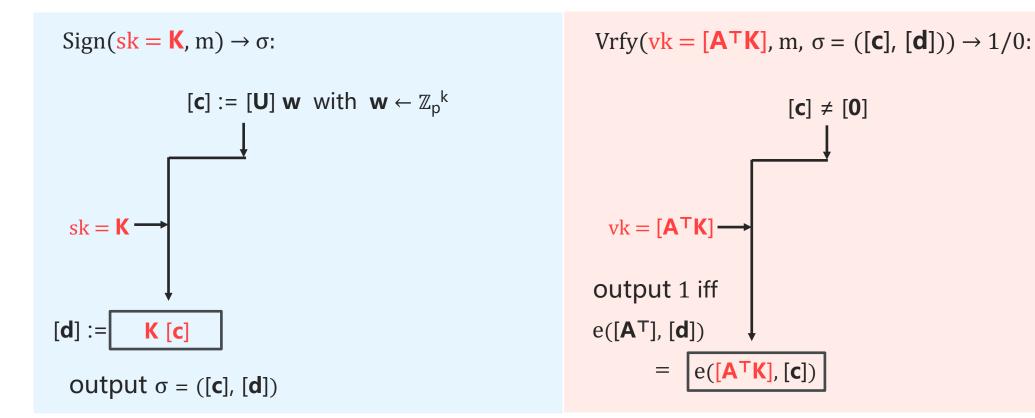
in pp


Setup \rightarrow pp = ([U], [K₀U], [K₁U], [A], [A^TK₀], [A^TK₁]), with U, A $\in \mathbb{Z}_{p^{(k+1)\times k}}$, K₀, K₁ $\in \mathbb{Z}_{p^{(k+1)\times (k+1)}}$

Gen \rightarrow (vk, sk): sk = K, vk = [A^TK], with K $\in \mathbb{Z}_{p}^{(k+1)\times(k+1)}$

Vrfy($\mathbf{vk} = [\mathbf{A}^{\mathsf{T}}\mathbf{K}]$, m, $\sigma = ([\mathbf{c}], [\mathbf{d}]) \rightarrow 1/0$: Sign(sk = \mathbf{K} , m) $\rightarrow \sigma$: $[\mathbf{c}] := [\mathbf{U}] \mathbf{w}$ with $\mathbf{w} \leftarrow \mathbb{Z}_p^k$ [**c**] ≠ [**0**] [K₀U], [K₁U] $[\mathbf{A}^{\mathsf{T}}\mathbf{K}_0], \ [\mathbf{A}^{\mathsf{T}}\mathbf{K}_1]$ in pp $vk = [A^TK]$ sk = K - $\tau := H(vk, m, [c])$ $\tau := H(vk, m, [c])$ output 1 iff $[(\mathbf{K_0} + \tau \cdot \mathbf{K_1}) \mathbf{U}] \mathbf{w}$ e([**A**^T], [**d**]) [**d**] := + **K** [**c**] $e([\mathbf{A}^{\mathsf{T}}\mathbf{K}], [\mathbf{c}]) + e([\mathbf{A}^{\mathsf{T}}(\mathbf{K}_0 + \tau \cdot \mathbf{K}_1)], [\mathbf{c}])$ = output *σ* = ([**c**], [**d**])

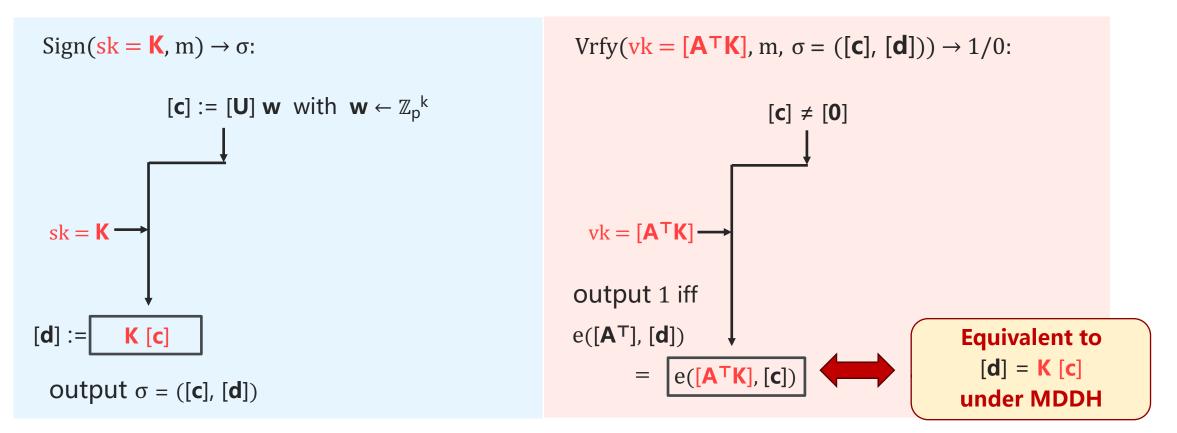
Setup \rightarrow pp = ([U], [K₀U], [K₁U], [A], [A^TK₀], [A^TK₁]), with U, A $\in \mathbb{Z}_p^{(k+1)\times k}$, K₀, K₁ $\in \mathbb{Z}_p^{(k+1)\times (k+1)}$



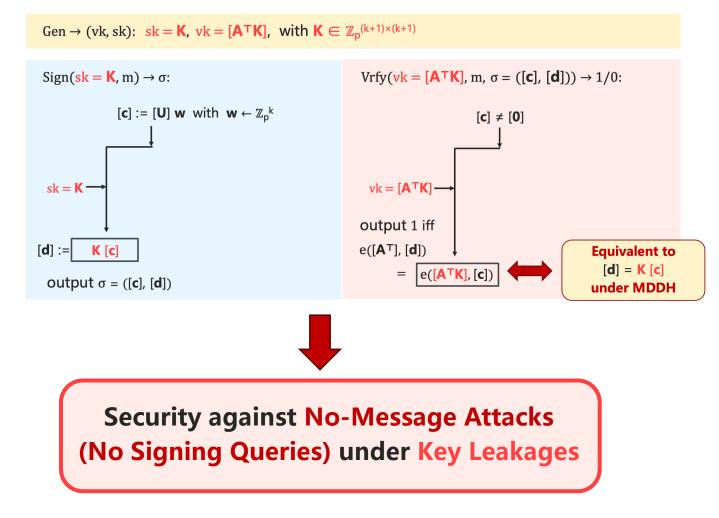
Construction of SIG: The First Component

First Component (related to K)

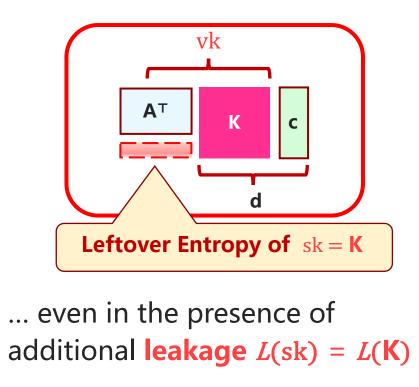
Gen \rightarrow (vk, sk): sk = K, vk = [A^TK], with K $\in \mathbb{Z}_{p}^{(k+1)\times(k+1)}$



Construction of SIG: The First Component


First Component (related to K)

Gen \rightarrow (vk, sk): sk = K, vk = [A^TK], with K $\in \mathbb{Z}_{p}^{(k+1)\times(k+1)}$


Construction of SIG: The First Component

First Component (related to K)

Given **only** $vk = [A^TK]$, it is hard to produce $\sigma = ([c], [d])$ to pass Vrfy:

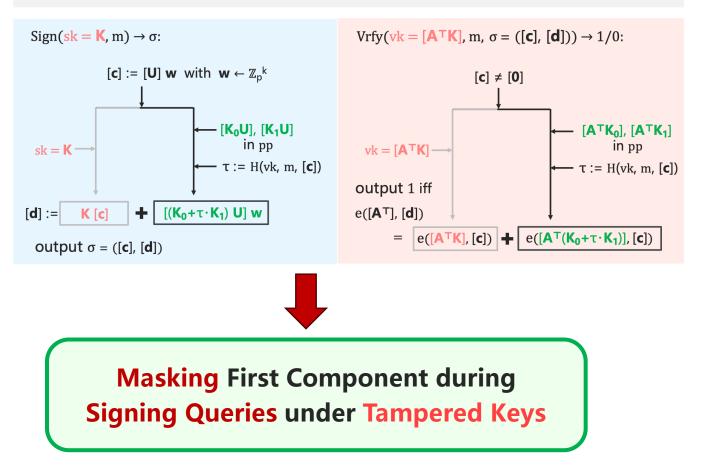
[c] ≠ [0] ∧ [d] = K [c]

Construction of SIG: The Second Component

First Component (related to K)

Second Component (related to K₀, K₁)

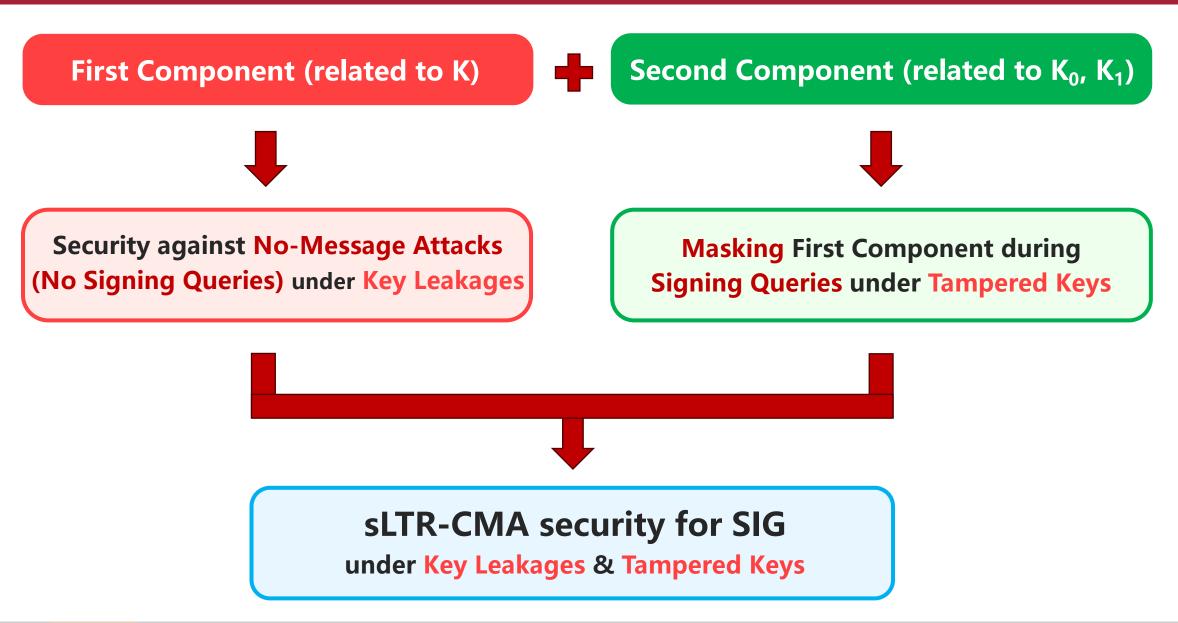
Setup \rightarrow pp = ([U], [K₀U], [K₁U], [A], [A^TK₀], [A^TK₁]), with U, A $\in \mathbb{Z}_p^{(k+1)\times k}$, K₀, K₁ $\in \mathbb{Z}_p^{(k+1)\times (k+1)}$

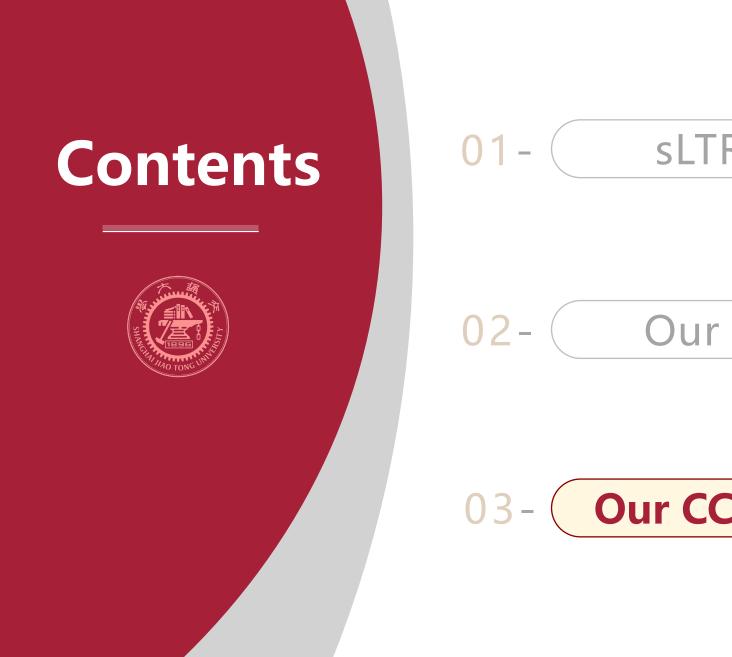

Vrfy(vk = $[\mathbf{A}^{\mathsf{T}}\mathbf{K}]$, m, $\sigma = ([\mathbf{c}], [\mathbf{d}]) \rightarrow 1/0$: Sign(sk = \mathbf{K} , m) $\rightarrow \sigma$: $[\mathbf{c}] := [\mathbf{U}] \mathbf{w}$ with $\mathbf{w} \leftarrow \mathbb{Z}_p^k$ [**c**] ≠ [**0**] [K₀U], [K₁U] $[\mathbf{A}^{\mathsf{T}}\mathbf{K}_0], [\mathbf{A}^{\mathsf{T}}\mathbf{K}_1]$ in pp in pp sk = K --- $vk = [A^TK]$ $\tau := H(vk, m, [c])$ $\tau := H(vk, m, [c])$ output 1 iff $[(\mathbf{K}_0 + \tau \cdot \mathbf{K}_1) \mathbf{U}] \mathbf{w}$ ÷ [**d**] := e([**A**^T], [**d**]) K [c] $e([\mathbf{A}^{\mathsf{T}}\mathbf{K}], [\mathbf{c}]) + e([\mathbf{A}^{\mathsf{T}}(\mathbf{K}_0 + \tau \cdot \mathbf{K}_1)], [\mathbf{c}])$ = output $\sigma = ([\mathbf{c}], [\mathbf{d}])$

Construction of SIG: The Second Component

Second Component (related to K₀, K₁)

Setup \rightarrow pp = ([**U**], [**K**₀**U**], [**K**₁**U**], [**A**], [**A**^T**K**₀], [**A**^T**K**₁]), with **U**, **A** $\in \mathbb{Z}_{p^{(k+1)\times k}}$, **K**₀, **K**₁ $\in \mathbb{Z}_{p^{(k+1)\times (k+1)}}$




- Essentially the OTSS-NIZK (One-Time Simulation-Sound NIZK) proposed in [Kiltz-Wee, EC15]
- ... but OTSS is insufficient:
 multiple signing queries contain
 multiple NIZK proofs
- We resort to another property as observed in [Kiltz-Wee, EC15]:

randomized PRF on τ

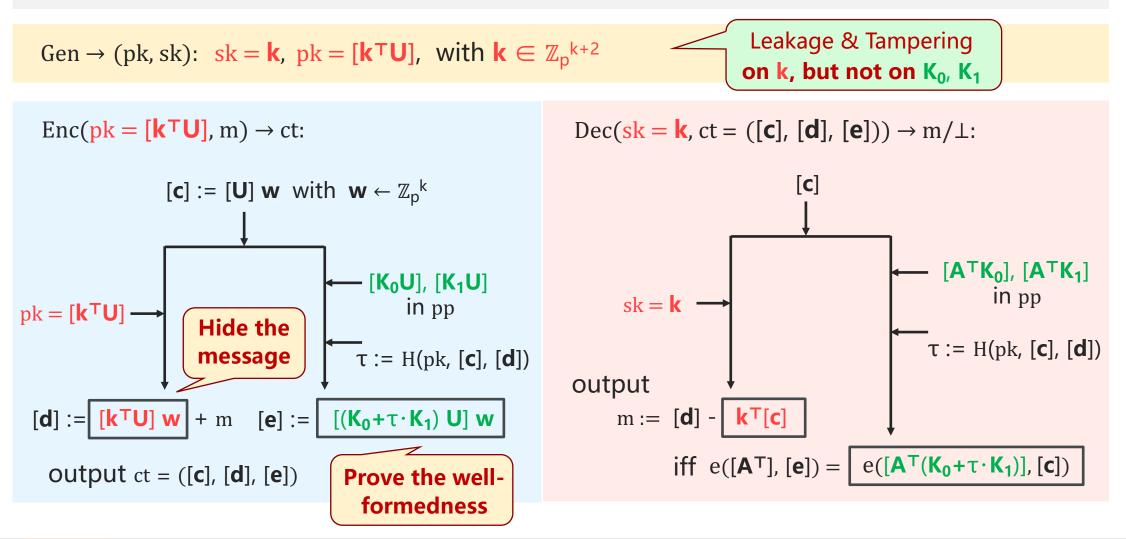
which can mask First Component

Security of SIG: Putting Two Components Together

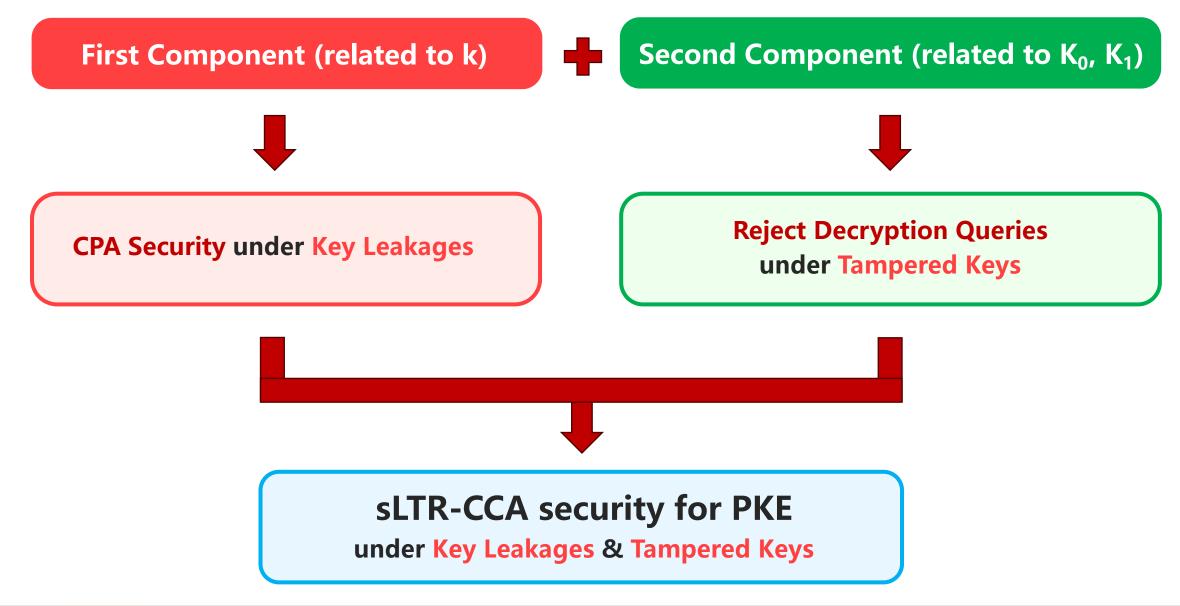
01- sLTR Security Model

02- Our SIG Construction

03- Our CCA-PKE Construction


Setup → pp = ([U], [K₀U], [K₁U], [A], [A^TK₀], [A^TK₁]), with U, A ∈ $\mathbb{Z}_p^{(k+2)\times k}$, K₀, K₁ ∈ $\mathbb{Z}_p^{(k+1)\times (k+2)}$

Gen \rightarrow (pk, sk): sk = k, pk = [k^TU], with k $\in \mathbb{Z}_p^{k+2}$


Enc($\mathbf{pk} = [\mathbf{k}^{\mathsf{T}}\mathbf{U}], \mathbf{m}$) \rightarrow ct: $Dec(sk = \mathbf{k}, ct = ([\mathbf{c}], [\mathbf{d}], [\mathbf{e}])) \rightarrow m/\bot$: [**C**] $[\mathbf{c}] := [\mathbf{U}] \mathbf{w}$ with $\mathbf{w} \leftarrow \mathbb{Z}_p^k$ $[\mathbf{A}^{\mathsf{T}}\mathbf{K}_0], [\mathbf{A}^{\mathsf{T}}\mathbf{K}_1]$ [K₀U], [K₁U] in pp sk = **k** in pp $pk = [k^T U]$ τ := H(pk, [**c**], [**d**]) $\tau := H(pk, [c], [d])$ output m := [**d**] - $[\mathbf{d}] := \begin{bmatrix} \mathbf{k}^{\mathsf{T}} \mathbf{U} \end{bmatrix} \mathbf{w} + m \quad [\mathbf{e}] := \begin{bmatrix} (\mathbf{K}_0 + \tau \cdot \mathbf{K}_1) \mathbf{U} \end{bmatrix} \mathbf{w}$ **k**^T[**c**] iff $e([A^T], [e]) = e([A^T(K_0 + \tau \cdot K_1)], [c])$ **Output** ct = ([**c**], [**d**], [**e**])

Setup \rightarrow pp = ([U], [K₀U], [K₁U], [A], [A^TK₀], [A^TK₁]), with U, A $\in \mathbb{Z}_p^{(k+2)\times k}$, K₀, K₁ $\in \mathbb{Z}_p^{(k+1)\times (k+2)}$

Security of PKE: Putting Two Components Together

- More Efficient SIG and CCA-PKE with leakage & tamper resilience
 - ✓ Direct construction, avoid using tSE-NIZK

Schemes	Efficiency	5~8×	Vodel
Our SIG	signature = 4 group elements	shorter	sLTR
Our CCA-PKE	ciphertext = 6 group elements	1.3~3.3× shorter	sLTR

- New sLTR security for SIG: counterpart to the sLTR security for PKE
- The first SIG with strong existential unforgeability in the LTR setting