On Sigma Protocols and (packed) Black-Box Secret Sharing Schemes

Claudia Bartoli

Ignacio Cascudo

:wildea

Σ-protocols

Let W, X be modules over a ring \Re, let $F: W \longrightarrow X$ be a module homomorphism and a relation $R:=\{(w ; x) \in W \times X: F(w)=x\}$.

- Completeness
- κ-Special Soundness
- Honest-verifier zero-knowledge (HVZK)

Schnorr Protocol

Let G_{q} be a cyclic group, of order q prime, generated by $G_{q}=\langle g>$ [Schnorr CRYPTO'89]

- Completeness
- 2-Special Soundness
- Honest-verifier zero-knowledge (HVZK)

Schnorr Protocol

Let G_{q} be a cyclic group, of order q prime, generated by $G_{q}=\langle g\rangle$ [Schnorr CRYPTO'89]

- Completeness
- 2-Special Soundness

$$
\left.\begin{array}{l}
(a, c, z) \\
\left(a, c^{\prime}, z^{\prime}\right)
\end{array}\right\} \begin{aligned}
& g^{z}=h^{c} \cdot a \\
& g^{z^{\prime}}=h^{c^{\prime}} \cdot a
\end{aligned} \rightarrow g^{z-z^{\prime}}=h^{c-c^{\prime}} \rightarrow g^{\frac{z-z}{c-c}}=h
$$$c-c^{\prime}$ must be invertible

- Honest-verifier zero-knowledge (HVZK)

Schnorr Protocol

Let G_{q} be a cyclic group, of order q prime, generated by $G_{q}=\langle g\rangle$ [Schnorr CRYPTO'89]

- Completeness
- 2-Special Soundness

$$
\left.\begin{array}{l}
(a, c, z) \\
\left(a, c^{\prime}, z^{\prime}\right)
\end{array}\right\} \begin{aligned}
& g^{z}=h^{c} \cdot a \\
& g^{z^{\prime}}=h^{c^{\prime}} \cdot a
\end{aligned} \rightarrow g^{z-z^{\prime}}=h^{c-c^{\prime}} \rightarrow g^{\frac{z-z^{\prime}}{c-c}}=h
$$

$c-c^{\prime}$ must be invertible

- Honest-verifier zero-knowledge (HVZK)

In this work

Efficient Σ-protocol for proving knowledge of k preimages of group homomorphisms over any abelian group

In this work

Efficient Σ-protocol for proving knowledge of k preimages of group homomorphisms over any abelian group

Linear Secret Sharing Schemes

(t, r, n)-Linear Secret Sharing. Let W be a module over $\boldsymbol{R}, w \in W^{k}, \rho \in W^{e}$ and $M \in \mathfrak{R}^{h \times(k+e)}$.

t privacy and r reconstruction

σ_{1}

σ_{n}

Linear Secret Sharing Schemes

(t, r, n)-Linear Secret Sharing. Let W be a module over $\boldsymbol{R}, w \in W^{k}, \rho \in W^{e}$ and $M \in \mathfrak{R}^{h \times(k+e)}$.

t-privacy

Linear Secret Sharing Schemes

(t, r, n)-Linear Secret Sharing. Let W be a module over $\boldsymbol{R}, w \in W^{k}, \rho \in W^{e}$ and $M \in \mathfrak{R}^{h \times(k+e)}$.

r-reconstruction

Σ-protocols through LSSS

W and X are modules over a ring \Re and $F: W \rightarrow X$ is an homomorphism.
Let $M \in \mathfrak{R}^{h \times(k+e)}$ be the generator matrix of a $(1, r, n)$-LSSS over \Re and let M_{i} be the rows generating the shares of participant i.

$$
M\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{k} \\
\rho
\end{array}\right)=\left(\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{n}
\end{array}\right) \quad M_{i}\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{k} \\
\rho
\end{array}\right)=\left(\sigma_{i}\right)
$$

$$
\begin{aligned}
& \text { I know } w_{i} \text { s.t. } x_{i}=F\left(w_{i}\right), \forall i \in[k] \\
& \text { Random tape: } \rho \\
& a=F(\rho) \frac{a}{i}
\end{aligned}
$$

Σ-protocols through LSSS

W and X are modules over a ring \Re and $F: W \rightarrow X$ is an homomorphism.
Let $M \in \mathfrak{R}^{h \times(k+e)}$ be the generator matrix of a $(1, r, n)$-LSSS over \Re and let M_{i} be the rows generating the shares of participant i.

$$
M\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{k} \\
\rho
\end{array}\right)=\left(\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{n}
\end{array}\right) \quad M_{i}\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{k} \\
\rho
\end{array}\right)=\left(\sigma_{i}\right)
$$

The

- complexiby is delermined by the share-size of the SSS
- Completeness: F is an homomorphism + SS is linear.
- r-Special Soundness: Reconstruct from r conversations Soundness error $(r-1) / n$.
- Honest-verifier zero-knowledge (HVZK): t Privacy from the SSS.

Properties of the SSS

We need to construct a Secret Sharing Scheme such that:

- The SSS is linear
- Has $t=1$ privacy and $r=2$ reconstruction
- Large number of participants n
- Has small share-size
- Can be defined over any abelian group

Properties of the SSS

We need to construct a Secret Sharing Scheme such that:

- The SSS is linear
- Has $t=1$ privacy and $r=2$ reconstruction
- Large number of participants n
- Has small share-size $O(\log n)$. Note average share-size is $\geq \log n$ even for secret-size $k=1$ [Cramer and Fehr 02]
- Can be defined over any abelian group

```
(1,2,n)-Black-Box Secret Sharing [Desmedt and Frankel 94]:
A Black-Box secret sharing scheme is a SSS that can be applied to any finite abelian group }\mathbb{G}\mathrm{ ,
obliviously to its structure.
```


Properties of the SSS

We need to construct a Secret Sharing Scheme such that:

- The SSS is linear
- Has $t=1$ privacy and $r=2$ reconstruction
- Large number of participants n
- Has small share-size $O(\log n)$. Note average share-size is $\geq \log n$ even for secret-size $k=1$ [Cramer and Fehr 02]
- Can be defined over any abelian group

```
(1,2,n)-Black-Box Secret Sharing [Desmedt and Frankel 94]:
A Black-Box secret sharing scheme is a SSS that can be applied to any finite abelian group }\mathbb{G}\mathrm{ ,
obliviously to its structure.
```

Let $w \in \mathbb{G}^{k}, \rho \in \mathbb{G}^{h}$ and $\mathscr{M}=\left\{M_{1}, \ldots, M_{n}\right\}$ a family of matrices $M_{i} \in \mathbb{Z}^{h \times k}$, such that each participant $i \in[n]$ receives share σ_{i}.

$$
M_{i}\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{k}
\end{array}\right)+\left(\begin{array}{c}
\rho_{1} \\
\vdots \\
\rho_{h}
\end{array}\right)=\sigma_{i} \quad 2 \text { reconstruction } \Rightarrow M_{i}-M_{j} \text { must have a pseudo-inverse such that } \quad R_{i, j}\left(\sigma_{i}-\sigma_{j}\right)=\left(\begin{array}{c}
w_{1}, \\
\vdots \\
w_{k}
\end{array}\right)
$$

Black-Box Secret Sharing Schemes

Let $\mathscr{M}=\left\{M_{1}, \ldots, M_{n}\right\}$ be a family of matrices such that $M_{i}-M_{j}$ has a pseudo-inverse such that $R_{i, j}\left(M_{i}-M_{j}\right)=I_{k}$

$$
\begin{aligned}
& k=1 \\
& N_{1}=1, N_{2}=0 \\
& k=2 \\
& N_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), N_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), N_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), N_{4}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

Black-Box Secret Sharing Schemes

Let $\mathscr{M}=\left\{M_{1}, \ldots, M_{n}\right\}$ be a family of matrices such that $M_{i}-M_{j}$ has a pseudo-inverse such that $R_{i, j}\left(M_{i}-M_{j}\right)=I_{k}$

$$
k=1
$$

$$
N_{1}=1, N_{2}=0
$$

$k=2$

$$
N_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), N_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), N_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), N_{4}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

$$
\begin{aligned}
& N_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), N_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), N_{3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), N_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \\
& N_{5}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), N_{6}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right), N_{7}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), N_{8}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right) .
\end{aligned}
$$

The matrices above define a $(1,2, n)$-BBSS schemes with $n=8$, secrets in \mathbb{G}^{3}, and each share in \mathbb{G}^{3}.

Black-Box Secret Sharing Schemes

Let $\mathscr{M}=\left\{M_{1}, \ldots, M_{n}\right\}$ be a family of matrices such that $M_{i}-M_{j}$ has a pseudo-inverse such that $R_{i, j}\left(M_{i}-M_{j}\right)=I_{k}$
$k=1$
$k=2$
$k=3$

$$
\begin{gathered}
N_{1}=1, N_{2}=0 \\
N_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), N_{2}\left(\begin{array}{c}
\text { In general it is not } \\
\text { known how bo } \\
\text { construct a family } \\
\text { of } 2^{k} \text { matrices } k \times k
\end{array}\right. \\
N_{1}=\left(\begin{array}{lll}
1 & 1 \\
1 & 0
\end{array}\right) . \\
\left.l_{5}^{0} \begin{array}{lll}
0 & 0 \\
0 & 0 & 0
\end{array}\right), N_{2}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), N_{6}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right), N_{7}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), N_{8}=\left(\begin{array}{ccc}
1 & 1 & 0
\end{array}\right), N_{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

The matrices above define a $(1,2, n)$-BBSS schemes with $n=8$, secrets in \mathbb{G}^{3}, and each share in \mathbb{G}^{3}.

Construction of a (packed) BBSS

Let $\mathcal{N}=\left\{N_{1}, \ldots, N_{8}\right\}, N_{i} \in \mathbb{Z}^{3 \times 3}$, for each $i \neq j \in[n], N_{i}-N_{j}$ has a pseudo-inverse such that $R_{i, j}\left(N_{i}-N_{j}\right)=I_{k}$.
Let $n=8^{m}$ be the number of participants, each participant $i=\left(i_{0}, \ldots, i_{m-1}\right) \in\{0, \ldots, 7\}^{m} m>0$ [Cramer and Damgård CRYPTO'09]

$$
i=\left(i_{0}, \ldots, i_{m-1}\right) \in\{0, \ldots, 7\}^{m} \longleftrightarrow\left(N_{i, 0}, \ldots, N_{i, m-1}\right), \text { where } N_{i, j} \in \mathcal{N}
$$

Construction of a (packed) BBSS

Let $\mathcal{N}=\left\{N_{1}, \ldots, N_{8}\right\}, N_{i} \in \mathbb{Z}^{3 \times 3}$, for each $i \neq j \in[n], N_{i}-N_{j}$ has a pseudo-inverse such that $R_{i, j}\left(N_{i}-N_{j}\right)=I_{k}$.
Let $n=8^{m}$ be the number of participants, each participant $i=\left(i_{0}, \ldots, i_{m-1}\right) \in\{0, \ldots, 7\}^{m} m>0$ [Cramer and Damgård CRYPTO'09]

$$
i=\left(i_{0}, \ldots, i_{m-1}\right) \in\{0, \ldots, 7\}^{m} \longleftrightarrow\left(N_{i, 0}, \ldots, N_{i, m-1}\right), \text { where } N_{i, j} \in \mathcal{N}
$$

Let $i \neq j$ then we can assume $i_{0} \neq j_{0}$ where $i=\left(i_{0}, \ldots, i_{m}\right), j=\left(j_{0} \ldots, j_{m}\right) \in\{1, \ldots, 8\}^{m}$

Construction of a (packed) BBSS

Let $\mathcal{N}=\left\{N_{1}, \ldots, N_{8}\right\}, N_{i} \in \mathbb{Z}^{3 \times 3}$, for each $i \neq j \in[n], N_{i}-N_{j}$ has a pseudo-inverse such that $R_{i, j}\left(N_{i}-N_{j}\right)=I_{k}$.
Let $n=8^{m}$ be the number of participants, each participant $i=\left(i_{0}, \ldots, i_{m-1}\right) \in\{0, \ldots, 7\}^{m} m>0$ [Cramer and Damgård CRYPTO'09]

$$
i=\left(i_{0}, \ldots, i_{m-1}\right) \in\{0, \ldots, 7\}^{m} \longleftrightarrow\left(N_{i, 0}, \ldots, N_{i, m-1}\right), \text { where } N_{i, j} \in \mathcal{N}
$$

Let $i \neq j$ then we can assume $i_{0} \neq j_{0}$ where $i=\left(i_{0}, \ldots, i_{m}\right), j=\left(j_{0} \ldots, j_{m}\right) \in\{1, \ldots, 8\}^{m}$

The family of matrices $\mathscr{M}=\left\{M_{1}, \ldots, M_{n}\right\}$ satisfies

Construction of a (packed) BBSS

Let $\mathcal{N}=\left\{N_{1}, \ldots, N_{8}\right\}, N_{i} \in \mathbb{Z}^{3 \times 3}$, for each $i \neq j \in[n], N_{i}-N_{j}$ has a pseudo-inverse such that $R_{i, j}\left(N_{i}-N_{j}\right)=I_{k}$.
Let $n=8^{m}$ be the number of participants, each participant $i=\left(i_{0}, \ldots, i_{m-1}\right) \in\{0, \ldots, 7\}^{m} m>0$ [Cramer and Damgård CRYPTO'09]

$$
i=\left(i_{0}, \ldots, i_{m-1}\right) \in\{0, \ldots, 7\}^{m} \longleftrightarrow\left(N_{i, 0}, \ldots, N_{i, m-1}\right), \text { where } N_{i, j} \in \mathcal{N}
$$

Let $i \neq j$ then we can assume $i_{0} \neq j_{0}$ where $i=\left(i_{0}, \ldots, i_{m}\right), j=\left(j_{0} \ldots, j_{m}\right) \in\{1, \ldots, 8\}^{m}$

Proposition

For $k \equiv 0 \bmod 3$ and $n=2^{\lambda}$, there exists a $(1,2, \mathrm{n})$-BBSS with share-size $h_{*}=k+\lambda-3$.

The family of matrices $\mathscr{M}=\left\{M_{1}, \ldots, M_{n}\right\}$ satisfies

Σ-protocols through BBSS

\mathbb{G}_{1} and \mathbb{G}_{2} are abelian groups and $F: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ is an homomorphism.

Σ-PROTOCOL

2-special soundness soundness error $2^{-\lambda}$ communication complexity:
$k+\lambda-3$ elements of
\mathbb{G}_{1} and \mathbb{G}_{2} (and λ bits for the challenge).

Class Groups

Let ℓ be an integer, let \hat{G} be a finite commutative group and a cycle subgroup $G \subset \hat{G}$ of unknown order. $G \cong F \times G^{\ell}$, where F is of order ℓ [Castagnos and Laguillaumie 15]

Proof of discrete logarithm:

$$
R_{D L C G, k}:=\left\{(w, x) \in \mathbb{Z}^{k} \times G^{k} \mid g^{w_{i}}=x_{i} \forall i=1, \ldots k\right\}
$$

Group homomorphisms
Proof of plaintext and randomness knowledge CL_HSM:
$\psi: \mathbb{Z}_{\ell} \times \mathbb{Z} \rightarrow G^{\ell} \times G, \psi(m, r)=\left(g_{\ell}^{r}, \mathbf{p k}^{r} \cdot f^{m}\right)$
$R_{C L, k}:=\left\{(m, r) ;(c, d) \in\left(\mathbb{Z} \times \mathbb{Z}_{\ell}\right)^{k} \times\left(G^{\ell} \times G\right)^{k} \mid \psi\left(m_{i}, r_{i}\right)=\left(c_{i}, d_{i}\right) \forall i=1, \ldots k\right\}$

CIPSS GMOURS

Let ℓ be an integer, let \hat{G} be a finite commutative group and a cycle subgroup $G \subset \hat{G}$ of unknown order. $G \cong F \times G^{\ell}$, where F is of order ℓ [Castagnos and Laguillaumie 15]

Proof of discrete logarithm:

$$
R_{D L C G, k}:=\left\{(w, x) \in \mathbb{Z}^{k} \times G^{k} \mid g^{w_{i}}=x_{i} \forall i=1, \ldots k\right\}
$$

Group homomorphisms
Proof of plaintext and randomness knowledge CL_HSM:
$\psi: \mathbb{Z}_{\ell} \times \mathbb{Z} \rightarrow G^{\ell} \times G, \psi(m, r)=\left(g_{\ell}^{r}, \mathbf{p k}^{r} \cdot f^{m}\right)$
$R_{C L, k}:=\left\{(m, r) ;(c, d) \in\left(\mathbb{Z} \times \mathbb{Z}_{\ell}\right)^{k} \times\left(G^{\ell} \times G\right)^{k} \mid \psi\left(m_{i}, r_{i}\right)=\left(c_{i}, d_{i}\right) \forall i=1, \ldots k\right\}$

Proof of DL	Communication (bits)	Knowledge	Assumptions
Castagnos et al CRYPTO'19	$\lambda k(\log S+\lambda+\log \lambda)$	Yes	None
Castagnos et al PKC'20	$k(\log S+2 \lambda)$	Yes	Low order, Strong Root, Uniform random g
Braun et al CRYPTO'23	$k(\log S+2 \lambda)$	No	Rough Order
Our work	$(k+\lambda-3)(\log S+\lambda+\log (k+\lambda+\log \min (\lambda, k))$	Yes	None

Other applications

ZK-ready functions: Σ-protocol can be extended to ZK-ready functions [Cramer and Damgård CRYPTO’09]
Joye-Libert (JL'13):

$$
\begin{array}{rlll}
f: \mathbb{Z}_{2^{\epsilon}} \times \mathbb{Z}_{N}^{*} & \longrightarrow & \mathbb{Z}_{N}^{*} \\
(u, s) & \mapsto & g^{u} \cdot s^{2^{\epsilon}}
\end{array}
$$

Σ-PROTOCOL JL

(1,2,n)-BBSS

$$
\begin{array}{|r|l}
\hline \text { For } k \equiv 0 \bmod 3 \text { and } n=2^{\lambda}, & \begin{array}{l}
2 \text {-special soundness } \\
\text { soundness error } 2^{-\lambda}
\end{array} \\
\text { share-size } h_{*}=k+\lambda-3 . & \begin{array}{l}
\text { communication complexity: } \\
k+\lambda-3 \text { elements of } \\
\mathbb{Z}_{2^{\star}} \text { and } \mathbb{Z}_{N} \text { (and } \lambda \text { bits for the } \\
\text { challenge). }
\end{array} \\
\hline
\end{array}
$$

Other applications

ZK-ready functions: Σ-protocol can be extended to ZK-ready functions [Cramer and Damgård CRYPTO’09]
Joye-Libert (JL'13):

$$
\begin{array}{rlc}
f: \mathbb{Z}_{2^{\epsilon}} \times \mathbb{Z}_{N}^{*} & \longrightarrow & \mathbb{Z}_{N}^{*} \\
(u, s) & \mapsto & g^{u} \cdot s^{2^{\epsilon}}
\end{array}
$$

Σ-PROTOCOL JL

Other applications

ZK-ready functions: Σ-protocol can be extended to ZK-ready functions [Cramer and Damgård CRYPTO'09]
Joye-Libert (JL'13): We improve the Σ-protocol by using Shamir's secret sharing schemes over Galois Rings Ex. Attema et al TCC'22

$$
f: \mathbb{Z}_{2^{\epsilon}} \times \mathbb{Z}_{N}^{*} \longrightarrow \mathbb{Z}_{N}^{*}
$$

$$
(u, s) \quad \mapsto \quad g^{u} \cdot s^{2^{t}}
$$

$$
\Sigma \text {-PROTOCOL JL }
$$

Shamir SS

($k+1$)-special soundness soundness error 2^{-k}
communication complexity: k elements of $\mathbb{Z}_{2^{\epsilon}}$ and \mathbb{Z}_{N} (and k bits for the challenge).

Conclusions

Formalize the description of Σ-protocols proving knowledge of preimages of module homomorphisms, through any (t, r, n)-linear secret sharing scheme, including NI versions.

General construction of a Σ-protocol proving knowledge of k preimages of group homomorphisms over any abelian group, even of unknown order.

Application to Class Groups, improving previous works.

Extension to ZK-ready functions and for Joye-Libert we present an improved construction of the Σ-protocol based on Galois Rings.

Conclusions

Formalize the description of Σ-protocols proving knowledge of preimages of module homomorphisms, through any (t, r, n)-linear secret sharing scheme, including NI versions.

General construction of a Σ-protocol proving knowledge of k preimages of group homomorphisms over any abelian group, even of unknown order.

Application to Class Groups, improving previous works.

Extension to ZK-ready functions and for Joye-Libert we present an improved construction of the Σ-protocol based on Galois Rings.

