On Proving Equivalence Class Signatures Secure from Non-interactive Assumptions

Balthazar Bauer, Georg Fuchsbauer and Fabian Regen

PKC, 16 April 24

What is a digital signature scheme?

A signature scheme is a triple of p.p.t. algorithms

- Keygen() \rightarrow (*sk*, *pk*)
- Sign $(sk, m) \rightarrow \sigma$
- Verify $(pk, m, \sigma) \rightarrow 0$ or 1

Equivalence class signatures (EQS) [FHS19]

Defined over group (\mathbb{G}, p, g)

Messages space $(\mathbb{G}^*)^2$; partitioned by

$$m \sim m' : \Leftrightarrow \exists \mu \in \mathbb{Z}_p^* : m = \mu \cdot m'$$

Equivalence class signatures (EQS) [FHS19] Defined over group (\mathbb{G}, p, g) Messages space $(\mathbb{G}^*)^2$; partitioned by $m \sim m' : \Leftrightarrow \exists \mu \in \mathbb{Z}_p^* : m = \mu \cdot m'$ Equivalence classes for $m = (\alpha \cdot g, \beta \cdot g)$ (1,3)(1,2) (2,4) (3,6)(1,1) (2,2) (3,3) α

Equivalence class signatures (EQS) [FHS19] Additional functionality:

Adapt $(pk, m, \sigma, \mu \in \mathbb{Z}_p^*)$: returns signature on $\mu \cdot m$

Equivalence class signatures (EQS) [FHS19] Additional functionality:

Adapt $(pk, m, \sigma, \mu \in \mathbb{Z}_p^*)$: returns signature on $\mu \cdot m$

Unforgeability of signatures Game UNF:

$$(sk, pk) \leftarrow \mathsf{Keygen}()$$

$$\sigma_i \leftarrow \mathsf{Sign}(sk, m_i)$$

Unforgeability of signatures Game UNF:

$$(sk, pk) \leftarrow \text{Keygen}() \qquad \xrightarrow{pk} \text{FORGER } \mathcal{F}$$
$$\sigma_i \leftarrow \text{Sign}(sk, m_i) \qquad \overbrace{\sigma_i}^{\sigma_i} \underset{m^*, \sigma^*}{\overset{m^*, \sigma^*}}$$

 \mathcal{F} wins \Leftrightarrow Verify $(pk, m^*, \sigma^*) \land m^* \neq m_i$

Unforgeability of signatures Game UNF:

 \mathcal{F} wins \Leftrightarrow Verify $(pk, m^*, \sigma^*) \land m^* \neq m_i$

Scheme *secure* if $\mathsf{Adv}_{\mathcal{F}}^{\mathsf{UNF}} := \mathsf{Pr}[\mathcal{F} \text{ wins}] \approx 0$

Security of EQS Game UNF:

$$(sk, pk) \leftarrow \mathsf{Keygen}()$$

 $\sigma_i \leftarrow \mathsf{Sign}(sk, m_i)$

\mathcal{F} wins \Leftrightarrow Verify $(pk, m^*, \sigma^*) \land [m^*]_{\sim} \neq [m_i]_{\sim}$

Alice chooses $\mathbf{pk} = \alpha \cdot \mathbf{g} \in \mathbb{G}^*$

- establishes **pseudonym** $(\mu_i \cdot g, \mu_i \cdot pk)$ with party *i*

Alice chooses $\mathbf{pk} = \alpha \cdot \mathbf{g} \in \mathbb{G}^*$

- establishes **pseudonym** $(\mu_i \cdot g, \mu_i \cdot pk)$ with party *i*

- gets credential: σ_j on $m_j = (\mu_j \cdot g, \mu_j \cdot pk)$

Alice chooses $\mathit{pk} = \alpha \cdot \mathit{g} \in \mathbb{G}^*$

- establishes **pseudonym** $(\mu_i \cdot g, \mu_i \cdot pk)$ with party *i*

- gets credential: σ_j on $m_j = (\mu_j \cdot g, \mu_j \cdot pk)$

- create credential σ_i for $m_i = (\mu_i \cdot g, \mu_i \cdot pk)$ by running Adapt $(pk, m, \sigma_j, \mu_i/\mu_j)$

Alice chooses $\mathit{pk} = \alpha \cdot \mathit{g} \in \mathbb{G}^*$

- establishes **pseudonym** $(\mu_i \cdot g, \mu_i \cdot pk)$ with party *i*

– gets credential:
$$\sigma_j$$
 on $m_j = (\mu_j \cdot g, \mu_j \cdot pk)$

- create credential σ_i for $m_i = (\mu_i \cdot g, \mu_i \cdot pk)$ by running Adapt $(pk, m, \sigma_j, \mu_i/\mu_j)$

Anonymity (even against issuer):

- m_i looks random (\leftarrow class hiding)
- σ_i is random signature on m_i (\leftarrow Adapt)

Cryptographic concepts constructed from EQS:

 Attribute-based credentials [FHS(14|19), DHS15, HS21]

- Attribute-based credentials [FHS(14|19), DHS15, HS21]
- ► Blind signatures [FHS15, FHKS16, Han23]

- Attribute-based credentials [FHS(14|19), DHS15, HS21]
- ► Blind signatures [FHS15, FHKS16, Han23]
- ► Group signatures [DS16, CS20, DS18, BHKS18]

- Attribute-based credentials [FHS(14|19), DHS15, HS21]
- ► Blind signatures [FHS15, FHKS16, Han23]
- ► Group signatures [DS16, CS20, DS18, BHKS18]
- Verifiably encrypted signatures [HRS15], access-control encryption [FGK017], sanitizable signatures [BLL+19], incentive systems [BEK+20], mix nets [ST21], anonymous counting tokens [BRS23] ...

▶ Original [FHS(14|19)] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)

• Original [FHS(14|19)] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)

- but: proof in generic group model

- Original [FHS(14|19)] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
- Weaker unforgeability notion: [FG18] (proof from SXDH)

- Original [FHS(14|19)] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
- Weaker unforgeability notion: [FG18] (proof from SXDH)
 - but: too weak for many applications

- ▶ Original [FHS(14|19)] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
- Weaker unforgeability notion: [FG18] (proof from SXDH)
 - but: too weak for many applications
- CRS model: [KSD19, CLP22] (proof from SXDH, (...))

- Original [FHS(14|19)] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
- Weaker unforgeability notion: [FG18] (proof from SXDH)
 - but: too weak for many applications
- CRS model: [KSD19, CLP22] (proof from SXDH, (...))
 – but: anonymity relies on trusted CRS

- Original [FHS(14|19)] (efficient: $\sigma \in \mathbb{G}^2 \times \hat{\mathbb{G}}$)
 - but: proof in generic group model
- Weaker unforgeability notion: [FG18] (proof from SXDH)
 - but: too weak for many applications
- CRS model: [KSD19, CLP22] (proof from SXDH, (...))

- *but:* anonymity relies on trusted CRS

Is there a scheme satisfying the original notion with a proof from a non-interactive assumption?

Security reductions Reduction \mathcal{R} from computational problem Π to UNF $\Pi : c$ using adversary \mathcal{F} Simulate UNF to \mathcal{F} : pk FORGER \mathcal{F}

Security reductions

If Π is hard and ${\cal R}$ reduces Π to UNF, then UNF is hard

Concrete: \mathcal{R} is ϕ -*tight* if given \mathcal{F} that wins UNF with prob. ϵ , \mathcal{R} breaks Π with prob. $\phi \cdot \epsilon$

Security reductions

If Π is hard and ${\mathcal R}$ reduces Π to UNF, then UNF is hard

Concrete: \mathcal{R} is ϕ -*tight* if given \mathcal{F} that wins UNF with prob. ϵ , \mathcal{R} breaks Π with prob. $\phi \cdot \epsilon$

Theorem. For any EQS scheme and any Π , no reduction can exist

Proof idea

Simplification: Assume \mathcal{R} partitions $(\mathbb{G}^*)^2$ into signable and exploitable messages

 $S := \{m \mid \mathcal{R} \text{ can answer a signing query for } m\}$ $E := \{m \mid \text{given (uniform) forgery on } m, \mathcal{R} \text{ wins } \Pi\}$

Proof idea

Simplification: Assume \mathcal{R} partitions $(\mathbb{G}^*)^2$ into signable and exploitable messages

 $S := \{m \mid \mathcal{R} \text{ can answer a signing query for } m\}$ $E := \{m \mid \text{given (uniform) forgery on } m, \mathcal{R} \text{ wins } \Pi\}$

► S and E must both be "big"

Proof idea

Simplification: Assume \mathcal{R} partitions $(\mathbb{G}^*)^2$ into signable and exploitable messages

 $S := \{m \mid \mathcal{R} \text{ can answer a signing query for } m\}$ $E := \{m \mid \text{given (uniform) forgery on } m, \mathcal{R} \text{ wins } \Pi\}$

S and E must both be "big"
do not intersect

Breaking class hiding

Theorem

For any

- EQS scheme Σ
- computational problem Π
- \blacktriangleright reduction $\mathcal R$ w/ tightness ϕ and running time τ

Theorem

For any

- EQS scheme Σ
- computational problem Π
- \blacktriangleright reduction $\mathcal R$ w/ tightness ϕ and running time τ there exist
 - $\blacktriangleright~{\cal D}$ attacking class hiding of Σ running in $\approx 2\tau$
 - \mathcal{M} attacking Π running in $\approx \tau$
 - \mathcal{F} attacking UNF running in constant time

Theorem

For any

- EQS scheme Σ
- computational problem Π
- reduction \mathcal{R} w/ tightness ϕ and running time τ there exist
 - $\blacktriangleright~{\cal D}$ attacking class hiding of Σ running in $\approx 2\tau$
 - \mathcal{M} attacking Π running in $\approx \tau$
- \mathcal{F} attacking UNF running in constant time such that

$$\mathsf{Adv}_{\Sigma,\mathcal{D}^{\mathcal{R}}}^{\mathrm{CH}} + \mathsf{Adv}_{\mathcal{M}^{\mathcal{R}}}^{\mathsf{\Pi}} + \mathsf{Adv}_{\mathcal{R}^{\mathcal{F}}}^{\mathsf{\Pi}} \geq \frac{\phi^{\mathsf{s}}}{384}$$

Overcoming impossibility?

Impossibility result does not apply to schemes in CRS model [KSD19, CLP22]

Overcoming impossibility?

Impossibility result does not apply to schemes in CRS model [KSD19, CLP22]

Schemes [KSD19, CLP22] claimed secure under standard assumptions

Overcoming impossibility?

Impossibility result does not apply to schemes in CRS model [KSD19, CLP22]

Schemes [KSD19, CLP22] claimed secure under standard assumptions

Result. Their proofs are flawed¹

¹B. Bauer, G. Fuchsbauer, F. Regen: On security proofs of existing equivalence class signature schemes (ia.cr/2024/183)

