# Laconic Branching Programs from the Diffie-Hellman Assumption 

Sanjam Garg, Mohammad Hajiabadi, Peihan Miao, and Alice Murphy
(0) NTT'Research

PKC 2024
eprint.iacr.org/2024/102

## Laconic Cryptography [CDG+17]

## Laconic Cryptography [CDG+17]



## Laconic Cryptography [CDG+17]



## Laconic Cryptography [CDG+17]



## Laconic Cryptography [CDG+17]



## Laconic Cryptography [CDG+17]



## Comparison to previous work in laconic cryptography

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH
- [This work] gives a protocol for laconic branching programs based on LWE or CDH


## Comparison to previous work in laconic cryptography

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH
- [This work] gives a protocol for laconic branching programs based on LWE or CDH
- [QWW18] gives a laconic protocol for general functionalities based on LWE


## Comparison to previous work in laconic cryptography

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH
- [This work] gives a protocol for laconic branching programs based on LWE or(CDH)
- [QWW18] gives a laconic protocol for general functionalities based on LWE


## Comparison to previous work in laconic cryptography

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH
- [This work] gives a protocol for laconic branching programs based on LWE or(CDH)
- [QWW18] gives a laconic protocol for general functionalities based on LWE

There are also constructions for...

## Comparison to previous work in laconic cryptography

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH
- [This work] gives a protocol for laconic branching programs based on LWE or(CDH)
- [QWW18] gives a laconic protocol for general functionalities based on LWE

There are also constructions for...

- laconic PSI from pairings [ALOS22]


## Comparison to previous work in laconic cryptography

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH
- [This work] gives a protocol for laconic branching programs based on LWE or(CDH)
- [QWW18] gives a laconic protocol for general functionalities based on LWE

There are also constructions for...

- laconic PSI from pairings [ALOS22]
- laconic oblivious transfer from DDH, CDH, or QR [CDG+17, DG17]


## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates


## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root
- If $x_{i}=0$ then go to the left child



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root
- If $x_{i}=0$ then go to the left child
- If $x_{i}=1$ then go to the right child



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root
- If $x_{i}=0$ then go to the left child
- If $x_{i}=1$ then go to the right child
- Each leaf node encodes either



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root
- If $x_{i}=0$ then go to the left child
- If $x_{i}=1$ then go to the right child
- Each leaf node encodes either
- 1 (accept) or



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root
- If $x_{i}=0$ then go to the left child
- If $x_{i}=1$ then go to the right child
- Each leaf node encodes either
- 1 (accept) or
- 0 (reject)



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root
- If $x_{i}=0$ then go to the left child
- If $x_{i}=1$ then go to the right child
- Each leaf node encodes either
- 1 (accept) or
- 0 (reject)



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root
- If $x_{i}=0$ then go to the left child
- If $x_{i}=1$ then go to the right child
- Each leaf node encodes either
- 1 (accept) or
- 0 (reject)



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root
- If $x_{i}=0$ then go to the left child
- If $x_{i}=1$ then go to the right child
- Each leaf node encodes either
- 1 (accept) or
- 0 (reject)



## Branching Programs

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

- Directed tree that can be evaluated on inputs $x \in\{0,1\}^{n}$
- Each internal node encodes an index $i \in\{1, \ldots, n\}$
- Evaluate $\mathrm{BP}(\mathrm{x})$ starting at the root
- If $x_{i}=0$ then go to the left child
- If $x_{i}=1$ then go to the right child
- Each leaf node encodes either
- 1 (accept) or
- 0 (reject)



## Branching Programs - Example 2

 Inputs in $\{0,1\}^{4}$

- This BP describes the set: $\{001 *, 01 * 0,1 * * *\}$.


## Branching Programs - Example 2

 Inputs in $\{0,1\}^{4}$

- This BP describes the set: $\left\{001^{*}, 01^{*} 0,1 * * *\right\}$.


## Laconic Branching Programs



Sender

Input:
$x$

$$
|B P| \gg|x|
$$

## Laconic Branching Programs

${ }^{2}$

Sender

Input:
$x$

$$
|\mathrm{BP}| \gg|x|
$$

## Laconic Branching Programs



## Laconic Branching Programs


Sender

## Laconic Branching Programs




$$
|\mathrm{BP}| \gg|x|
$$

- Only 1 round of communication allowed (2 messages)


## Laconic Branching Programs



$$
|\mathrm{BP}| \gg|x|
$$

- Only 1 round of communication allowed (2 messages)
- Communication size grows with:


## Laconic Branching Programs



- Only 1 round of communication allowed (2 messages)
- Communication size grows with:
- the size of the sender's element: $|x|$


## Laconic Branching Programs



$$
|B P| \gg|x|
$$

- Only 1 round of communication allowed (2 messages)
- Communication size grows with:
- the size of the sender's element: $|x|$
- the max depth of the receiver's BP


## Laconic Branching Programs



$$
|\mathrm{BP}| \gg|x|
$$

- Only 1 round of communication allowed (2 messages)
- Communication size grows with:
- the size of the sender's element: $|x|$
- the max depth of the receiver's BP
- Communication complexity does not otherwise depend on $|B P|$


## Overview

1. Laconic cryptography \& previous work
2. Branching programs
3. Laconic branching programs
4. Building blocks:
5. Garbled circuits
6. Hash encryption
7. Garbled circuits + hash encryption
8. Our construction at a high level

## Building blocks: Garbled Circuits

## Building blocks: Garbled Circuits

- A garbling scheme consists of garbling, evaluation, and simulation algorithms


## Building blocks: Garbled Circuits

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left\{\mathrm{lb}_{i, 0}, \mathrm{lb}_{i, 1}\right\}_{i}\right)$ for all input wires $i$


## Building blocks: Garbled Circuits

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left\{\mathrm{lb}_{i, 0}, \mathrm{lb}_{i, 1}\right\}_{i}\right)$ for all input wires $i$

$$
\rightarrow \operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left[\begin{array}{llll}
\mathrm{lb}_{1,0} & \mathrm{lb}_{2,0} & \ldots & \mathrm{lb}_{n, 0} \\
\mathrm{lb}_{1,1} & \mathrm{lb}_{2,1} & \ldots & \mathrm{lb}_{n, 1}
\end{array}\right]\right)
$$

## Building blocks: Garbled Circuits

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left\{\mathrm{lb}_{i, 0}, \mathrm{lb}_{i, 1}\right\}_{i}\right)$ for all input wires $i$

$$
\rightarrow \operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left[\begin{array}{llll}
\mathrm{lb}_{1,0} & \mathrm{lb}_{2,0} & \ldots & \mathrm{lb}_{n, 0} \\
\mathrm{lb}_{1,1} & \mathrm{lb}_{2,1} & \ldots & \mathrm{lb}_{n, 1}
\end{array}\right]\right) \quad \begin{aligned}
& \text { Label } \mathrm{l}_{i, 0} \text { for wire value }=0 \\
& \text { Label } \mathrm{l}_{i, 1} \text { for wire value }=1
\end{aligned}
$$

## Building blocks: Garbled Circuits

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left\{\mathrm{lb}_{i, 0}, \mathrm{lb}_{i, 1}\right\}_{i}\right)$ for all input wires $i$

2 labels for every input wire:

## Building blocks: Garbled Circuits

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left\{\mathrm{lb}_{i, 0}, \mathrm{lb}_{i, 1}\right\}_{i}\right)$ for all input wires $i$

2 labels for every input wire:


- $\operatorname{Eval}\left(\tilde{C},\left\{\mathrm{lb}_{i, x_{i}}\right\}_{i}\right) \rightarrow C(x)$


## Building blocks: Garbled Circuits

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left\{\mathrm{lb}_{i, 0}, \mathrm{lb}_{i, 1}\right\}_{i}\right)$ for all input wires $i$

2 labels for every input wire:


- $\operatorname{Eval}\left(\tilde{C},\left\{\mathrm{lb}_{i, x_{i}}\right\}_{i}\right) \rightarrow C(x)$

$$
\longrightarrow \operatorname{Eval}\left(\tilde{C},\left[\mathrm{lb}_{1, x_{1}}, \mathrm{lb}_{2, x_{2}}, \ldots, \mathrm{l}_{n, x_{n}}\right]\right) \rightarrow C(x)
$$

## Building blocks: Garbled Circuits

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left\{\mathrm{lb}_{i, 0}, \mathrm{lb}_{i, 1}\right\}_{i}\right)$ for all input wires $i$

2 labels for every input wire: $\rightarrow \operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left[\begin{array}{llll}\mathrm{lb}_{1,0} & \mathrm{lb}_{2,0} & \ldots & \mathrm{lb}_{n, 0} \\ \mathrm{lb}_{1,1} & \mathrm{lb}_{2,1} & \ldots & \mathrm{lb}_{n, 1}\end{array}\right]\right) \quad \begin{aligned} & \text { Label } \mathrm{lb}_{\mathrm{i}, \text {, for wire value }=0} \\ & \text { Label } \mathrm{lb}_{i, 1} \text { for wire value }=1\end{aligned}$
$\operatorname{Eval}\left(\tilde{C},\left\{\mathrm{lb}_{i, x_{i}}\right\}_{i}\right) \rightarrow C(x)$

- $\operatorname{Eval}\left(\tilde{C},\left\{\mathrm{lb}_{i, x_{i}}\right\}_{i}\right) \rightarrow C(x)$

$$
\rightarrow \operatorname{Eval}\left(\tilde{C},\left[\mathrm{lb}_{1, x_{1}}, \mathrm{lb}_{2, x_{2}}, \ldots, \mathrm{lb}_{n, x_{n}}\right]\right) \rightarrow C(x)
$$

- Security: $\left(\tilde{C},\left\{\mathrm{lb}_{i, x_{i}}\right\}_{i}\right) \approx_{c} \operatorname{Sim}(C, C(x))$

One label per input wire. Label 0 or 1 depending on the bits of $x$

## Building blocks: Hash Encryption [DG17, BLSV18]

## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec


## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key


## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key
- Decrypt with the pre-image of that hash
$x$ acts like secret key


## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key
- Decrypt with the pre-image of that hash
$x$ acts like secret key
Public parameters are omitted
- Hash function: $\operatorname{Hash}(x) \rightarrow h$


## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key
- Decrypt with the pre-image of that hash
$x$ acts like secret key
Public parameters are omitted
- Hash function: $\operatorname{Hash}(x) \rightarrow h$
. Encryption: $c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right)$


## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key
- Decrypt with the pre-image of that hash
$x$ acts like secret key
Public parameters are omitted
- Hash function: $\operatorname{Hash}(x) \rightarrow h$
. Encryption: $c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right)$
- Decryption: $\left(m_{1, x_{1}}, m_{2, x_{2}}, \ldots, m_{n, x_{n}}\right) \leftarrow \operatorname{HDec}(x, c)$ if $\operatorname{Hash}(x)=h$


## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key
- Decrypt with the pre-image of that hash
$x$ acts like secret key
Public parameters are omitted
- Hash function: $\operatorname{Hash}(x) \rightarrow h$
. Encryption: $c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right)$
- Decryption: $\left(m_{1, x_{1}}, m_{2, x_{2}}, \ldots, m_{n, x_{n}}\right) \leftarrow \operatorname{HDec}(x, c)$ if $\operatorname{Hash}(x)=h$

Only one $m_{i, b}$ per column is decrypted

## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key
- Decrypt with the pre-image of that hash
$x$ acts like secret key
Public parameters are omitted
- Hash function: $\operatorname{Hash}(x) \rightarrow h$
. Encryption: $c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right)$
- Decryption: $\left(m_{1, x_{1}}, m_{2, x_{2}}, \ldots, m_{n, x_{n}}\right) \leftarrow \operatorname{HDec}(x, c)$ if $\operatorname{Hash}(x)=h$

Only one $m_{i, b}$ per column is decrypted

- Security: If $x_{i}=b$, then $m_{i, b-1}$ remains secure, even if $\operatorname{Hash}(x)=h$


## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key
- Decrypt with the pre-image of that hash
$x$ acts like secret key
Public parameters are omitted
- Hash function: $\operatorname{Hash}(x) \rightarrow h$
. Encryption: $c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right)$
- Decryption: $\left(m_{1, x_{1}}, m_{2, x_{2}}, \ldots, m_{n, x_{n}}\right) \leftarrow \operatorname{HDec}(x, c)$ if $\operatorname{Hash}(x)=h$

Only one $m_{i, b}$ per column is decrypted

- Security: If $x_{i}=b$, then $m_{i, b-1}$ remains secure, even if $\operatorname{Hash}(x)=h$
- Note that $(i, b)$ is chosen by the encrypter, not the decrypter


## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key
- Decrypt with the pre-image of that hash
$x$ acts like secret key
Public parameters are omitted
- Hash function: Hash $(x) \rightarrow h$
. Encryption: $c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right)$
- Decryption: $\left(m_{1, x_{1}}, m_{2, x_{2}}, \ldots, m_{n, x_{n}}\right) \leftarrow \operatorname{HDec}(x, c)$ if $\operatorname{Hash}(x)=h$

Only one $m_{i, b}$ per column is decrypted

- Security: If $x_{i}=b$, then $m_{i, b-1}$ remains secure, even if $\operatorname{Hash}(x)=h$
- Note that $(i, b)$ is chosen by the encrypter, not the decrypter
- Having the "secret key" $x$ is not sufficient knowledge to decrypt


## Building blocks: Hash Encryption [DG17, BLSV18]

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value
$h=\operatorname{Hash}(x)$ acts like public key
- Decrypt with the pre-image of that hash

Public parameters are omitted

Not actually a ( $p k, s k$ ) pair

- Hash function: $\operatorname{Hash}(x) \rightarrow h$
. Encryption: $c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right)$
- Decryption: $\left(m_{1, x_{1}}, m_{2, x_{2}}, \ldots, m_{n, x_{n}}\right) \leftarrow \operatorname{HDec}(x, c)$ if $\operatorname{Hash}(x)=h$

Only one $m_{i, b}$ per column is decrypted

- Security: If $x_{i}=b$, then $m_{i, b-1}$ remains secure, even if $\operatorname{Hash}(x)=h$
- Note that $(i, b)$ is chosen by the encrypter, not the decrypter
- Having the "secret key" $x$ is not sufficient knowledge to decrypt


## Building blocks: Hash Encryption [DG17, BLSV18]

$x=1011$
$h \leftarrow \operatorname{Hash}(x)$

## Building blocks: Hash Encryption [DG17, BLSV18]



## Building blocks: Hash Encryption [DG17, BLSV18]

dt
$h \quad x=1011$
$c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll|}m_{1,0} & m_{2,0} & m_{3,0} & m_{4,0} \\ \hline m_{1,1} & m_{2,1} & m_{3,1} & m_{4,1}\end{array}\right]\right)$

## Building blocks: Hash Encryption [DG17, BLSV18]

d
$h$

$$
x=1011
$$

$$
h \leftarrow \operatorname{Hash}(x)
$$



## Building blocks: Hash Encryption [DG17, BLSV18]

d

$$
h \quad x=1011
$$

$$
c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{l|l|l|l}
m_{1,0} & m_{2,0} & m_{3,0} & m_{4,0} \\
\hline m_{1,1} & m_{2,1} & m_{3,1} & m_{4,1}
\end{array}\right]\right)
$$

$$
\xrightarrow{c}(\quad, \quad, \quad, \quad) \leftarrow \operatorname{HDec}(x, c)
$$

## Building blocks: Hash Encryption [DG17, BLSV18]

$$
c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{c|c|c|c}
m_{1,0} & m_{2,0} & m_{3,0} & m_{4,0} \\
m_{1,1} & m_{2,1} & m_{3,1} & m_{4,1}
\end{array}\right]\right)
$$



## Building blocks: Hash Encryption [DG17, BLSV18]

$$
x=1011
$$

$$
h \leftarrow \operatorname{Hash}(x)
$$

$$
c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{c|c|c|c}
m_{1,0} & m_{2,0} & m_{3,0} & m_{4,0} \\
m_{1,1} & m_{2,1} & m_{3,1} & m_{4,1}
\end{array}\right]\right)
$$

Decrypt according to the bits of $x$
$\xrightarrow{C}\left(m_{1,1}, \quad, \quad, \quad\right) \leftarrow \operatorname{HDec}(x, c)$

## Building blocks: Hash Encryption [DG17, BLSV18]

$$
x=1011
$$

$$
h \leftarrow \operatorname{Hash}(x)
$$

$$
\begin{gathered}
c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{cccc}
m_{1,0} & m_{2,0} & m_{3,0} & m_{4,0} \\
m_{1,1} & m_{2,1} & m_{3,1} & m_{4,1}
\end{array}\right]\right) \\
\mathcal{X}=1
\end{gathered}
$$ Decrypt according to the bits of $x$

$\xrightarrow{\boldsymbol{c}}\left(m_{1,1}, m_{2,0}, \quad, \quad\right) \leftarrow \operatorname{HDec}(x, c)$

## Building blocks: Hash Encryption [DG17, BLSV18]

$$
x=1011
$$

$$
h \leftarrow \operatorname{Hash}(x)
$$

$$
c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{cccc}
m_{1,0} & m_{2,0} & m_{3,0} & m_{4,0} \\
m_{1,1} & m_{2,1} & m_{3,1} & m_{4,1}
\end{array}\right]\right)
$$ Decrypt according

$\xrightarrow{\boldsymbol{c}}\left(m_{1,1}, m_{2,0}, m_{3,1}\right.$, to the bits of $x$
$\leftarrow \mathrm{HDec}(x, c)$

## Building blocks: Hash Encryption [DG17, BLSV18]

$$
\xrightarrow{\boldsymbol{c}}\left(m_{1,1}, m_{2,0}, m_{3,1}, m_{4,1}\right) \leftarrow \mathrm{HDec}(x, c)
$$

## Building blocks: Hash Encryption [DG17, BLSV18]

- The undecrypted messages $\left(m_{1,0}, m_{2,1}, m_{3,0}, m_{4,0}\right)$ remain secure


## Building blocks: Hash Encryption [DG17, BLSV18]

$$
x=1011
$$

$$
h \leftarrow \operatorname{Hash}(x)
$$

$$
c \leftarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{cccc}
m_{1,0} & m_{2,0} & m_{3,0} & m_{4,0} \\
m_{1,1} & m_{2,1} & m_{3,1} & m_{4,1}
\end{array}\right]\right)
$$

- The undecrypted messages $\left(m_{1,0}, m_{2,1}, m_{3,0}, m_{4,0}\right)$ remain secure
- Can be built from the computational Diffie-Hellman assumption or LWE [DG17, BLSV18]


## Garbled Circuits + Hash Encryption

## Garbled Circuits + Hash Encryption

. $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left[\begin{array}{cccc}\tilde{\mathrm{b}_{1,0}} & \mathrm{Ib}_{2,0} & \ldots & \mathrm{lb}_{n, 0} \\ \mathrm{l} \mathrm{b}_{1,1} & \mathrm{Ib}_{2,1} & \ldots & \mathrm{lb}_{n, 1}\end{array}\right]\right)$

Garbled circuit security holds if only one label per column is known

## Garbled Circuits + Hash Encryption

. $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left[\begin{array}{cccc} & \left.\left[\begin{array}{lll}\mathrm{b}_{1,0} & \mathrm{lb}_{2,0} & \ldots \\ \mathrm{l} \mathrm{b}_{1,1} & \mathrm{Ib}_{n, 0} \\ \mathrm{Ib}_{2,1} & \ldots & \mathrm{Ib}_{n, 1}\end{array}\right]\right)\end{array}\right)\right.$
Garbled circuit security holds if only one label per column is known
. $\operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right) \rightarrow c$

Hash decryption only reveals one message per column

## Garbled Circuits + Hash Encryption

. $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left[\begin{array}{cccc}\mathrm{l}_{1,0} & \mathrm{lb}_{2,0} & \ldots & \mathrm{lb}_{n, 0} \\ \mid \mathrm{b}_{1,1} & \mathrm{Ib}_{2,1} & \ldots & \mathrm{lb}_{n, 1}\end{array}\right]\right)$
Garbled circuit security holds if only one label per column is known
. $\operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right) \rightarrow c$

- Hash encrypt the garbled labels:

Hash decryption only reveals one message per column

## Garbled Circuits + Hash Encryption

. $\operatorname{Garb}(C) \rightarrow\left(\tilde{C},\left[\begin{array}{cccc}\mid \mathrm{b}_{1,0} & \mathrm{lb}_{2,0} & \ldots & \mathrm{lb}_{n, 0} \\ \mid \mathrm{b}_{1,1} & \mathrm{Ib}_{2,1} & \ldots & \mathrm{Ib}_{n, 1}\end{array}\right]\right)$
. $\operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}m_{1,0} & m_{2,0} & \ldots & m_{n, 0} \\ m_{1,1} & m_{2,1} & \ldots & m_{n, 1}\end{array}\right]\right) \rightarrow c$

Garbled circuit security holds if only one label per column is known

- Hash encrypt the garbled labels:

$$
\rightarrow \operatorname{HEnc}\left(\operatorname{Hash}(x),\left[\begin{array}{llll}
\mathrm{lb}_{1,0} & \mathrm{lb}_{2,0} & \ldots & \mathrm{lb}_{n, 0} \\
\mathrm{lb}_{1,1} & \mathrm{lb}_{2,1} & \ldots & \mathrm{lb}_{n, 1}
\end{array}\right]\right) \rightarrow c
$$

Hash decryption only reveals one message per column

## Overview

> 1. Laconic cryptography \& previous work
> 2. Branching programs
> 3. Laconic branching programs
> 4. Building blocks:
> 1. Garbled circuits
> 2. Hash encryption
> 3. Garbled circuits + hash encryption
5. Our construction at a high level

## Recall: Laconic Branching Programs



$$
|\mathrm{BP}| \gg|x|
$$

- Only 1 round of communication allowed (2 messages)
- Communication size grows with:
- the size of the sender's element: $|x|$
- the max depth of the receiver's BP
- Communication complexity does not otherwise depend on $|B P|$


## Construction - depth 1 example

## Receiver

## Input:




## Construction - depth 1 example

## Construction - depth 1 example



## Construction - depth 1 example



## Construction - depth 1 example



## Construction - depth 1 example

Sender

## $00^{0}$

Input:

$$
\begin{array}{rl}
x=0 & 1 \\
x_{1}^{\prime} & 1 \\
x_{1} & x_{2}
\end{array}
$$



## Construction - depth 1 example

## Sender

## ${ }^{0} 0^{0}$

Input:



Generic depth 1 BP


## Construction - depth 1 example

Sender
$00^{\circ}$ Input:

The Sender defines the function: $F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}$

Receiver
Input:


Generic depth 1 BP


## Construction - depth 1 example

Sender
$00^{\circ}$
Input:


Outputs $q_{0}$ or $q_{1}$ depending on the $j$-th bit of the Sender's input $x$
The Sender defines the function:

$$
F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}
$$



Generic depth 1 BP


## Construction - depth 1 example

Sender
${ }^{0} 0^{0}$
The Sender defines the function:

$$
F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}
$$



Outputs $q_{0}$ or $q_{1}$ depending on the $j$-th bit of the Sender's input $x$

Receiver
Input:


Generic depth 1 BP


What if the Receiver could evaluate $F[x]$ on input ( $x_{2}$, (1), (0) )?

$$
F[x]\left(x_{2},(1),(0) \rightarrow \begin{cases}1 & \text { if } x_{2}=0 \\ 0 & \text { if } x_{2}=1\end{cases}\right.
$$

## Construction - depth 1 example

The Sender defines the function:
$\circ$

$$
F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}
$$



Outputs $q_{0}$ or $q_{1}$ depending on the $j$-th bit of the Sender's input $x$

Receiver
Input:


Generic depth 1 BP


What if the Receiver could evaluate $F[x]$ on input ( $x_{2}$, (1), (0) )?

$$
\begin{aligned}
F[x]\left(x_{2}\right),(1,0) & \rightarrow \begin{cases}1 & \text { if } x_{2}=0 \\
(0) & \text { if } x_{2}=1\end{cases} \\
& \rightarrow 0
\end{aligned}
$$

## Construction - depth 1 example

$\leftarrow \Theta_{0}$ message

The Sender defines the function:
${ }^{0} 0^{0}$

$$
F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}
$$



Outputs $q_{0}$ or $q_{1}$ depending on the $j$-th bit of the Sender's input $x$


What if the Receiver could evaluate $F[x]$ on input ( $x_{2}$, (1), (0) ?

$$
\begin{aligned}
F[x]\left(x_{2},(1,0)\right. & \rightarrow \begin{cases}1 & \text { if } x_{2}=0 \\
0 & \text { if } x_{2}=1\end{cases} \\
& \rightarrow 0
\end{aligned}
$$

## Construction - depth 1 example <br> Yao's garbled circuit protocol Receiver <br> $$
\begin{aligned} & \text { Sender } \\ & F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}} \end{aligned}
$$ <br> <br> Sender <br> <br> Sender <br> <br> ©0. $x=01$

 <br> <br> ©0. $x=01$}




## Construction - depth 1 example



$\tilde{F}, \operatorname{HEnc}(\ldots)$

$\left(\tilde{F},\left\{\right.\right.$ label $\left.\left._{i, b}\right\}\right) \leftarrow \operatorname{Garb}(F[x])$ HEnc(Hash(z), label $\left.\left._{i, b}\right\}\right)$
$\underset{\operatorname{HDec}((\overbrace{(2)},(1),(0)), \operatorname{HEnc}\left(\operatorname{Hash}(z),\left\{\text { label }_{i, b}\right\}\right))}{z}$
$\Downarrow$


Construction - depth 1 example

## Yao's garbled circuit protocol

 Receiver

$\tilde{F}, \operatorname{HEnc}(\ldots)$

$\left(\tilde{F},\left\{\right.\right.$ label $\left.\left._{i, b}\right\}\right) \leftarrow \operatorname{Garb}(F[x])$ HEnc(Hash(z), $\left\{\right.$ label $\left.\left._{i, b}\right\}\right)$


Then evaluate garbled circuit:


Then evaluate garbled circuit:
$\operatorname{Eval}\left(\tilde{F},\left\{\right.\right.$ label $\left.\left._{i, z[i]}\right\}\right)$


Then evaluate garbled circuit:
$\operatorname{Eval}\left(\tilde{F},\left\{\right.\right.$ label $\left.\left._{i, z[i]}\right\}\right) \rightarrow 0$

Construction- depth 1 example
Yao's garbled circuit protocol Receiver


$\tilde{F}, \mathrm{HEnc}(\ldots)$

$\left(\tilde{F},\left\{\right.\right.$ label $\left.\left._{i, b}\right\}\right) \leftarrow \operatorname{Garb}(F[x])$ HEnc(Hash(z), label $\left.\left._{i, b}\right\}\right)$
$\left.\operatorname{HDec}\left(\left(x_{2}\right),(1),(0)\right), \operatorname{HEnc}\left(\operatorname{Hash}(z),\left\{\operatorname{label}_{i, b}\right\}\right)\right)$
凶


## $\left\{\right.$ label $\left._{i, z[i]}\right\}$

Then evaluate garbled circuit:
$\operatorname{Eval}\left(\tilde{F},\left\{|a b|_{i,[i]}\right\}\right) \rightarrow 0$

Construction - depth 1 example

## Yao's garbled circuit protocol

 Roceater

$\tilde{F}, \operatorname{HEnc}(\ldots)$

Sender
$\odot \quad x=0$ (1
$F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}$
$\left(\tilde{F},\left\{\right.\right.$ label $\left.\left._{i, b}\right\}\right) \leftarrow \operatorname{Garb}(F[x])$
HEnc(Hash(z), $\left\{\right.$ label $\left.\left._{i, b}\right\}\right)$
$\operatorname{HDec}\left(\left(\mathrm{X}_{2}\right),(1),(0), \operatorname{HEnc}\left(\operatorname{Hash}(z),\left\{\operatorname{label}_{i, b}\right\}\right)\right)$
凶

$\left\{\right.$ label $\left._{i, z[i]}\right\}$
Then evaluate garbled circuit:
$\operatorname{Eval}\left(\tilde{F},\left\{\right.\right.$ label $\left.\left._{i, 2[i]}\right\}\right) \rightarrow 0$

Yao's garbled circuit protocol - Depth 2?

## Receiver


$\circ 0_{0} x=0 \quad 1$

$$
F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}
$$

Yao's garbled circuit protocol - Depth 2?

## Receiver



## Yao's garbled circuit protocol - Depth 2?

## Receiver



## Yao's garbled circuit protocol - Depth 2?

## Receiver



## Yao's garbled circuit protocol - Depth 2?

## Receiver



## Yao's garbled circuit protocol - Depth 2?

## Receiver



## Yao's garbled circuit protocol - Depth 2?

## Receiver



But sending encryptions wrt. both $z$ and $z^{\prime}$ would
destroy garbled circuit security.

## Yao's garbled circuit protocol - Depth 2?

## Receiver

Sender


But sending encryptions wrt. both $z$ and $z^{\prime}$ would destroy garbled circuit security.

And sending both Hash $(z)$ and $\operatorname{Hash}\left(z^{\prime}\right)$ would cause communication cost blow-up (grow with BP size, not BP depth)

## Yao's garbled circuit protocol - Depth 2?

## Receiver

Sender


$$
\begin{aligned}
& \text { Oo } \quad x=01 \\
& F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}
\end{aligned}
$$

$\left(\tilde{F},\left\{\right.\right.$ label $\left.\left._{i, b}\right\}\right) \leftarrow \operatorname{Garb}(F[x])$
HEnc(Hash(z), $\left\{\right.$ label $\left.\left._{i, b}\right\}\right)$ HEnc(Hash $\left(z^{\prime}\right),\left\{\right.$ label $\left._{i, b}\right\}$ )

But sending encryptions wrt. both $z$ and $z^{\prime}$ would destroy garbled circuit security.

And sending both $\operatorname{Hash}(z)$ and $\operatorname{Hash}\left(z^{\prime}\right)$ would cause communication cost blow-up (grow with BP size, not BP depth)

We use deferred encryption to fixed these problems - see the paper for details!

## Summary

## Summary

- New construction for laconic 2PC of branching programs from LWE or CDH


## Summary

- New construction for laconic 2PC of branching programs from LWE or CDH
- First laconic BP construction from an assumption other than LWE


## Summary

- New construction for laconic 2PC of branching programs from LWE or CDH
- First laconic BP construction from an assumption other than LWE

| $[$ ABD +21$]$ | $[$ This work] <br> Laconic PSI | [QWW18] <br> General laconic 2PC |
| :---: | :---: | :---: |
| from LWE or CDH | from LWE or CDH | More LWE |

## Summary

- New construction for laconic 2PC of branching programs from LWE or CDH
- First laconic BP construction from an assumption other than LWE

| $[\mathrm{ABD}+21]$ | $[$ This work] <br> Laconic PSI <br> Laconic BPs | [QWW18] <br> General laconic 2PC <br> from LWE or CDH |
| :---: | :---: | :---: |
| fess general |  | More general |

- Can realise private set intersection and private set union


## Summary

- New construction for laconic 2PC of branching programs from LWE or CDH
- First laconic BP construction from an assumption other than LWE
$[\mathrm{ABD}+21]$
Laconic PSI
from LWE or CDH
[This work]
Laconic BPs from LWE or CDH
[QWW18]
General laconic 2PC from LWE
- Can realise private set intersection and private set union
- Wildcards allow receiver's set to be represented concisely



## Construction - depth 2 example

$\wedge_{0} \rightarrow$ message

$\rightarrow$ Which is $\mathrm{BP}(01)=1$

## Backup <br> Construction - depth 2 example



Sender
${ }^{\circ} 0^{\circ}$ Input: $x=01$

The Sender defines the function:

$$
F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}
$$

Outputs $q_{0}$ or $q_{1}$ depending on the $j$-th bit of the Sender's input $x$

The Sender defines another function:
$V\left[x,\left\{\mathrm{lb}_{i, b}\right\}\right]\left(u, h_{0}^{\prime}, h_{1}^{\prime}\right)= \begin{cases}\operatorname{HEnc}\left(h_{0}^{\prime},\left\{\mathrm{lb}_{i, b}\right\}\right) & \text { if } x_{u}=0 \\ \operatorname{HEnc}\left(h_{1}^{\prime},\left\{\mathrm{lb}_{i, b}\right\}\right) & \text { if } x_{u}=1\end{cases}$
deferred encryption: labels $\left\{\mathrm{Ib}_{i, b}\right\}$ for $\tilde{F}$ are hash-encrypted when $V\left[x,\left\{\mathrm{lb}_{i, b}\right\}\right]$ is evaluated.

Outputs a Hash encryption of garbled circuit labels $\left\{\mathrm{lb}_{i, b}\right\}$ wrt. $h_{x_{u}}^{\prime}$

## Receiver



$\ominus_{0} x=(0) 1 \quad F[x]\left(j, q_{0}, q_{1}\right) \rightarrow q_{x_{j}}$
$V\left[x,\left\{\mathrm{lb}_{i, b}\right\}\right]\left(u, h_{0}^{\prime}, h_{1}^{\prime}\right)= \begin{cases}\operatorname{HEnc}\left(h_{0}^{\prime},\left\{\mathrm{l}_{i, b}\right\}\right) & \text { if } x_{u}=0 \\ \operatorname{HEnc}\left(h_{1}^{\prime},\left\{\mathrm{l}_{i, b}\right\}\right) & \text { if } x_{u}=1\end{cases}$

$$
\tilde{F}, \tilde{V}, \operatorname{HEnc}(\ldots)
$$

$$
\begin{aligned}
& \left(\tilde{F},\left\{\mathrm{lb}_{i, b}\right\}\right) \leftarrow \operatorname{Garb}(F[x]) \\
& \left(\tilde{V},\left\{\mathrm{lb}_{i, b}\right\}\right) \leftarrow \operatorname{Garb}\left(V\left[x,\left\{\mathrm{lb}_{i, b}\right\}\right]\right)
\end{aligned}
$$

$$
\operatorname{HDec}\left(\left(\overparen{x_{1}}, h_{0}, h_{1}\right), \operatorname{HEnc}\left(\operatorname{Hash}\left(z_{\text {root }}\right),\left\{\mathrm{lb}_{i, b}\right\}\right)\right)
$$

$$
\operatorname{HEnc}\left(\operatorname{Hash}\left(z_{\text {root }}\right),\left\{\mathrm{lb}_{i, b}\right\}\right)
$$

$$
<h_{0}=\operatorname{Hash}\left(\bigotimes_{2}\right),(0),(1)
$$

Then evaluate the $V$ garbled circuit:
$\operatorname{Eval}\left(\tilde{V},\left\{\mathrm{Ib}_{i, z_{\text {root }}[i]}\right\}\right) \Longrightarrow V\left[x,\left\{\mathrm{lb}_{i, b}\right\}\right]\left({\left(x_{1}\right)}, h_{0}, h_{1}\right)= \begin{cases}\operatorname{HEnc}\left(h_{0},\left\{\mathrm{lb}_{i, b}\right\}\right) & \text { if } x_{1}=0 \\ \operatorname{HEnc}\left(h_{1},\left\{\mathrm{lb}_{i, b}\right\}\right) & \text { if } x_{1}=1\end{cases}$
This brings the Receiver to the depth 1 case. Using $\operatorname{HEnc}\left(h_{0},\left\{\mathrm{Ib}_{i, b}\right\}\right)$ and $\tilde{F}$, can finish the computation of $\mathrm{BP}(01)$.

## Can we use Fully Homomorphic Encryption?

## Can we use Fully Homomorphic Encryption?



Input: $x$
$c^{\prime} \leftarrow \operatorname{FHE} . \operatorname{Eval}(p k, c, x)$
$\mathrm{BP}(x) \leftarrow \operatorname{FHE} . \operatorname{Dec}\left(s k, c^{\prime}\right)$


$$
\text { Encryption of BP( } \cdot \text { ) }
$$

> | But the size of the ciphertext, |
| :---: |
| $c \leftarrow \underset{\text { FHE.Enc }(p k, \mathrm{BP}) \text {, depends on }\|\mathrm{BP}\|,}{\text { violating laconicism requirements }}$ |

Backup

## Laconic Oblivious Transfer (OT)

- Regular oblivious transfer:

Receiver
$b \in\{0,1\}$


- Laconic oblivious transfer:


Backup: Construction of anonymous hash encryption from CDH [BLSV18]

- Algorithms: Setup, Gen, SingleEnc, SingleDec
- Setup $\left(1^{\lambda}, 1^{n}\right)$ : Let $(\mathbb{G}, g, q) \leftarrow \mathscr{G}\left(1^{\lambda}\right)$ and $\alpha_{i, b} \leftarrow \mathbb{Z}_{q}$ for $i \in[n]$ and $b \in\{0,1\}$. Output crs $=\left((\mathbb{G}, g, q),\left\{g^{\left.\alpha_{i, b}\right\}_{i, b}}\right)\right.$.
- Gen(crs, $x$ ): Output $h=\prod_{i}^{n} g^{\alpha_{i, x_{i}}}$
- SingleEnc(crs, $h, i, \boldsymbol{m})$ : Let $r \leftarrow \mathbb{Z}_{q}, \hat{g}^{\alpha_{i, b}}=h^{r} g^{-r \alpha_{i, b}}$, and $\mu_{i, b}=\operatorname{gl-enc}\left(\hat{g}^{\alpha_{i, b}}, \boldsymbol{m}_{i}\right) . \forall b \in\{0,1\}, j \neq i$, let $\hat{g}^{\alpha_{j, b}}=g^{r \alpha_{j, b}}$. Output $\mathrm{ct}=\left(\left\{\hat{g}^{j, b}\right\}_{j \neq i, b},\left\{\mu_{i, b}\right\}_{b}\right)$.
SingleDec (crs, $x, i$, ct): Let $\hat{g}^{\alpha_{i, x_{i}}}=\prod_{j \neq i} \hat{g}^{\alpha_{j, x_{j}}}$. Output gl-dec $\left(\hat{g}^{\alpha_{i, x_{i}}}, \mu_{i, x_{i}}\right)$.

$$
\begin{aligned}
& \operatorname{gl-enc}(x, b):=(\alpha,\langle\alpha, x\rangle \oplus b), \alpha \leftarrow^{\S}\{0,1\}^{n} \\
& \operatorname{gl-dec}(x,(\alpha, \sigma)):=\sigma \oplus\langle\alpha, x\rangle
\end{aligned}
$$

