On Sigma Protocols and (packed) Black-Box Secret Sharing Schemes PKC 2024 Claudia Bartoli Ignacio Cascudo

POLITÉCNICA

Z-protocols

Let W, X be modules over a ring \Re , let $F: W \longrightarrow X$ be a module homomorphism and a relation $R := \{ (w; x) \in W \times X : F(w) = x \}.$

- Completeness
- *k*-Special Soundness
- Honest-verifier zero-knowledge (HVZK)

Schnorr Protocol

- Completeness
- 2-Special Soundness
- Honest-verifier zero-knowledge (HVZK)

Schnorr Protocol

Let G_q be a cyclic group, of order q prime, generated by $G_q = \langle g \rangle$ [Schnorr CRYPTO'89]

Schnorr Protocol

Let G_q be a cyclic group, of order q prime, generated by $G_q = \langle g \rangle$ [Schnorr CRYPTO'89]

In this work

Efficient Σ -protocol for proving knowledge of k preimages of group homomorphisms over any abelian group

In this work

Efficient Σ -protocol for proving knowledge of k preimages of group homomorphisms over any abelian group

Linear Secret Sharing Schemes

(t, r, n)-Linear Secret Sharing. Let W be a module over \Re , $w \in W^k$, $\rho \in W^e$ and $M \in \Re^{h \times (k+e)}$.

 $M\begin{pmatrix} w_1\\ \vdots\\ w_k \end{pmatrix} = \begin{pmatrix} \sigma_1\\ \vdots\\ \sigma_n \end{pmatrix}$

t privacy and *r* reconstruction

Linear Secret Sharing Schemes

(t, r, n)-Linear Secret Sharing. Let W be a module over \Re , $w \in W^k$, $\rho \in W^e$ and $M \in \Re^{h \times (k+e)}$.

M

t privacy and r reconstruction

Linear Secret Sharing Schemes

(t, r, n)-Linear Secret Sharing. Let W be a module over \Re , $w \in W^k$, $\rho \in W^e$ and $M \in \Re^{h \times (k+e)}$.

t privacy and r reconstruction

r-reconstruction

Σ-protocols through LSSS

W and X are modules over a ring \Re and $F: W \to X$ is an homomorphism. Let $M \in \Re^{h \times (k+e)}$ be the generator matrix of a (1, r, n)-LSSS over \Re and let M_i be the rows generating the shares of participant i. (w_1)

$$M\begin{pmatrix} w_1\\ \vdots\\ w_k\\ \rho \end{pmatrix} = \begin{pmatrix} \sigma_1\\ \vdots\\ \sigma_n \end{pmatrix}$$

I know w_i s.t. $x_i =$

Random tape: ρ

 $a = F(\rho)$

$$\sigma_i = M_i \begin{pmatrix} w \\ \rho \end{pmatrix}$$

$$M_{i}\begin{pmatrix} w_{1} \\ \vdots \\ w_{k} \\ \rho \end{pmatrix} = (\sigma_{i})$$
$$F(w_{i}), \forall i \in [k]$$

$$= F(w_i), \forall i \in [k]$$

$$a$$

$$i \leftarrow [n]$$

$$\sigma_i \rightarrow F(\sigma_i) = M_i \begin{pmatrix} x \\ a \end{pmatrix}$$

L-protocols through LSSS

W and X are modules over a ring \Re and $F: W \to X$ is an homomorphism. Let $M \in \Re^{h \times (k+e)}$ be the generator matrix of a (1, r, n)-LSSS over \Re and let M_i be the rows generating the shares of participant i. $\langle 14\rangle$

$$M\begin{pmatrix}w_1\\\vdots\\w_k\\\rho\end{pmatrix} = \begin{pmatrix}\sigma_1\\\vdots\\\sigma_n\end{pmatrix}$$

Random tape: ρ

 $a = F(\rho)$

 $\sigma_i = M_i$

- **Completeness:** F is an homomorphism + SS is linear.
- *r*-Special Soundness: Reconstruct from *r* conversations
- Honest-verifier zero-knowledge (HVZK): t Privacy from the SSS.

Soundness error (r-1)/n.

Properties of the SSS

We need to construct a Secret Sharing Scheme such that:

- The SSS is linear
- Has t = 1 privacy and r = 2 reconstruction
- Large number of participants *n*
- Has small share-size
- Can be defined over any abelian group

Properties of the SSS

We need to construct a Secret Sharing Scheme such that:

- The SSS is linear
- Has t = 1 privacy and r = 2 reconstruction
- Large number of participants *n*
- Can be defined over any abelian group

(1,2,*n*)-Black-Box Secret Sharing [Desmedt and Frankel 94]: A Black-Box secret sharing scheme is a SSS that can be applied to any finite abelian group \mathbb{G} , obliviously to its structure.

• Has small share-size $O(\log n)$. Note average share-size is $\geq \log n$ even for secret-size k = 1 [Cramer and Fehr 02]

Properties of the SSS

We need to construct a Secret Sharing Scheme such that:

- The SSS is linear
- Has t = 1 privacy and r = 2 reconstruction
- Large number of participants *n*
- Can be defined over any abelian group

(1,2,*n*)-Black-Box Secret Sharing [Desmedt and Frankel 94]: obliviously to its structure.

Let $w \in \mathbb{G}^k$, $\rho \in \mathbb{G}^h$ and $\mathcal{M} = \{M_1, \dots, M_n\}$ a family of matrices $M_i \in \mathbb{Z}^{h \times k}$, such that each participant $i \in [n]$ receives share σ_i .

$$M_{i} \begin{pmatrix} w_{1} \\ \vdots \\ w_{k} \end{pmatrix} + \begin{pmatrix} \rho_{1} \\ \vdots \\ \rho_{h} \end{pmatrix} = \sigma_{i} \quad 2 \text{ reconstruction} \Rightarrow M_{i}$$

• Has small share-size $O(\log n)$. Note average share-size is $\geq \log n$ even for secret-size k = 1 [Cramer and Fehr 02]

A Black-Box secret sharing scheme is a SSS that can be applied to any finite abelian group \mathbb{G} ,

 $-M_i$ must have a pseudo-inverse such that $R_{i,j}(\sigma_i - \sigma_j) = \begin{bmatrix} 1 \\ \vdots \\ w_k \end{bmatrix}$

Black-Box Secret Sharing Schemes

Let $\mathcal{M} = \{M_1, \dots, M_n\}$ be a family of matrices such that $M_i - M_j$ has a pseudo-inverse such that $R_{i,j}(M_i - M_j) = I_k$

$$= 1, N_2 = 0$$
$$), N_3 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, N_4 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Black-Box Secret Sharing Schemes

Let $\mathcal{M} = \{M_1, \dots, M_n\}$ be a family of matrices such that $M_i - M_i$ has a pseudo-inverse such that $R_{i,i}(M_i - M_i) = I_k$

$$(1, N_2 = 0)$$

 $(1, N_3 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, N_4 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, N_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, N_4 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\end{pmatrix}, N_7 = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, N_8 = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}.$$

The matrices above define a (1,2,n)-BBSS schemes with n = 8, secrets in

Black-Box Secret Sharing Schemes

Let $\mathcal{M} = \{M_1, \dots, M_n\}$ be a family of matrices such that $M_i - M_i$ has a pseudo-inverse such that $R_{i,i}(M_i - M_i) = I_k$

$$= 1, N_{2} = 0$$
neral it is not
bown how to
ruct a family
matrices $k \times k$
for $k > 3$
1/ (1 1 0), $N_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$
 $N_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$
 $N_{7} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, N_{8} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$

The matrices above define a (1,2,n)-BBSS schemes with n = 8, secrets in

Let $\mathcal{N} = \{N_1, \dots, N_8\}, N_i \in \mathbb{Z}^{3 \times 3}$, for each $i \neq j \in [n], N_i - N_j$ has a pseudo-inverse such that $R_{i,j}(N_i - N_j) = I_k$.

Let $n = 8^m$ be the number of participants, each participant $i = (i_0, \dots, i_{m-1}) \in \{0, \dots, 7\}^m$ m > 0[Cramer and Damgård CRYPTO'09]

$$i = (i_0, \dots, i_{m-1}) \in \{0, \dots, 7\}^m$$

 \longleftrightarrow $(N_{i,0}, \ldots, N_{i,m-1})$, where $N_{i,j} \in \mathcal{N}$

Let $\mathcal{N} = \{N_1, \dots, N_8\}, N_i \in \mathbb{Z}^{3 \times 3}$, for each $i \neq j \in [n], N_i - N_j$ has a pseudo-inverse such that $R_{i,j}(N_i - N_j) = I_k$.

Let $n = 8^{m}$ be the number of participants, each participant $i = (i_{0}, ..., i_{m-1}) \in \{0, ..., 7\}^{m} m > 0$ [Cramer and Damgård CRYPTO'09]

$$i = (i_0, ..., i_{m-1}) \in \{0, ..., 7\}^m \longleftrightarrow (N_{i,0}, ..., N_{i,m-1}), \text{ where } N_{i,j} \in \mathcal{N}$$

ssume $i_0 \neq j_0$ where $i = (i_0, ..., i_m), j = (j_0 ..., j_m) \in \{1, ..., 8\}^m$

Let $i \neq j$ then we can as

Let $\mathcal{N} = \{N_1, \dots, N_8\}, N_i \in \mathbb{Z}^{3 \times 3}$, for each $i \neq j \in [n], N_i - N_j$ has a pseudo-inverse such that $R_{i,j}(N_i - N_j) = I_k$.

Let $n = 8^m$ be the number of participants, each participant $i = (i_0, \dots, i_{m-1}) \in \{0, \dots, 7\}^m$ m > 0[Cramer and Damgård CRYPTO'09]

$$i = (i_0, ..., i_{m-1}) \in \{0, ..., 7\}^m \longleftrightarrow (N_{i,0}, ..., N_{i,m-1}), \text{ where } N_{i,j} \in \mathcal{N}$$

ssume $i_0 \neq j_0$ where $i = (i_0, ..., i_m), j = (j_0 ..., j_m) \in \{1, ..., 8\}^m$

Let $i \neq j$ then we can as

Let $\mathcal{N} = \{N_1, \dots, N_8\}, N_i \in \mathbb{Z}^{3 \times 3}$, for each $i \neq j \in [n], N_i - N_i$ has a pseudo-inverse such that $R_{i,j}(N_i - N_j) = I_k$.

Let $n = 8^m$ be the number of participants, each participant $i = (i_0, \dots, i_{m-1}) \in \{0, \dots, 7\}^m$ m > 0[Cramer and Damgård CRYPTO'09]

$$i = (i_0, ..., i_{m-1}) \in \{0, ..., 7\}^m \longleftrightarrow (N_{i,0}, ..., N_{i,m-1}), \text{ where } N_{i,j} \in \mathcal{N}$$

ssume $i_0 \neq j_0$ where $i = (i_0, ..., i_m), j = (j_0, ..., j_m) \in \{1, ..., 8\}^m$

Let $i \neq j$ then we can as

Proposition

For $k \equiv 0 \mod 3$ and $n = 2^{\lambda}$, there exists a (1,2,n)-BBSS with share-size $h_* = k + \lambda - 3$.

Σ -protocol

2-special soundness soundness error $2^{-\lambda}$ communication complexity: $k + \lambda - 3$ elements of \mathbb{G}_1 and \mathbb{G}_2 (and λ bits for the challenge).

Class Groups

Let ℓ be an integer, let \hat{G} be a finite commutative group and a cycle subgroup $G \subset \hat{G}$ of unknown order. $G \cong F \times G^{\ell}$, where F is of order ℓ [Castagnos and Laguillaumie 15]

Proof of discrete logarithm: $R_{DLCG,k} := \{ (w, x) \in \mathbb{Z}^k \times G^k \mid g^{w_i} = x_i \; \forall i = 1, \dots k \}$ **Proof of plaintext and randomness knowledge CL_HSM:** $\psi: \mathbb{Z}_{\ell} \times \mathbb{Z} \to G^{\ell} \times G, \ \psi(m, r) = (g_{\ell}^{r}, \mathbf{pk}^{r} \cdot f^{m})$ $R_{CL,k} := \{ (m,r); (c,d) \in (\mathbb{Z} \times \mathbb{Z}_{\ell})^k \times (G^{\ell} \times G)^k \mid \psi(m_i,r_i) \in (\mathbb{Z} \times \mathbb{Z}_{\ell})^k \}$

Group homomorphisms

$$(i_i) = (c_i, d_i) \ \forall i = 1, \dots k \}$$

Class Groups

Let ℓ be an integer, let \hat{G} be a finite commutative group and a cycle subgroup $G \subset \hat{G}$ of unknown order. $G \cong F \times G^{\ell}$, where F is of order ℓ [Castagnos and Laguillaumie 15]

Proof of discrete logarithm: $R_{DLCG,k} := \{ (w, x) \in \mathbb{Z}^k \times G^k \mid g^{w_i} = x_i \; \forall i = 1, \dots k \}$ **Proof of plaintext and randomness knowledge CL_HSM:** $\psi: \mathbb{Z}_{\ell} \times \mathbb{Z} \to G^{\ell} \times G, \ \psi(m, r) = (g_{\ell}^{r}, \mathbf{pk}^{r} \cdot f^{m})$ $R_{CLk} := \{ (m, r); (c, d) \in (\mathbb{Z} \times \mathbb{Z}_{\ell})^k \times (G^{\ell} \times G)^k \mid \psi(m_i, r_i) \}$

	Proof of DL	Communication (bits)	Knowledge	Assumptions
	Castagnos et al CRYPTO'19	$\lambda k (\log S + \lambda + \log \lambda)$	Yes	None
	Castagnos et al PKC'20	$k(\log S + 2\lambda)$	Yes	Low order, Strong Root, Uniform random g
	Braun et al CRYPTO'23	$k(\log S + 2\lambda)$	No	Rough Order
	Our work	$(k + \lambda - 3)(\log S + \lambda + \log(k + \lambda + \log\min(\lambda, k)))$	Yes	None

Group homomorphisms

$$(i) = (c_i, d_i) \ \forall i = 1, \dots k \}$$

Other applications

Joye-Libert (JL'13): $f: \mathbb{Z}_{2^{\ell}} \times \mathbb{Z}_N^* \longrightarrow \mathbb{Z}_N^*$ $(u, s) \mapsto g^u \cdot s^{2^{\ell}}$

(1,2,*n*)-**BBSS**

For $k \equiv 0 \mod 3$ and $n = 2^{\lambda}$, share-size $h_* = k + \lambda - 3$.

ZK-ready functions: Σ -protocol can be extended to ZK-ready functions [Cramer and Damgård CRYPTO'09]

Σ -protocol JL

2-special soundness soundness error $2^{-\lambda}$ communication complexity: $k + \lambda - 3$ elements of $\mathbb{Z}_{2^{\ell}}$ and \mathbb{Z}_{N} (and λ bits for the challenge).

Other applications

Joye-Libert (JL'13): $f: \mathbb{Z}_{2^{\ell}} \times \mathbb{Z}_N^* \longrightarrow \mathbb{Z}_N^*$ $(u, s) \mapsto g^u \cdot s^{2^{\ell}}$

ZK-ready functions: Σ -protocol can be extended to ZK-ready functions [Cramer and Damgård CRYPTO'09]

Σ -protocol JL

Indness for $2^{-\lambda}$ on complexity: ements of
(and λ bits for the

Other applications

ZK-ready functions: Σ -protocol can be extended to ZK-ready functions [Cramer and Damgård CRYPTO'09]

Joye-Libert (JL'13): We improve the Σ -protocol by using Shamir's secret sharing schemes over Galois Rings Ex. Attema *et al* TCC'22 $f: \mathbb{Z}_{2^{\ell}} \times \mathbb{Z}_N^* \longrightarrow \mathbb{Z}_N^*$

 $(u,s) \mapsto g^u \cdot s^{2^\ell}$

Shamir SS

 $(1, k + 1, 2^k)$ -Shamir's secret sharing scheme over Galois Rings

Σ -protocol JL

(k+1)-special soundness soundness error 2^{-k} communication complexity: kelements of \mathbb{Z}_{2^ℓ} and \mathbb{Z}_N (and kbits for the challenge).

Conclusions

- Formalize the description of Σ -protocols proving knowledge of preimages of module homomorphisms, through any (*t*, *r*, *n*)-linear secret sharing scheme, including NI versions.
- General construction of a Σ -protocol proving knowledge of k preimages of group homomorphisms over any abelian group, even of unknown order.
- Application to Class Groups, improving previous works.
- Extension to ZK-ready functions and for Joye-Libert we present an improved construction of the Σ -protocol based on Galois Rings.

Conclusions

- Formalize the description of Σ -protocols proving knowledge of preimages of module homomorphisms, through any (t, r, n)-linear secret sharing scheme, including NI versions.
- General construction of a Σ -protocol proving knowledge of k preimages of group homomorphisms over any abelian group, even of unknown order.
- Application to Class Groups, improving previous works.

Extension to ZK-ready functions and for Joye-Libert we present an improved construction of the Σ -protocol based on Galois Rings.

Acknowledgement: This work has been partially supported by the grant PIPF-2022/COM-25517, funded by the Madrid Regional Government, and by the projects SecuRing (PID2019-110873RJ-I00/MCIN/AEI/10.13039/501100011033), PRODIGY(TED2021-132464B-I00) funded by MCIN/AEI/10.13039/501100011033/ and the European Union NextGenerationEU/ PRTR, and CONFIDENTIAL-6G funded by the European Union (GA 101096435).

