
More Efficient Public-Key
Cryptography with Leakage

and Tamper Resilience

Shuai Han, Shengli Liu, Dawu Gu

Shanghai Jiao Tong University

PKC 2024, Sydney, Australia

Leakage & Tampering Attacks

2

L
L(sk)

Key Leakage

Side-Channel Attacks
• Power
• Time
• Sound
• …

.

.

.

.

.

.

.

.

functional encryption

data D

f1

f2

f3

“ functional encryption for all functions? ”
1 from mmaps / obfuscation [GGHRSW13, GGHZ16, GLSW15, LV16]

2 very simple functions [KSW08, OT12, ABDP15, ALS16]

3 bounded collusions [GVW12, SS10, GKPVZ13]

4 predicate encryption for circuits [GVW15]

Passive attacks

Key Leakages

Leakage & Tampering Attacks

3

Operating under Tampered keys

L

Key Leakages

L(sk)
(T,	ct)
m

m	←	Dec(T	(sk),	ct)

Key Leakage

Side-Channel Attacks
• Power
• Time
• Sound
• …

Key Tampering

• Fault injection
• Memory tampering
• …

.

.

.

.

.

.

.

.

functional encryption

data D

f1

f2

f3

“ functional encryption for all functions? ”
1 from mmaps / obfuscation [GGHRSW13, GGHZ16, GLSW15, LV16]

2 very simple functions [KSW08, OT12, ABDP15, ALS16]

3 bounded collusions [GVW12, SS10, GKPVZ13]

4 predicate encryption for circuits [GVW15]

.

.

.

.

.

.

.

.

functional encryption

data D

f1

f2

f3

“ functional encryption for all functions? ”
1 from mmaps / obfuscation [GGHRSW13, GGHZ16, GLSW15, LV16]

2 very simple functions [KSW08, OT12, ABDP15, ALS16]

3 bounded collusions [GVW12, SS10, GKPVZ13]

4 predicate encryption for circuits [GVW15]

Passive attacks Active attacks

Leakage & Tampering Attacks

4

Operating under Tampered keys

L

Key Leakages

L(sk)
(T,	ct)
m

m	←	Dec(T	(sk),	ct)

Key Leakage

Side-Channel Attacks
• Power
• Time
• Sound
• …

Key Tampering

• Fault injection
• Memory tampering
• …

.

.

.

.

.

.

.

.

functional encryption

data D

f1

f2

f3

“ functional encryption for all functions? ”
1 from mmaps / obfuscation [GGHRSW13, GGHZ16, GLSW15, LV16]

2 very simple functions [KSW08, OT12, ABDP15, ALS16]

3 bounded collusions [GVW12, SS10, GKPVZ13]

4 predicate encryption for circuits [GVW15]

.

.

.

.

.

.

.

.

functional encryption

data D

f1

f2

f3

“ functional encryption for all functions? ”
1 from mmaps / obfuscation [GGHRSW13, GGHZ16, GLSW15, LV16]

2 very simple functions [KSW08, OT12, ABDP15, ALS16]

3 bounded collusions [GVW12, SS10, GKPVZ13]

4 predicate encryption for circuits [GVW15]

Passive attacks Active attacks

How to achieve security resilient to

 both Leakage & Tampering attacks?

① CTL model (Continual Tampering & Leakage) [Kalai et al., C11]

+ Strong security guarantee: Continual tampering & leakage attacks

- Require additional mechanisms: Key-updating or Self-destruct

- Rely on heavy tools:

 tSE-NIZK (true-Simulation Extractable NIZK) [Dodis et al., AC10]

 or OT-LF (One-Time Lossy Filter) [Qin-Liu, AC13]

5

Security Resilient to Both Leakage & Tampering Attacks

Schemes Efficiency
SIG

[Kalai et al., C11]
|signature| > 20 group elements

CCA-PKE
[Fujisaki-Xagawa, AC16]

|ciphertext| > 8 group elements

② BLT model (Bounded Leakage & Tampering) [Damgård et al., AC13]

• Mild security guarantee:

• Leakage: Bounded amount [Naor-Segev, C09]

• Tampering: Bounded number, No post-challenge, Arbitrary functions

+ No additional mechanisms

- Rely on heavy tools: tSE-NIZK or OT-LF
6

Security Resilient to Both Leakage & Tampering Attacks

Schemes Efficiency
SIG

[Faonio-Venturi, AC16]
[Dodis et al., AC10]

|signature| > 34 group elements

CCA-PKE
[Faonio-Venturi, AC16]

[Qin-Liu, AC13]
|ciphertext| > 19 group elements

③ sLTR model (strong Leakage & Tampering-Resilience) [Sun et al., ACNS19]

• Mild security guarantee:

• Leakage: Bounded amount [Naor-Segev, C09]

• Tampering: Unbounded number, Allow post-challenge tampering,

 For specific functions (e.g., Taffine) [Bellare-Kohno, EC03]

+ No additional mechanisms

- Rely on heavy tools: tSE-NIZK
7

Security Resilient to Both Leakage & Tampering Attacks

Schemes Efficiency
CCA-PKE

[Sun et al., ACNS19]
|ciphertext| > 20 group elements

④ pcBLT model (post-challenge BLT) [Chakraborty-Rangan, CT-RSA19]

• Mild security guarantee:

• Leakage: Bounded amount

• Tampering: Bounded number, Allow post-challenge tampering,

 For arbitrary functions

- Require additional mechanisms: Split-state

- Rely on heavy tools: tSE-NIZK
8

Security Resilient to Both Leakage & Tampering Attacks

Schemes Efficiency
CCA-PKE

[Chakraborty-Rangan, CT-RSA19]
|ciphertext| > 20 group elements

9

Security Resilient to Both Leakage & Tampering Attacks

Schemes Efficiency Model
SIG

[Kalai et al., C11]
|signature| > 20 group elements CTL

CCA-PKE
[Fujisaki-Xagawa, AC16]

|ciphertext| > 8 group elements CTL

SIG
[Faonio-Venturi, AC16] [Dodis et al., AC10]

|signature| > 34 group elements BLT

CCA-PKE
[Faonio-Venturi, AC16] [Qin-Liu, AC13]

|ciphertext| > 19 group elements BLT

CCA-PKE
[Sun et al., ACNS19]

|ciphertext| > 20 group elements sLTR

CCA-PKE
[Chakraborty-Rangan, CT-RSA19]

|ciphertext| > 20 group elements pcBLT

All rely on somewhat heavy tools like tSE-NIZK or OT-LF!

10

Security Resilient to Both Leakage & Tampering Attacks

Schemes Efficiency Model
SIG

[Kalai et al., C11]
|signature| > 20 group elements CTL

CCA-PKE
[Fujisaki-Xagawa, AC16]

|ciphertext| > 8 group elements CTL

SIG
[Faonio-Venturi, AC16] [Dodis et al., AC10]

|signature| > 34 group elements BLT

CCA-PKE
[Faonio-Venturi, AC16] [Qin-Liu, AC13]

|ciphertext| > 19 group elements BLT

CCA-PKE
[Sun et al., ACNS19]

|ciphertext| > 20 group elements sLTR

CCA-PKE
[Chakraborty-Rangan, CT-RSA19]

|ciphertext| > 20 group elements pcBLT

All rely on somewhat heavy tools like tSE-NIZK or OT-LF!

How to achieve security resilient to
 both Leakage & Tampering attacks, More efficiently?

11

Contributions: More Efficient SIG and CCA-PKE in the LTR Setting

Schemes Efficiency Model
SIG

[Kalai et al., C11]
|signature| > 20 group elements CTL

CCA-PKE
[Fujisaki-Xagawa, AC16]

|ciphertext| > 8 group elements CTL

SIG
[Faonio-Venturi, AC16] [Dodis et al., AC10]

|signature| > 34 group elements BLT

CCA-PKE
[Faonio-Venturi, AC16] [Qin-Liu, AC13]

|ciphertext| > 19 group elements BLT

CCA-PKE
[Sun et al., ACNS19]

|ciphertext| > 20 group elements sLTR

CCA-PKE
[Chakraborty-Rangan, CT-RSA19]

|ciphertext| > 20 group elements pcBLT

Our SIG |signature| = 4 group elements sLTR

Our CCA-PKE |ciphertext| = 6 group elements sLTR

5~8×
shorter

1.3~3.3×
shorter

12

Contributions: More Efficient SIG and CCA-PKE in the LTR Setting

Schemes Efficiency Model

Our SIG |signature| = 4 group elements sLTR

Our CCA-PKE |ciphertext| = 6 group elements sLTR

5~8×
shorter

Features

• Direct construction over asymmetric pairing groups

• Based on the standard MDDH (including SXDH, k-Linear) assumptions

• In the standard model

• Leakage rate: 1/4 – o(1) (our SIG) or 1/3 – o(1) (our CCA-PKE)

• Tampering functions: affine functions Taffine

1.3~3.3×
shorter

目录
CONTENTS

Contents

Our SIG Construction

sLTR Security Model

Our CCA-PKE Construction

13

02-

01-

03-

14

Recap: sLTR model for PKE [Sun et al., ACNS19]

pp	←	Setup (pp,	pk)

(T,	ct)

m

Decryption queries
under

Tampered keys

AdversaryChallenger 𝒜𝒞

L
Leakage queriesL(sk)

(pk,	sk)	←	Gen(pp)

m	←	Dec(T	(sk),	ct)

.

.

.

.

.

.

.

.

functional encryption

data D

f1

f2

f3

“ functional encryption for all functions? ”
1 from mmaps / obfuscation [GGHRSW13, GGHZ16, GLSW15, LV16]

2 very simple functions [KSW08, OT12, ABDP15, ALS16]

3 bounded collusions [GVW12, SS10, GKPVZ13]

4 predicate encryption for circuits [GVW15]

sLTR-CCA security:

 | Pr[β'= β] – 1/2 |

 = negligible

(T,	ct)

m

Post-Challenge
Decryption queries

under
Tampered keys

m	←	Dec(T	(sk),	ct)

(m0,	m1)

ct*ct*	←	Enc(pk,	mβ)
β	←	{0,1}

If (T,	ct) =	(id.	fun.,	ct*)
												m	:=	⊥

β'

Minimal
restriction!

15

sLTR model (strong Leakage & Tampering-Resilience) for SIG

pp	←	Setup (pp,	vk)

(T,	m)

σ

(m*,	σ*)

Signing queries
under

Tampered keys

AdversaryChallenger 𝒜𝒞

L
Leakage queriesL(sk)

(vk,	sk)	←	Gen(pp)

σ	←	Sign(T	(sk),	m)

𝒜 wins: Vrfy(vk,	m*,	σ*)	=	1			∧					(m*,	σ*)	∉ 𝑸id

If T	 =	identity	func.
					𝑸id	:=	𝑸id ∪	{(m,	σ)}

.

.

.

.

.

.

.

.

functional encryption

data D

f1

f2

f3

“ functional encryption for all functions? ”
1 from mmaps / obfuscation [GGHRSW13, GGHZ16, GLSW15, LV16]

2 very simple functions [KSW08, OT12, ABDP15, ALS16]

3 bounded collusions [GVW12, SS10, GKPVZ13]

4 predicate encryption for circuits [GVW15]

sLTR-CMA security: Pr[𝒜 wins] = negligible

Signing under
original keys

Strong existential
unforgeability!

Ø Counterpart to the sLTR model
for PKE [Sun et al., ACNS19]

• Leakage: Bounded amount
[Naor-Segev, C09]

• Tampering: Unbounded
number, For specific functions
[Bellare-Kohno, EC03]

+ No additional mechanisms

Minimal
restriction!

目录
CONTENTS

Contents

Our SIG Construction

sLTR Security Model

Our CCA-PKE Construction

16

02-

01-

03-

17

More Efficient & Direct Construction of SIG

[c] := [U] w with w ← ℤpk	

sk	=	K

Sign(sk	=	K,	m)	→	σ:	

output σ = ([c], [d])

Vrfy(vk	=	[AㄒK],	m, σ = ([c], [d]))	→	1/0:

output 1 iff

τ := H(vk, m, [c])

Gen	→ (vk,	sk):			sk	=	K,		vk	=	[AㄒK], with K ∈ ℤp(k+1)×(k+1)

Setup	→	pp	=	([U], [K0U], [K1U], [A], [AㄒK0], [AㄒK1]), with U, A ∈ ℤp(k+1)×k, K0, K1 ∈ ℤp(k+1)×(k+1)

K [c] [(K0+τ·K1) U] w

[K0U], [K1U]
 in pp

[d] :=

[c] ≠ [0]

vk	=	[AㄒK]
τ := H(vk, m, [c])

e([AㄒK],	[c]) e([Aㄒ(K0+τ·K1)],	[c])

[AㄒK0], [AㄒK1]
 in pp

e([Aㄒ], [d])	

=

18

More Efficient & Direct Construction of SIG

[c] := [U] w with w ← ℤpk	

sk	=	K

Sign(sk	=	K,	m)	→	σ:	

output σ = ([c], [d])

Vrfy(vk	=	[AㄒK],	m, σ = ([c], [d]))	→	1/0:

output 1 iff

τ := H(vk, m, [c])

Gen	→ (vk,	sk):			sk	=	K,		vk	=	[AㄒK], with K ∈ ℤp(k+1)×(k+1)

Setup	→	pp	=	([U], [K0U], [K1U], [A], [AㄒK0], [AㄒK1]), with U, A ∈ ℤp(k+1)×k, K0, K1 ∈ ℤp(k+1)×(k+1)

K [c] [(K0+τ·K1) U] w

[K0U], [K1U]
 in pp

[d] :=

[c] ≠ [0]

vk	=	[AㄒK]
τ := H(vk, m, [c])

e([AㄒK],	[c]) e([Aㄒ(K0+τ·K1)],	[c])

[AㄒK0], [AㄒK1]
 in pp

e([Aㄒ], [d])	

=Carefully Integrate
the two components

Leakage & Tampering
on K, but not on K0, K1

19

Construction of SIG: The First Component

[c] := [U] w with w ← ℤpk	

sk	=	K

Sign(sk	=	K,	m)	→	σ:	

output σ = ([c], [d])

Vrfy(vk	=	[AㄒK],	m, σ = ([c], [d]))	→	1/0:

output 1 iff

Gen	→ (vk,	sk):			sk	=	K,		vk	=	[AㄒK], with K ∈ ℤp(k+1)×(k+1)

K [c] [d] :=

[c] ≠ [0]

vk	=	[AㄒK]

e([AㄒK],	[c])

e([Aㄒ], [d])	

=

First Component (related to K)

20

Construction of SIG: The First Component

[c] := [U] w with w ← ℤpk	

sk	=	K

Sign(sk	=	K,	m)	→	σ:	

output σ = ([c], [d])

Vrfy(vk	=	[AㄒK],	m, σ = ([c], [d]))	→	1/0:

output 1 iff

Gen	→ (vk,	sk):			sk	=	K,		vk	=	[AㄒK], with K ∈ ℤp(k+1)×(k+1)

K [c] [d] :=

[c] ≠ [0]

vk	=	[AㄒK]

e([AㄒK],	[c])

e([Aㄒ], [d])	

=

Equivalent to
[d] = K [c]

under MDDH

First Component (related to K)

21

Construction of SIG: The First Component

• Given only vk	=	[AㄒK], it is hard to
produce σ = ([c], [d]) to pass Vrfy:

 [c] ≠ [0] ∧ [d] = K [c]

K cAㄒ

d

vk

Leftover Entropy of sk	=	K

• … even in the presence of
additional leakage L(sk) = L(K)

First Component (related to K)

Security against No-Message Attacks
(No Signing Queries) under Key Leakages

22

Construction of SIG: The Second Component

[c] := [U] w with w ← ℤpk	

sk	=	K

Sign(sk	=	K,	m)	→	σ:	

output σ = ([c], [d])

Vrfy(vk	=	[AㄒK],	m, σ = ([c], [d]))	→	1/0:

output 1 iff

τ := H(vk, m, [c])

Gen	→ (vk,	sk):			sk	=	K,		vk	=	[AㄒK], with K ∈ ℤp(k+1)×(k+1) Setup	→	pp	=	([U], [K0U], [K1U], [A], [AㄒK0], [AㄒK1]), with U, A ∈ ℤp(k+1)×k, K0, K1 ∈ ℤp(k+1)×(k+1)

K [c] [(K0+τ·K1) U] w

[K0U], [K1U]
 in pp

[d] :=

[c] ≠ [0]

vk	=	[AㄒK]
τ := H(vk, m, [c])

e([AㄒK],	[c]) e([Aㄒ(K0+τ·K1)],	[c])

[AㄒK0], [AㄒK1]
 in pp

e([Aㄒ], [d])	

=

First Component (related to K) Second Component (related to K0, K1)

Second Component (related to K0, K1)

23

Construction of SIG: The Second Component

• Essentially the OTSS-NIZK
(One-Time Simulation-Sound NIZK)
proposed in [Kiltz-Wee, EC15]

• We resort to another property as
observed in [Kiltz-Wee, EC15]:

 randomized PRF on τ

 which can mask First Component
Masking First Component during

Signing Queries under Tampered Keys

• … but OTSS is insufficient:
multiple signing queries contain
multiple NIZK proofs

24

Security of SIG: Putting Two Components Together

Second Component (related to K0, K1)First Component (related to K)

Masking First Component during
Signing Queries under Tampered Keys

Security against No-Message Attacks
(No Signing Queries) under Key Leakages

sLTR-CMA security for SIG
under Key Leakages & Tampered Keys

目录
CONTENTS

Contents sLTR Security Model

Our CCA-PKE Construction

25

02-

01-

03-

Our SIG Construction

26

More Efficient & Direct Construction of CCA-PKE

[c] := [U] w with w ← ℤpk	

sk	=	k

Enc(pk	=	[kㄒU],	m)	→	ct:	

output ct = ([c], [d], [e])

Dec(sk	=	k,	ct = ([c], [d], [e]))	→	m/⊥:

output
τ := H(pk, [c], [d])

Gen	→ (pk,	sk):			sk	=	k,		pk	=	[kㄒU], with k ∈ ℤpk+2

Setup	→	pp	=	([U], [K0U], [K1U], [A], [AㄒK0], [AㄒK1]), with U, A ∈ ℤp(k+2)×k, K0, K1 ∈ ℤp(k+1)×(k+2)

[kㄒU] w + m [(K0+τ·K1) U] w

[K0U], [K1U]
 in pp

[d] :=

[c]

[d] - kㄒ[c]

e([Aㄒ(K0+τ·K1)],	[c])

[AㄒK0], [AㄒK1]
 in pp

m	:=

pk	=	[kㄒU]

[e] :=

τ := H(pk, [c], [d])

e([Aㄒ], [e])	=iff

27

More Efficient & Direct Construction of CCA-PKE

[c] := [U] w with w ← ℤpk	

sk	=	k

Enc(pk	=	[kㄒU],	m)	→	ct:	

output ct = ([c], [d], [e])

Dec(sk	=	k,	ct = ([c], [d], [e]))	→	m/⊥:

output
τ := H(pk, [c], [d])

Gen	→ (pk,	sk):			sk	=	k,		pk	=	[kㄒU], with k ∈ ℤpk+2

Setup	→	pp	=	([U], [K0U], [K1U], [A], [AㄒK0], [AㄒK1]), with U, A ∈ ℤp(k+2)×k, K0, K1 ∈ ℤp(k+1)×(k+2)

[kㄒU] w + m [(K0+τ·K1) U] w

[K0U], [K1U]
 in pp

[d] :=

[c]

[d] - kㄒ[c]

e([Aㄒ(K0+τ·K1)],	[c])

[AㄒK0], [AㄒK1]
 in pp

m	:=

pk	=	[kㄒU]

[e] :=

τ := H(pk, [c], [d])

e([Aㄒ], [e])	=iff

Hide the
message

Leakage & Tampering
on k, but not on K0, K1

Prove the well-
formedness

28

Security of PKE: Putting Two Components Together

Second Component (related to K0, K1)First Component (related to k)

sLTR-CCA security for PKE
under Key Leakages & Tampered Keys

CPA Security under Key Leakages
Reject Decryption Queries

under Tampered Keys

29

Conclusion

• More Efficient SIG and CCA-PKE with leakage & tamper resilience

ü Direct construction, avoid using tSE-NIZK

• New sLTR security for SIG: counterpart to the sLTR security for PKE

• The first SIG with strong existential unforgeability in the LTR setting

ePrint: ia.cr/2023/1965

Schemes Efficiency Model

Our SIG |signature| = 4 group elements sLTR

Our CCA-PKE |ciphertext| = 6 group elements sLTR

5~8×
shorter

1.3~3.3×
shorter

Thanks! Questions?

