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What is a digital signature scheme?

A signature scheme is a triple of p.p.t. algorithms

▶ Keygen()→ (sk , pk)

▶ Sign(sk ,m)→ σ

▶ Verify(pk ,m, σ)→ 0 or 1
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Equivalence class signatures (EQS) [FHS19]

Defined over group (G, p, g)

Messages space (G∗)2; partitioned by

m ∼ m′ :⇔ ∃µ ∈ Z∗p : m = µ ·m′

α

β/α

r(1, 1) r(2, 2) r(3, 3) r
r(1, 2) r(2, 4) r(3, 6)
r(1, 3) r
r Equivalence classes

for m = (α · g , β · g)
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Equivalence class signatures (EQS) [FHS19]

Additional functionality:

Adapt(pk ,m, σ, µ ∈ Z∗p): returns signature on µ ·m

α

β/α

-r(1, 1) r r(3, 3) r
r r r
r r
r Equivalence classes

for m = (α · g , β · g)

Class hiding:
given m,m′

decide if m ∼ m′
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Unforgeability of signatures
Game UNF:

(sk , pk)← Keygen()
Forger F

pk

mi

σi

m∗, σ∗

σi ← Sign(sk ,mi)

F wins ⇔ Verify(pk ,m∗, σ∗) ∧ m∗ ̸= mi

F wins ⇔ Verify(pk ,m∗, σ∗) ∧ [m∗]∼ ̸= [mi ]∼
Scheme secure if AdvUNFF := Pr[F wins] ≈ 0
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Security of EQS
Game UNF:

(sk , pk)← Keygen()
Forger F

pk

mi

σi

m∗, σ∗

σi ← Sign(sk ,mi)

F wins ⇔ Verify(pk ,m∗, σ∗) ∧ m∗ ̸= mi

F wins ⇔ Verify(pk ,m∗, σ∗) ∧ [m∗]∼ ̸= [mi ]∼

Scheme secure if AdvUNFF := Pr[F wins] ≈ 0
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Anonymous authentication
Alice chooses pk = α · g ∈ G∗
– establishes pseudonym (µi ·g , µi ·pk) with party i

– gets credential: σj on mj = (µj · g , µj · pk)

– create credential σi for mi = (µi · g , µi · pk)
by running Adapt(pk ,m, σj , µi/µj)

Anonymity (even against issuer):
▶ mi looks random (⇐ class hiding)
▶ σi is random signature on mi (⇐ Adapt)
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Applications of EQS
Cryptographic concepts constructed from EQS:

▶ Attribute-based credentials [FHS(14|19), DHS15,
HS21]

▶ Blind signatures [FHS15, FHKS16, Han23]

▶ Group signatures [DS16, CS20, DS18, BHKS18]

▶ Verifiably encrypted signatures [HRS15],
access-control encryption [FGKO17], sanitizable
signatures [BLL+19], incentive systems [BEK+20],
mix nets [ST21], anonymous counting tokens
[BRS23] . . .
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Constructions of EQS
▶ Original [FHS(14|19)] (efficient: σ ∈ G2 × Ĝ)

– but: proof in generic group model

▶ Weaker unforgeability notion: [FG18]
(proof from SXDH)

– but: too weak for many applications

▶ CRS model: [KSD19, CLP22]
(proof from SXDH, (. . . ))

– but: anonymity relies on trusted CRS

Is there a scheme satisfying the original notion
with a proof from a non-interactive assumption?
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Security reductions
Reduction R from computational problem Π to UNF

using adversary F

Simulate UNF to F :
Forger Fpk

mi

σi

m∗, σ∗

Reduction R

Π : c

s
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Security reductions

If Π is hard and R reduces Π to UNF,
then UNF is hard

Concrete: R is ϕ-tight if given F that wins UNF
with prob. ϵ, R breaks Π with prob. ϕ · ϵ

Theorem. For any EQS scheme and any Π,
no reduction can exist
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Proof idea

Simplification: Assume R partitions (G∗)2 into
signable and exploitable messages

S := {m | R can answer a signing query for m}
E := {m | given (uniform) forgery on m, R wins Π}

▶ S and E must both be “big”

▶ do not intersect

10/16



Proof idea

Simplification: Assume R partitions (G∗)2 into
signable and exploitable messages

S := {m | R can answer a signing query for m}
E := {m | given (uniform) forgery on m, R wins Π}

▶ S and E must both be “big”

▶ do not intersect

10/16



Proof idea

Simplification: Assume R partitions (G∗)2 into
signable and exploitable messages

S := {m | R can answer a signing query for m}
E := {m | given (uniform) forgery on m, R wins Π}

▶ S and E must both be “big”

▶ do not intersect

10/16



Case 1: E and S do not share classes

α

β/α

S

E
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Case 1: E and S do not share classes

α

β/α

S

E class hiding:
given m,m′

decide if m ∼ m′

if exactly one
message signable
then separate
classestm

tm′
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Breaking class hiding

Reduction R

Π : c

pk

m

σ

m′

σ′

Forger F

if same validities, output “same class”
else output “different classes”

Metareduction D

CH: m,m′

b′ ∈ {different, same}
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Case 2: E and S share classes

α

β/α

SE

Solve Π:

tm
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Case 2: E and S share classes

α

β/α

SE

Solve Π:

tµ ·m tm�
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Solving Π

Reduction R

Π : c

s

pk

m

σ

m∗, σ∗

if σ valid:
σ∗ ← Adapt(m, σ, µ)
m∗ := µ ·m

Forger F

Metareduction M

Π : c

s
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Theorem
For any
▶ EQS scheme Σ
▶ computational problem Π
▶ reduction R w/ tightness ϕ and running time τ

there exist
▶ D attacking class hiding of Σ running in ≈ 2τ
▶ M attacking Π running in ≈ τ
▶ F attacking UNF running in constant time

such that

AdvCHΣ,DR + AdvΠMR + AdvΠRF ≥
ϕ5

384
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Overcoming impossibility?

Impossibility result does not apply to schemes
in CRS model [KSD19, CLP22]

Schemes [KSD19, CLP22] claimed secure under
standard assumptions
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Overcoming impossibility?

Impossibility result does not apply to schemes
in CRS model [KSD19, CLP22]

Schemes [KSD19, CLP22] claimed secure under
standard assumptions

Result. Their proofs are flawed1

1B. Bauer, G. Fuchsbauer, F. Regen: On security proofs of existing
equivalence class signature schemes (ia.cr/2024/183)
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