SCALLOP-HD: group action from 2-dimensional isogenies

Mingjie Chen, Antonin Leroux, Lorenz Panny

Université Libre de Bruxelles

April 16, 2024

Mingjie Chen

SCALLOP-HD

▲ E ▶ ▲ E ▶ E ∽ Q ○ April 16, 2024 1 / 15

(日) (四) (日) (日) (日)

Mingjie Chen

SCALLOP-HD

April 16, 2024 2 / 15

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Let G be a group and S be a set. A map $\star : G \times S \to S$ is a group action if:

- $e \star s = s$ where $e \in G$ is the identity element and $s \in S$,

-
$$(gh) \star s = g \star (h \star s)$$
 where $g, h \in G$ and $s \in S$.

(日) (四) (日) (日) (日)

Let G be a group and S be a set. A map $\star : G \times S \to S$ is a group action if:

- $e \star s = s$ where $e \in G$ is the identity element and $s \in S$,

-
$$(gh) \star s = g \star (h \star s)$$
 where $g, h \in G$ and $s \in S$.

A simple key exchange when G is abelian:

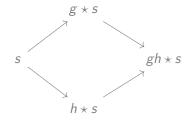
(日) (四) (日) (日) (日)

Let G be a group and S be a set. A map $\star : G \times S \to S$ is a group action if:

- $e \star s = s$ where $e \in G$ is the identity element and $s \in S$,

$$(gh) \star s = g \star (h \star s)$$
 where $g, h \in G$ and $s \in S$.

A simple key exchange when G is abelian:



SCALLOP-HD

April 16, 2024 2 / 15

< A → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 →

CSIDH [Castryck-Lange-Martindale-Panny-Renes 2018]

CSIDH [Castryck-Lange-Martindale-Panny-Renes 2018]

-- the first post-quantum NIKE; it has small key size and competitive speed among post-quantum candidates.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Set S

{supersingular elliptic curves E/\mathbb{F}_p }

Set S

Group G

{supersingular elliptic curves E/\mathbb{F}_p }

 $G = Cl(\mathbb{Z}[\sqrt{-p}])$ is the ideal class group of the imaginary quadratic order $\mathbb{Z}[\sqrt{-p}]$.

イロト イポト イヨト イヨト

Set S

Group G

{supersingular elliptic curves E/\mathbb{F}_{p} }

 $G = Cl(\mathbb{Z}[\sqrt{-p}])$ is the ideal class group of the imaginary quadratic order $\mathbb{Z}[\sqrt{-p}]$.

Let $(e_i)_{i=1,...,n} \in [-m,...,m]^n$ (e.g., m = 5, n = 74), by the design of CSIDH, one can compute efficiently the action of

Set S

Group G

{supersingular elliptic curves E/\mathbb{F}_{p} }

$G = Cl(\mathbb{Z}[\sqrt{-p}])$ is the ideal class group of the imaginary quadratic order $\mathbb{Z}[\sqrt{-p}]$.

Let $(e_i)_{i=1,...,n} \in [-m,...,m]^n$ (e.g., m = 5, n = 74), by the design of CSIDH, one can compute efficiently the action of

$$(\mathfrak{l}_1^{e_1}\cdots\mathfrak{l}_n^{e_n})$$
 on E

April 16, 2024 3 / 15

Set S

Group G

{supersingular elliptic curves E/\mathbb{F}_p }

iptic $G = Cl(\mathbb{Z}[\sqrt{-p}])$ is the ideal class group of the imaginary quadratic order $\mathbb{Z}[\sqrt{-p}]$.

Let $(e_i)_{i=1,...,n} \in [-m,...,m]^n$ (e.g., m = 5, n = 74), by the design of CSIDH, one can compute efficiently the action of

$$(\mathfrak{l}_1^{\mathbf{e}_1}\cdot\cdots\cdot\mathfrak{l}_n^{\mathbf{e}_n})$$
 on E .

Here $\{l_1, \ldots, l_n\}$ is the set of prime ideals of small prime norm ℓ_i in $\mathbb{Z}[\sqrt{-p}]$.

SCALLOP-HD

April 16, 2024 3 / 15

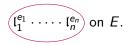
Set S

Group G

curves E/\mathbb{F}_{p}

{supersingular elliptic $G = Cl(\mathbb{Z}[\sqrt{-p}])$ is the ideal class group of the imaginary quadratic order $\mathbb{Z}[\sqrt{-p}]$.

Let $(e_i)_{i=1,...,n} \in [-m,...,m]^n$ (e.g., m = 5, n = 74), by the design of CSIDH, one can compute efficiently the action of



Here $\{l_1, \ldots, l_n\}$ is the set of prime ideals of small prime norm ℓ_i in $\mathbb{Z}[\sqrt{-p}]$.

$$\implies (e_i)_i$$
 is the secret key.

SCALLOP-HD

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへの

Mingjie Chen

SCALLOP-HD

April 16, 2024 4 / 15

Proof of knowledge:

SCALLOP-HD

April 16, 2024 4 / 15

イロト イ部ト イヨト イヨト 二日

Proof of knowledge:

SCALLOP-HD

April 16, 2024 4 / 15

In the context of CSIDH group action:

Proof of knowledge:

SCALLOP-HD

April 16, 2024 4 / 15

Proof of knowledge:

In the context of CSIDH group action:

$$a, r \in [-m, m]^n$$

SCALLOP-HD

April 16, 2024 4 / 15

Proof of knowledge:

In the context of CSIDH group action:

$$a, r \in [-m, m]^n$$

 $r \circ a \in [-2m, 2m]^n$

SCALLOP-HD

April 16, 2024 4 / 15

Proof of knowledge:

In the context of CSIDH group action:

$$a, r \in [-m, m]^n$$
$$r \circ a \in [-2m, 2m]^n$$

! This leaks the secret information !

SCALLOP-HD

≣ ► < ≣ ► ≡ ∽ Q ⊂ April 16, 2024 4 / 15

イロト イポト イヨト イヨト

Proof of knowledge:

In the context of CSIDH group action:

$$a, r \in [-m, m]^n$$

 $r \circ a \in [-2m, 2m]^n$

! This leaks the secret information !

— eg: when $r \circ a = [2m, ...]$, the adversary knows that a = [m, ...].

SCALLOP-HD

April 16, 2024 4 / 15

イロト 不得下 イヨト イヨト 二日

Mingjie Chen

SCALLOP-HD

April 16, 2024 5 / 15

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on E.

イロト 不得下 イヨト イヨト 二日

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. **But:**

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of $Cl(\mathbb{Z}[\sqrt{-p}])$. \leftarrow takes subexponential time on a classical computer

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Offline:

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Offline:

- Find a generator \mathfrak{g} of $Cl(\mathbb{Z}[\sqrt{-p}])$ for p as in CSIDH-512 \leftarrow record breaking.

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Offline:

- Find a generator \mathfrak{g} of $Cl(\mathbb{Z}[\sqrt{-p}])$ for p as in CSIDH-512 \leftarrow record breaking.
- Compute \mathcal{L} , a lattice of relations. This involves computing $r'_i s$ such that $[\mathfrak{l}_i] = [\mathfrak{g}^{r_i}]$ in $\operatorname{Cl}(\mathbb{Z}[\sqrt{-p}])$.

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Offline:

- Find a generator \mathfrak{g} of $Cl(\mathbb{Z}[\sqrt{-p}])$ for p as in CSIDH-512 \leftarrow record breaking.
- Compute \mathcal{L} , a lattice of relations. This involves computing $r'_i s$ such that $[\mathfrak{l}_i] = [\mathfrak{g}^{r_i}]$ in $\operatorname{Cl}(\mathbb{Z}[\sqrt{-p}])$.
- Lattice reduction.

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Offline:

- Find a generator \mathfrak{g} of $Cl(\mathbb{Z}[\sqrt{-p}])$ for p as in CSIDH-512 \leftarrow record breaking.
- Compute \mathcal{L} , a lattice of relations.

This involves computing $r'_i s$ such that $[\mathfrak{l}_i] = [\mathfrak{g}^{r_i}]$ in $Cl(\mathbb{Z}[\sqrt{-p}])$.

- Lattice reduction.

Online:

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Offline:

- Find a generator \mathfrak{g} of $Cl(\mathbb{Z}[\sqrt{-p}])$ for p as in CSIDH-512 \leftarrow record breaking.
- Compute \mathcal{L} , a lattice of relations. This involves computing $r'_i s$ such that $[\mathfrak{l}_i] = [\mathfrak{g}^{r_i}]$ in $Cl(\mathbb{Z}[\sqrt{-p}])$.
- Lattice reduction.

Online:

- Approximate-CVP $\Rightarrow \mathfrak{g}^e = \prod_{i=1}^{i=n} \mathfrak{l}_i^{e_i}$.

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Offline:

- Find a generator \mathfrak{g} of $Cl(\mathbb{Z}[\sqrt{-p}])$ for p as in CSIDH-512 \leftarrow record breaking.
- Compute \mathcal{L} , a lattice of relations. This involves computing $r'_i s$ such that $[\mathfrak{l}_i] = [\mathfrak{g}^{r_i}]$ in $\operatorname{Cl}(\mathbb{Z}[\sqrt{-\rho}])$.
- Lattice reduction.

Online:

- Approximate-CVP $\Rightarrow \mathfrak{g}^e = \prod_{i=1}^{i=n} \mathfrak{l}_i^{e_i}$.
- Do the action! $\mathfrak{g}^e \star E = \prod_{i=1}^{i=n} \mathfrak{l}_i^{e_i} \star E$.

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Offline:

- Find a generator \mathfrak{g} of $Cl(\mathbb{Z}[\sqrt{-p}])$ for p as in CSIDH-512 \leftarrow record breaking.

- Compute \mathcal{L} , a lattice of relations.

This involves computing $r'_i s$ such that $[l_i] = [\mathfrak{g}^{r_i}]$ in $Cl(\mathbb{Z}[\sqrt{-p}])$.

- Lattice reduction.

Online:

- Approximate-CVP $\Rightarrow \mathfrak{g}^e = \prod_{i=1}^{i=n} \mathfrak{l}_i^{e_i}$.
- Do the action! $\mathfrak{g}^{e} \star E = \prod_{i=1}^{i=n} \mathfrak{l}_{i}^{e_{i}} \star E$.

This strategy turns CSIDH group action into an effective group action (EGA)!

Mingjie Chen

April 16, 2024 5 / 15

Intuition: The Σ -protocol is secure if one can compute directly the action of \mathfrak{g}^e on *E*. But:

- It is hard to find a generator of Cl(ℤ[√−p]). ← takes subexponential time on a classical computer
- Direct computation of $\mathfrak{g}^e \star E$ is not efficient.

Strategy of CSI-FiSh:

Offline:

- Find a generator \mathfrak{g} of $Cl(\mathbb{Z}[\sqrt{-p}])$ for p as in CSIDH-512 \leftarrow record breaking.

- Compute \mathcal{L} , a lattice of relations.

This involves computing $r'_i s$ such that $[l_i] = [\mathfrak{g}^{r_i}]$ in $Cl(\mathbb{Z}[\sqrt{-p}])$.

- Lattice reduction.

Online:

- Approximate-CVP $\Rightarrow \mathfrak{g}^e = \prod_{i=1}^{i=n} \mathfrak{l}_i^{e_i}$.
- Do the action! $\mathfrak{g}^e \star E = \prod_{i=1}^{i=n} \mathfrak{l}_i^{e_i} \star E$.

This strategy turns CSIDH group action into an effective group action (EGA)! But it does NOT scale.

Mingjie Chen

SCALLOP-HD

April 16, 2024 5 / 15

Benefits of an EGA (compared with R(estricted)EGA)

Mingjie Chen

SCALLOP-HD

April 16, 2024 6 / 15

イロト イ部ト イヨト イヨト 二日

Benefits of an EGA (compared with R(estricted)EGA)

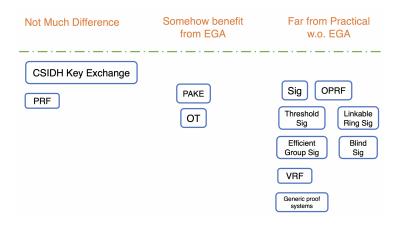


Figure: Table credit to Yi-Fu Lai.

Mingjie Chen

SCALLOP-HD

April 16, 2024 6 / 15

イロト 不得下 イヨト イヨト 二日

SCALLOP-HD

April 16, 2024 7 / 15

Group Action Computational Diffie-Hellman

Given $s \in S$, $g \star s$ and $h \star s$ for $g, h \in G$, compute $(gh) \star s$.

Vectorization

Given $s, t \in S$, find $g \in G$ such that $t = g \star s$.

SCALLOP-HD

イロト イポト イヨト イヨト

Group Action Computational Diffie-Hellman

Given $s \in S$, $g \star s$ and $h \star s$ for $g, h \in G$, compute $(gh) \star s$.

Vectorization

Given $s, t \in S$, find $g \in G$ such that $t = g \star s$.

 There is a subexponential-time quantum algorithm to solve the vectorization problem for abelian groups – this is an abelian hidden shift problem and one can use Kuperberg's algorithm.

< □ > < □ > < □ > < □ > < □ > < □ >

Group Action Computational Diffie-Hellman

Given $s \in S$, $g \star s$ and $h \star s$ for $g, h \in G$, compute $(gh) \star s$.

Vectorization

Given $s, t \in S$, find $g \in G$ such that $t = g \star s$.

- There is a subexponential-time quantum algorithm to solve the vectorization problem for abelian groups – this is an abelian hidden shift problem and one can use Kuperberg's algorithm.
- Since 2019, a series of papers studied the quantum security of CSIDH, leaving whether CSIDH-512 and CSIDH-1024 achieve NIST level 1 security under doubt.

イロト 不得 トイヨト イヨト 二日

Mingjie Chen

SCALLOP-HD

April 16, 2024 8 / 15

CSIDH group action

SCALLOP-HD

April 16, 2024 8 / 15

CSIDH group action

 $\mathsf{Cl}(\mathbb{Z}[\sqrt{-p}]) \curvearrowright \{ \text{supersingular elliptic curves } E/\mathbb{F}_p \}$

Mingjie Chen

SCALLOP-HD

April 16, 2024 8 / 15

CSIDH group action

 $\mathsf{Cl}(\mathbb{Z}[\sqrt{-p}]) \curvearrowright \{ \text{supersingular elliptic curves } E/\mathbb{F}_p \}$

General Oriention induced group action [Cold-Kohel 2020]

Mingjie Chen

SCALLOP-HD

April 16, 2024 8 / 15

CSIDH group action

 $\mathsf{Cl}(\mathbb{Z}[\sqrt{-p}]) \curvearrowright \{ \text{supersingular elliptic curves } E/\mathbb{F}_p \}$

General Oriention induced group action [Colò-Kohel 2020] $Cl(\mathfrak{O}) \curvearrowright S_{\mathfrak{O}}(p) = \{(E, \theta) \mid \theta \text{ defines an } \mathfrak{O}\text{-orientation on } E\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mingjie Chen

SCALLOP-HD

CSIDH group action

 $\mathsf{Cl}(\mathbb{Z}[\sqrt{-p}]) \curvearrowright \{ \text{supersingular elliptic curves } E/\mathbb{F}_p \}$

General Oriention induced group action [Colò-Kohel 2020] $Cl(\mathfrak{O}) \curvearrowright S_{\mathfrak{O}}(p) = \{(E, \theta) \mid \theta \text{ defines an } \mathfrak{O}\text{-orientation on } E\}$

- \mathfrak{O} is taken to be $\mathbb{Z}[\sqrt{-p}]$ in CSIDH;

SCALLOP-HD

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CSIDH group action

 $\mathsf{Cl}(\mathbb{Z}[\sqrt{-p}]) \curvearrowright \{ \text{supersingular elliptic curves } E/\mathbb{F}_p \}$

General Oriention induced group action [Colò-Kohel 2020] $Cl(\mathfrak{O}) \curvearrowright S_{\mathfrak{O}}(p) = \{(E, \theta) \mid \theta \text{ defines an } \mathfrak{O}\text{-orientation on } E\}$

- \mathfrak{O} is taken to be $\mathbb{Z}[\sqrt{-p}]$ in CSIDH;
- θ in CSIDH is the natural Frobenius map on curves over \mathbb{F}_p .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

SCALLOP-HD

April 16, 2024 9 / 15

Main idea: $Cl(\mathcal{D})$ is easy to compute for orders of the form $\mathbb{Z}[f\sqrt{-d}]$ with *d* being a small positive integer.

SCALLOP-HD

April 16, 2024 9 / 15

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Main idea: $Cl(\mathcal{D})$ is easy to compute for orders of the form $\mathbb{Z}[f\sqrt{-d}]$ with *d* being a small positive integer.

Summary:

- SCALLOP follows the overall strategy proposed by CSI-FiSh.

SCALLOP-HD

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Main idea: $Cl(\mathcal{D})$ is easy to compute for orders of the form $\mathbb{Z}[f\sqrt{-d}]$ with *d* being a small positive integer.

Summary:

- SCALLOP follows the overall strategy proposed by CSI-FiSh.
- SCALLOP resolves the scaling issue faced by CSI-FiSh.

Main idea: $Cl(\mathcal{D})$ is easy to compute for orders of the form $\mathbb{Z}[f\sqrt{-d}]$ with *d* being a small positive integer.

Summary:

- SCALLOP follows the overall strategy proposed by CSI-FiSh.
- SCALLOP resolves the scaling issue faced by CSI-FiSh.
- For security reasons, f is chosen to be a large prime.

Main idea: $Cl(\mathcal{D})$ is easy to compute for orders of the form $\mathbb{Z}[f\sqrt{-d}]$ with *d* being a small positive integer.

Summary:

- SCALLOP follows the overall strategy proposed by CSI-FiSh.
- SCALLOP resolves the scaling issue faced by CSI-FiSh.
- For security reasons, f is chosen to be a large prime.
- There is a tradeoff between choosing f so that there is an efficient representation of θ or having a smoother $\#Cl(\mathfrak{O})$ which is helpful for solving the discrete log.

April 16, 2024 9 / 15

Main idea: $Cl(\mathcal{D})$ is easy to compute for orders of the form $\mathbb{Z}[f\sqrt{-d}]$ with *d* being a small positive integer.

Summary:

- SCALLOP follows the overall strategy proposed by CSI-FiSh.
- SCALLOP resolves the scaling issue faced by CSI-FiSh.
- For security reasons, f is chosen to be a large prime.
- There is a tradeoff between choosing f so that there is an efficient representation of θ or having a smoother $\#Cl(\mathfrak{O})$ which is helpful for solving the discrete log.

A quick recap of what we have achieved so far

Mingjie Chen

SCALLOP-HD

April 16, 2024 10 / 15

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

A quick recap of what we have achieved so far

	year	$Cl(\mathfrak{O})$	$\mathcal{S}_{\mathfrak{O}}(p)$	type	scalability
CSIDH	2018	$\mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$	Ε	REGA	freely
CSI-FiSh	2019	$\mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$	E	EGA	CSIDH-512
SCALLOP	2023	$\mathfrak{O} = \mathbb{Z}[f\sqrt{-d}]$	(<i>E</i> , <i>ι</i>)	EGA	CSIDH-1024
scallop-HD	2024	$\mathfrak{O} = \mathbb{Z}[f\sqrt{-d}]$	(<i>E</i> , <i>ι</i>)	EGA	??

SCALLOP-HD

April 16, 2024 10 / 15

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Mingjie Chen

SCALLOP-HD

April 16, 2024 11 / 15

イロト 不得下 イヨト イヨト 二日

Let φ, φ' be *a*-isogenies and ψ, ψ' be *b*-isogenies for integers *a*, *b* that satisfy the commutative diagram:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Let φ, φ' be *a*-isogenies and ψ, ψ' be *b*-isogenies for integers *a*, *b* that satisfy the commutative diagram:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Let φ, φ' be *a*-isogenies and ψ, ψ' be *b*-isogenies for integers *a*, *b* that satisfy the commutative diagram:

Define
$$F: E_2 \times E'_1 \longrightarrow E_1 \times E'_2$$
 by the matrix form $\begin{pmatrix} \hat{\varphi} & -\hat{\psi} \\ \psi' & \varphi' \end{pmatrix}$.

SCALLOP-HD

April 16, 2024 11 / 15

Let φ, φ' be *a*-isogenies and ψ, ψ' be *b*-isogenies for integers *a*, *b* that satisfy the commutative diagram:

Define $F: E_2 \times E'_1 \longrightarrow E_1 \times E'_2$ by the matrix form $\begin{pmatrix} \hat{\varphi} & -\hat{\psi} \\ \psi' & \varphi' \end{pmatrix}$. F is a *d*-isogeny between abelian surfaces with d = a + b.

SCALLOP-HD

April 16, 2024 11 / 15

(日) (周) (三) (三) (三) (000)

Let φ, φ' be *a*-isogenies and ψ, ψ' be *b*-isogenies for integers *a*, *b* that satisfy the commutative diagram:

Define $F: E_2 \times E'_1 \longrightarrow E_1 \times E'_2$ by the matrix form $\begin{pmatrix} \hat{\varphi} & -\hat{\psi} \\ \psi' & \varphi' \end{pmatrix}$. *F* is a *d*-isogeny between abelian surfaces with d = a + b. If ker $\varphi \cap \ker \psi = \{0\}$,

 $\ker(F) = \{(\varphi(x), \psi(x)) \mid x \in E_1[d]\}.$ [Kani97']

Mingjie Chen

SCALLOP-HD

April 16, 2024 11 / 15

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Let φ, φ' be *a*-isogenies and ψ, ψ' be *b*-isogenies for integers *a*, *b* that satisfy the commutative diagram:

Define $F: E_2 \times E'_1 \longrightarrow E_1 \times E'_2$ by the matrix form $\begin{pmatrix} \hat{\varphi} & -\hat{\psi} \\ \psi' & \varphi' \end{pmatrix}$. *F* is a *d*-isogeny between abelian surfaces with d = a + b. If ker $\varphi \cap \ker \psi = \{0\}$,

 $\ker(F) = \{(\varphi(x), \psi(x)) \mid x \in E_1[d]\}.$ [Kani97']

 \rightarrow Upshot: An isogeny can be represented by its evaluation on torsion points! (a priori only kernel representation)

Mingjie Chen

SCALLOP-HD

April 16, 2024 11 / 15

2dim-representation of orientations and endomorphisms

SCALLOP-HD

April 16, 2024 12 / 15

3

2dim-representation of orientations and endomorphisms

Definition

Let \mathfrak{O} be an imaginary quadratic order with discriminant $D_{\mathfrak{O}}$. Given an \mathfrak{O} -oriented supersingular elliptic curve (E, ι) , take any $\omega \in \mathfrak{O}$ such that $\mathfrak{O} = \mathbb{Z}[\omega]$ and define $\omega_E := \iota(\omega)$. Let $\beta \in \mathfrak{O}$ such that $n(\omega) + n(\beta) = 2^e$ and $gcd(n(\beta), n(\omega)) = 1$. Let P, Q be a basis of $E[2^e]$. Then the tuple $(E, \omega, \beta, P, Q, \omega_E(P), \omega_E(Q))$ is called a 2dim-representation of (E, ι) .

< □ > < □ > < □ > < □ > < □ > < □ >

2dim-representation of orientations and endomorphisms

Definition

Let \mathfrak{O} be an imaginary quadratic order with discriminant $D_{\mathfrak{O}}$. Given an \mathfrak{O} -oriented supersingular elliptic curve (E, ι) , take any $\omega \in \mathfrak{O}$ such that $\mathfrak{O} = \mathbb{Z}[\omega]$ and define $\omega_E := \iota(\omega)$. Let $\beta \in \mathfrak{O}$ such that $n(\omega) + n(\beta) = 2^e$ and $gcd(n(\beta), n(\omega)) = 1$. Let P, Q be a basis of $E[2^e]$. Then the tuple $(E, \omega, \beta, P, Q, \omega_E(P), \omega_E(Q))$ is called a 2dim-representation of (E, ι) .

Proposition

Let \mathfrak{O} be an imaginary quadratic order of discriminant $D_{\mathfrak{O}} \equiv 5 \mod 8$, then any $(E, \iota) \in S_{\mathfrak{O}}(p)$ admits a 2dim-representation.

SCALLOP-HD

April 16, 2024 12 / 15

イロト 不得 トイラト イラト 一日

Mingjie Chen

SCALLOP-HD

April 16, 2024 13 / 15

Main idea: use 2dim-representation to represent θ in (E, θ) .

SCALLOP-HD

April 16, 2024 13 / 15

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □▶ ▲ □ ▶ ④ ♥ ♥

Main idea: use 2dim-representation to represent θ in (E, θ) .

Benefits:

SCALLOP-HD

Main idea: use 2dim-representation to represent θ in (E, θ) .

Benefits:

- Much simpler group action formula.

イロト 不得 トイヨト イヨト 二日

Main idea: use 2dim-representation to represent θ in (E, θ) .

Benefits:

Much simpler group action formula. ← more details in the paper

イロト 不得 トイヨト イヨト 二日

Main idea: use 2dim-representation to represent θ in (E, θ) .

Benefits:

- No restriction on *f* coming from obtaining an efficient representation for the orientation.

イロト イポト イヨト イヨト 二日

Main idea: use 2dim-representation to represent θ in (E, θ) .

Benefits:

- No restriction on *f* coming from obtaining an efficient representation for the orientation.
- Therefore we can choose f so that $\#Cl(\mathfrak{O})$ is smooth, and use Pohlig-Hellman algorithm to solve the discrete log problems efficiently.

イロト 不得下 イヨト イヨト 二日

Main idea: use 2dim-representation to represent θ in (E, θ) .

Benefits:

- No restriction on *f* coming from obtaining an efficient representation for the orientation.
- Therefore we can choose f so that #Cl(D) is smooth, and use Pohlig-Hellman algorithm to solve the discrete log problems efficiently. overcomes the scaling bottleneck of SCALLOP

イロト イポト イヨト イヨト 二日

Main idea: use 2dim-representation to represent θ in (E, θ) .

Benefits:

- No restriction on *f* coming from obtaining an efficient representation for the orientation.
- Therefore we can choose f so that #Cl(D) is smooth, and use Pohlig-Hellman algorithm to solve the discrete log problems efficiently. overcomes the scaling bottleneck of SCALLOP
 - The scalability of SCALLOP-HD now depends only on lattice algorithms.

イロト 不得 トイヨト イヨト 二日

Mingjie Chen

SCALLOP-HD

April 16, 2024 14 / 15

イロト イ部ト イヨト イヨト 二日

Scalability

イロト 不得 トイヨト イヨト 二日

Scalability We managed to scale to CSIDH-4096.

Scalability We managed to scale to CSIDH-4096. **An issue** We haven't finished generating a starting curve for 2048 and 4096, due to the lack of sufficiently general genus-2 isogeny libraries.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scalability We managed to scale to CSIDH-4096. **An issue** We haven't finished generating a starting curve for 2048 and 4096, due to the lack of sufficiently general genus-2 isogeny libraries.

Performance

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scalability We managed to scale to CSIDH-4096. **An issue** We haven't finished generating a starting curve for 2048 and 4096, due to the lack of sufficiently general genus-2 isogeny libraries.

Performance

CSIDH-n	512	1024	2048	4096
f	254	508	1021	2043
n	74	100	200	300
р	1137	1909	tbf	tbf

Table: Bit-size for f, n and p.

イロト イポト イヨト イヨト 二日

Scalability We managed to scale to CSIDH-4096. **An issue** We haven't finished generating a starting curve for 2048 and 4096, due to the lack of sufficiently general genus-2 isogeny libraries.

Performance

CSIDH-n	512	1024	2048	4096
f	254	508	1021	2043
n	74	100	200	300
р	1137	1909	tbf	tbf

Table: Bit-size for f, n and p.

	512	1024	2048 & 4096
SCALLOP	42 sec	15 min	
SCALLOP-HD	88 sec	19 min	tbf

Table: Runtime for a single group action evaluation. Experiments run on an Intel Alder Lake CPU core clocked at 2.1 GHz. C++ implementation of SCALLOP compared with SageMath implementation of SCALLOP-HD.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

ePrint:2023/1488

Mingjie Chen

SCALLOP-HD

April 16, 2024 15 / 15

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣