
Laconic Branching Programs
from the Diffie-Hellman

Assumption

PKC 2024

eprint.iacr.org/2024/102

1

Sanjam Garg, Mohammad Hajiabadi, Peihan Miao, and Alice Murphy

http://eprint.iacr.org/2024/102

Laconic Cryptography [CDG+17]

2

Sender

Input:

y Input:

x
|y | ≫ |x |

Receiver

! "
h

Laconic Cryptography [CDG+17]

2

Sender

Input:

y Input:

x

h

|y | ≫ |x |

Receiver

! "
h

Laconic Cryptography [CDG+17]

2

Sender

Input:

y Input:

x

h

m |y | ≫ |x |

Receiver

! "
h

Laconic Cryptography [CDG+17]

2

Sender

Input:

y Input:

x

h

mWith and , compute y m
f(x, y)

m
|y | ≫ |x |

Receiver

! "
h

Laconic Cryptography [CDG+17]

2

Sender

Input:

y Input:

x

h

mWith and , compute y m
f(x, y)

m
|y | ≫ |x |

Receiver

! "
h

Security:
• hides
• hides to the extent that hides

h y
m x f(x, y) x

Laconic Cryptography [CDG+17]

2

Sender

Input:

y Input:

x

h

mWith and , compute y m
f(x, y)

m

• Only 1 round of communication allowed (2 messages)
• Communication complexity does not depend on |y |

|y | ≫ |x |

Receiver

! "
h

Security:
• hides
• hides to the extent that hides

h y
m x f(x, y) x

Comparison to previous work in laconic
cryptography

• [ABD+21] gives a protocol for Laconic private set intersection
(PSI) of sets based on LWE or CDH
• [This work] gives a protocol for laconic branching programs

based on LWE or CDH

3

M
or

e
ge

ne
ra

l

which can be used to get PSI

Comparison to previous work in laconic
cryptography

• [ABD+21] gives a protocol for Laconic private set intersection
(PSI) of sets based on LWE or CDH
• [This work] gives a protocol for laconic branching programs

based on LWE or CDH
• [QWW18] gives a laconic protocol for general functionalities

based on LWE

3

M
or

e
ge

ne
ra

l

which can be used to get PSI

Comparison to previous work in laconic
cryptography

• [ABD+21] gives a protocol for Laconic private set intersection
(PSI) of sets based on LWE or CDH
• [This work] gives a protocol for laconic branching programs

based on LWE or CDH
• [QWW18] gives a laconic protocol for general functionalities

based on LWE

3

M
or

e
ge

ne
ra

l

which can be used to get PSI

Comparison to previous work in laconic
cryptography

• [ABD+21] gives a protocol for Laconic private set intersection
(PSI) of sets based on LWE or CDH
• [This work] gives a protocol for laconic branching programs

based on LWE or CDH
• [QWW18] gives a laconic protocol for general functionalities

based on LWE

3

M
or

e
ge

ne
ra

l

which can be used to get PSI

There are also constructions for…

Comparison to previous work in laconic
cryptography

• [ABD+21] gives a protocol for Laconic private set intersection
(PSI) of sets based on LWE or CDH
• [This work] gives a protocol for laconic branching programs

based on LWE or CDH
• [QWW18] gives a laconic protocol for general functionalities

based on LWE

3

M
or

e
ge

ne
ra

l

which can be used to get PSI

• laconic PSI from pairings [ALOS22]

There are also constructions for…

Comparison to previous work in laconic
cryptography

• [ABD+21] gives a protocol for Laconic private set intersection
(PSI) of sets based on LWE or CDH
• [This work] gives a protocol for laconic branching programs

based on LWE or CDH
• [QWW18] gives a laconic protocol for general functionalities

based on LWE

3

M
or

e
ge

ne
ra

l

which can be used to get PSI

• laconic PSI from pairings [ALOS22]
• laconic oblivious transfer from DDH, CDH, or QR [CDG+17, DG17]

There are also constructions for…

Branching Programs
bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

• If then go to the left child xi = 0

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

• If then go to the left child xi = 0
• If then go to the right childxi = 1

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

• If then go to the left child xi = 0
• If then go to the right childxi = 1

• Each leaf node encodes either

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

• If then go to the left child xi = 0
• If then go to the right childxi = 1

• Each leaf node encodes either

• (accept) or1

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

• If then go to the left child xi = 0
• If then go to the right childxi = 1

• Each leaf node encodes either

• (accept) or1
• (reject)0

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

• If then go to the left child xi = 0
• If then go to the right childxi = 1

• Each leaf node encodes either

• (accept) or1
• (reject)0

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

000

BP(000) = 1

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

• If then go to the left child xi = 0
• If then go to the right childxi = 1

• Each leaf node encodes either

• (accept) or1
• (reject)0

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

000 001

BP(000) = 1 BP(001) = 0

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

• If then go to the left child xi = 0
• If then go to the right childxi = 1

• Each leaf node encodes either

• (accept) or1
• (reject)0

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

000 011 100 111001 010 101 110

BP(000) = 1 BP(001) = 0

Branching Programs

• Directed tree that can be evaluated on inputs x ∈ {0,1}n

• Each internal node encodes an index i ∈ {1,…, n}
• Evaluate BP(x) starting at the root

• If then go to the left child xi = 0
• If then go to the right childxi = 1

• Each leaf node encodes either

• (accept) or1
• (reject)0

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated
predicates

4

000 011 100 111001 010 101 110

BP(000) = 1 BP(001) = 0

000 011 100 111

This BP describes
the set:

5

• This BP describes the set: .{001 * , 01 * 0 , 1 * * * }

Inputs in {0,1}4

Branching Programs — Example 2

5

• This BP describes the set: .{001 * , 01 * 0 , 1 * * * }

Inputs in {0,1}4

Wildcards

Branching Programs — Example 2

Laconic Branching Programs

6

SenderInput:

Input:

x

|BP | ≫ |x |

Receiver

! "h
BP

Laconic Branching Programs

6

SenderInput:

Input:

x
h

|BP | ≫ |x |

Receiver

! "h
BP

Laconic Branching Programs

6

SenderInput:

Input:

x
h

m
|BP | ≫ |x |

Receiver

! "h
BP

Laconic Branching Programs

6

SenderInput:

Input:

x
h

mWith and , compute BP m BP(x) m
|BP | ≫ |x |

Receiver

! "h
BP

Laconic Branching Programs

6

SenderInput:

Input:

x
h

mWith and , compute BP m BP(x) m

• Only 1 round of communication allowed (2 messages)
|BP | ≫ |x |

Receiver

! "h
BP

Laconic Branching Programs

6

SenderInput:

Input:

x
h

mWith and , compute BP m BP(x) m

• Only 1 round of communication allowed (2 messages)

• Communication size grows with:

|BP | ≫ |x |

Receiver

! "h
BP

Laconic Branching Programs

6

SenderInput:

Input:

x
h

mWith and , compute BP m BP(x) m

• Only 1 round of communication allowed (2 messages)

• Communication size grows with:

• the size of the sender’s element: |x |

|BP | ≫ |x |

Receiver

! "h
BP

Laconic Branching Programs

6

SenderInput:

Input:

x
h

mWith and , compute BP m BP(x) m

• Only 1 round of communication allowed (2 messages)

• Communication size grows with:

• the size of the sender’s element: |x |
• the max depth of the receiver’s BP

|BP | ≫ |x |

Receiver

! "h
BP

Laconic Branching Programs

6

SenderInput:

Input:

x
h

mWith and , compute BP m BP(x) m

• Only 1 round of communication allowed (2 messages)

• Communication size grows with:

• the size of the sender’s element: |x |
• the max depth of the receiver’s BP

• Communication complexity does not otherwise depend on |BP |

|BP | ≫ |x |

Receiver

! "h
BP

Overview

1. Laconic cryptography & previous work
2. Branching programs
3. Laconic branching programs
4. Building blocks:

1. Garbled circuits
2. Hash encryption
3. Garbled circuits + hash encryption

5. Our construction at a high level

7

Building blocks: Garbled Circuits

8

• A garbling scheme consists of garbling, evaluation, and
simulation algorithms

Building blocks: Garbled Circuits

8

• A garbling scheme consists of garbling, evaluation, and
simulation algorithms

• for all input wires Garb(C) → (C̃, {$%i,0 , $%i,1}i) i

Building blocks: Garbled Circuits

8

• A garbling scheme consists of garbling, evaluation, and
simulation algorithms

• for all input wires Garb(C) → (C̃, {$%i,0 , $%i,1}i) i

Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

Building blocks: Garbled Circuits

8

• A garbling scheme consists of garbling, evaluation, and
simulation algorithms

• for all input wires Garb(C) → (C̃, {$%i,0 , $%i,1}i) i

Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

Building blocks: Garbled Circuits

8

2 labels for every input wire:
Label for wire value = 0

Label for wire value = 1

$%i,0
$%i,1

• A garbling scheme consists of garbling, evaluation, and
simulation algorithms

• for all input wires Garb(C) → (C̃, {$%i,0 , $%i,1}i) i

Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

Building blocks: Garbled Circuits

8

2 labels for every input wire:
Label for wire value = 0

Label for wire value = 1

$%i,0
$%i,1

• A garbling scheme consists of garbling, evaluation, and
simulation algorithms

• for all input wires Garb(C) → (C̃, {$%i,0 , $%i,1}i) i

• Eval(C̃, {$%i, xi}i) → C(x)

Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

Building blocks: Garbled Circuits

8

2 labels for every input wire:
Label for wire value = 0

Label for wire value = 1

$%i,0
$%i,1

• A garbling scheme consists of garbling, evaluation, and
simulation algorithms

• for all input wires Garb(C) → (C̃, {$%i,0 , $%i,1}i) i

• Eval(C̃, {$%i, xi}i) → C(x)

Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

Building blocks: Garbled Circuits

8

Eval(C̃, [$%1, x1 , $%2, x2 , …, $%n, xn]) → C(x)

2 labels for every input wire:
Label for wire value = 0

Label for wire value = 1

$%i,0
$%i,1

O n e l a b e l p e r
input wire. Label 0
or 1 depending on
the bits of x

• A garbling scheme consists of garbling, evaluation, and
simulation algorithms

• for all input wires Garb(C) → (C̃, {$%i,0 , $%i,1}i) i

• Eval(C̃, {$%i, xi}i) → C(x)

• Security: (C̃, {$%i, xi}i) ≈c '()(C, C(x))

Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

Building blocks: Garbled Circuits

8

Eval(C̃, [$%1, x1 , $%2, x2 , …, $%n, xn]) → C(x)

2 labels for every input wire:
Label for wire value = 0

Label for wire value = 1

$%i,0
$%i,1

O n e l a b e l p e r
input wire. Label 0
or 1 depending on
the bits of x

9

Building blocks: Hash Encryption [DG17, BLSV18]

9

• Consists of algorithms Hash, HEnc, HDec

Building blocks: Hash Encryption [DG17, BLSV18]

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value
• Decrypt with the pre-image of that hash

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)
 acts like secret keyx

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value
• Decrypt with the pre-image of that hash

• Hash function: *+,-(x) → h

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)
 acts like secret keyx

Public parameters are omitted

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value
• Decrypt with the pre-image of that hash

• Hash function: *+,-(x) → h

• Encryption: c ← */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1])

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)
 acts like secret keyx

Public parameters are omitted

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value
• Decrypt with the pre-image of that hash

• Hash function: *+,-(x) → h

• Encryption: c ← */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1])

• Decryption: if (m1, x1
, m2, x2

, …, mn, xn
) ← *231(x, c) *+,-(x) = h

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)
 acts like secret keyx

Public parameters are omitted

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value
• Decrypt with the pre-image of that hash

• Hash function: *+,-(x) → h

• Encryption: c ← */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1])

• Decryption: if (m1, x1
, m2, x2

, …, mn, xn
) ← *231(x, c) *+,-(x) = h

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)
 acts like secret keyx

Public parameters are omitted

Only one
per column is
decrypted

mi,b

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value
• Decrypt with the pre-image of that hash

• Hash function: *+,-(x) → h

• Encryption: c ← */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1])

• Decryption: if (m1, x1
, m2, x2

, …, mn, xn
) ← *231(x, c) *+,-(x) = h

• Security: If , then remains secure, even if xi = b mi, b−1 *+,-(x) = h

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)
 acts like secret keyx

Public parameters are omitted

Only one
per column is
decrypted

mi,b

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value
• Decrypt with the pre-image of that hash

• Hash function: *+,-(x) → h

• Encryption: c ← */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1])

• Decryption: if (m1, x1
, m2, x2

, …, mn, xn
) ← *231(x, c) *+,-(x) = h

• Security: If , then remains secure, even if xi = b mi, b−1 *+,-(x) = h
• Note that is chosen by the encrypter, not the decrypter(i, b)

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)
 acts like secret keyx

Public parameters are omitted

Only one
per column is
decrypted

mi,b

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value
• Decrypt with the pre-image of that hash

• Hash function: *+,-(x) → h

• Encryption: c ← */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1])

• Decryption: if (m1, x1
, m2, x2

, …, mn, xn
) ← *231(x, c) *+,-(x) = h

• Security: If , then remains secure, even if xi = b mi, b−1 *+,-(x) = h
• Note that is chosen by the encrypter, not the decrypter(i, b)
• Having the “secret key” is not sufficient knowledge to decrypt x

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)
 acts like secret keyx

Public parameters are omitted

Only one
per column is
decrypted

mi,b

9

• Consists of algorithms Hash, HEnc, HDec
• Encrypt w.r.t. a hash value
• Decrypt with the pre-image of that hash

• Hash function: *+,-(x) → h

• Encryption: c ← */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1])

• Decryption: if (m1, x1
, m2, x2

, …, mn, xn
) ← *231(x, c) *+,-(x) = h

• Security: If , then remains secure, even if xi = b mi, b−1 *+,-(x) = h
• Note that is chosen by the encrypter, not the decrypter(i, b)
• Having the “secret key” is not sufficient knowledge to decrypt x

Building blocks: Hash Encryption [DG17, BLSV18]

 acts like public keyh = *+,-(x)
 acts like secret keyx

Not actually a
 pair(pk, sk)

Public parameters are omitted

Only one
per column is
decrypted

mi,b

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

example

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

example

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

example

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

c

example

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

c (, , ,) ← *231(x, c)

example

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

c (, , ,) ← *231(x, c)
x = 1 0 1 1

example

Decrypt according
to the bits of x

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

c (, , ,) ← *231(x, c)
x = 1 0 1 1

m1,1

example

Decrypt according
to the bits of x

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

c (, , ,) ← *231(x, c)
x = 1 0 1 1

m1,1 m2,0

example

Decrypt according
to the bits of x

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

c (, , ,) ← *231(x, c)
x = 1 0 1 1

m1,1 m2,0 m3,1

example

Decrypt according
to the bits of x

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

c (, , ,) ← *231(x, c)
x = 1 0 1 1

m1,1 m2,0 m3,1 m4,1

example

Decrypt according
to the bits of x

• The undecrypted messages remain secure(m1, 0, m2, 1, m3, 0, m4, 0)

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

c (, , ,) ← *231(x, c)
x = 1 0 1 1

m1,1 m2,0 m3,1 m4,1

example

Decrypt according
to the bits of x

• The undecrypted messages remain secure(m1, 0, m2, 1, m3, 0, m4, 0)
• Can be built from the computational Diffie-Hellman assumption or

LWE [DG17, BLSV18]

10

Building blocks: Hash Encryption [DG17, BLSV18]

! "x = 1011
h ← Hash(x)

h

c ← */01(Hash(x), [m1,0 m2,0 m3,0 m4,0
m1,1 m2,1 m3,1 m4,1])

c (, , ,) ← *231(x, c)
x = 1 0 1 1

m1,1 m2,0 m3,1 m4,1

example

Decrypt according
to the bits of x

Garbled Circuits + Hash Encryption

11

Garbled Circuits + Hash Encryption

• Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

11

Garbled circuit security
holds if only one label
per column is known

Garbled Circuits + Hash Encryption

• Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

• */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1]) → c

11

Garbled circuit security
holds if only one label
per column is known

Hash decryption
only reveals one
message per
column

Garbled Circuits + Hash Encryption

• Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

• */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1]) → c

• Hash encrypt the garbled labels:

11

Garbled circuit security
holds if only one label
per column is known

Hash decryption
only reveals one
message per
column

Garbled Circuits + Hash Encryption

• Garb(C) → (C̃, [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1])

• */01(Hash(x), [m1,0 m2,0 … mn,0
m1,1 m2,1 … mn,1]) → c

• Hash encrypt the garbled labels:

*/01(Hash(x), [$%1,0 $%2,0 … $%n,0
$%1,1 $%2,1 … $%n,1]) → c

11

Garbled circuit security
holds if only one label
per column is known

Hash decryption
only reveals one
message per
column

Overview

1. Laconic cryptography & previous work
2. Branching programs
3. Laconic branching programs
4. Building blocks:

1. Garbled circuits
2. Hash encryption
3. Garbled circuits + hash encryption

5. Our construction at a high level

12

Recall: Laconic Branching Programs

13

SenderInput:

Input:

x

h

mWith and , compute BP m BP(x) m

• Only 1 round of communication allowed (2 messages)

• Communication size grows with:

• the size of the sender’s element:

• the max depth of the receiver’s BP
• Communication complexity does not otherwise depend on

|x |

|BP |

|BP | ≫ |x |

Receiver

! "hBP(⋅)

Construction – depth 1 example

14

Sender

Input:

Input:

x = 01h

mm

Receiver

! "BP

With and , compute BP m
BP(x)

x2

01

0 1

x1 x2

 " message→!

Construction – depth 1 example

14

Sender

Input:

Input:

x = 01h

mm

Receiver
Merkle hash

! "BP

With and , compute BP m
BP(x)

x2

01

0 1

h ← Hash(, ,)x2 01

x1 x2

 " message→!

Construction – depth 1 example

14

Sender

Input:

Input:

x = 01h
h

mm

Merkle hash

Receiver
Merkle hash

! "BP

With and , compute BP m
BP(x)

x2

01

0 1

h ← Hash(, ,)x2 01

x1 x2

 " message→!

Construction – depth 1 example

14

Sender

Input:

Input:

x = 01h
h

mm

Merkle hash

Receiver
Merkle hash

! "BP

With and , compute BP m
BP(x)

x2

01

0 1

h ← Hash(, ,)x2 01

Which is BP(01) = 0

x1 x2

 " message→!

Construction – depth 1 example

14

Sender

Input:

Input:

x = 01h
h

mm

Merkle hash

Receiver
Merkle hash

! "BP

With and , compute BP m
BP(x)

x2

01

0 1

h ← Hash(, ,)x2 01

Which is BP(01) = 0

x1 x2

 " message→!

Construction – depth 1 example

15

Input: Receiver

!
Sender

"
BP x2

01

0 1
Input:

x = 0 1
x1 x2

 " message←!

Construction – depth 1 example

15

Input: Receiver

!
Sender

"
BP x2

01

0 1

xj

q0 q1

0 1

Generic depth 1 BP

Input:

x = 0 1
x1 x2

 " message←!

Construction – depth 1 example

15

Input: Receiver

!
Sender

"
BP x2

01

0 1

xj

q0 q1

0 1

Generic depth 1 BP

F[x](j, q0, q1) → qxj

The Sender defines the function:

Input:

x = 0 1
x1 x2

 " message←!

Construction – depth 1 example

15

Input: Receiver

!
Sender

"
BP x2

01

0 1

xj

q0 q1

0 1

Generic depth 1 BP

F[x](j, q0, q1) → qxj

The Sender defines the function:

Input:

x = 0 1 Outputs or depending on the

-th bit of the Sender’s input

q0 q1
j x

x1 x2

 " message←!

Construction – depth 1 example

15

Input: Receiver

!
Sender

"
BP x2

01

0 1

xj

q0 q1

0 1

Generic depth 1 BP

F[x](j, q0, q1) → qxj

The Sender defines the function:

Input:

x = 0 1 Outputs or depending on the

-th bit of the Sender’s input

q0 q1
j x

What if the Receiver could evaluate on input F[x] (, ,)?x2 01

F[x](, ,) → { if x2 = 0
if x2 = 1

x2 01
0
1

x1 x2

 " message←!

Construction – depth 1 example

15

Input: Receiver

!
Sender

"
BP x2

01

0 1

xj

q0 q1

0 1

Generic depth 1 BP

F[x](j, q0, q1) → qxj

The Sender defines the function:

Input:

x = 0 1 Outputs or depending on the

-th bit of the Sender’s input

q0 q1
j x

What if the Receiver could evaluate on input F[x] (, ,)?x2 01

F[x](, ,) → { if x2 = 0
if x2 = 1

x2 01
0
1

x1 x2

0→

 " message←!

Construction – depth 1 example

15

Input: Receiver

!
Sender

"
BP x2

01

0 1

xj

q0 q1

0 1

Generic depth 1 BP

F[x](j, q0, q1) → qxj

The Sender defines the function:

Input:

x = 0 1 Outputs or depending on the

-th bit of the Sender’s input

q0 q1
j x

What if the Receiver could evaluate on input F[x] (, ,)?x2 01

F[x](, ,) → { if x2 = 0
if x2 = 1

x2 01
0
1

x1 x2

0→

 " message←!

Yao’s garbled circuit protocol

16

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1

x1 x2
Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

Hash(, ,)x2 01!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

x1 x2
Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

(F̃, {labeli,b}) ← Garb(F[x])

Hash(, ,)x2 01!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

x1 x2
Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

(F̃, {labeli,b}) ← Garb(F[x])

Hash(, ,)x2 01

HEnc(Hash(z), {labeli,b})

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

x1 x2
Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

F̃, HEnc(…) (F̃, {labeli,b}) ← Garb(F[x])

Hash(, ,)x2 01

HEnc(Hash(z), {labeli,b})

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

x1 x2
Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

F̃, HEnc(…) (F̃, {labeli,b}) ← Garb(F[x])

⟹

Hash(, ,)x2 01

HDec((, ,), HEnc(Hash(z), {labeli,b}))x2 01

HEnc(Hash(z), {labeli,b})

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

z

x1 x2
Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

F̃, HEnc(…) (F̃, {labeli,b}) ← Garb(F[x])

⟹

Hash(, ,)x2 01

HDec((, ,), HEnc(Hash(z), {labeli,b}))x2 01

{labeli,z[i]}

HEnc(Hash(z), {labeli,b})

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

z

x1 x2
Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

F̃, HEnc(…) (F̃, {labeli,b}) ← Garb(F[x])

⟹

Hash(, ,)x2 01

HDec((, ,), HEnc(Hash(z), {labeli,b}))x2 01

{labeli,z[i]}

HEnc(Hash(z), {labeli,b})

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

z

x1 x2

Then evaluate garbled circuit:

Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

F̃, HEnc(…) (F̃, {labeli,b}) ← Garb(F[x])

⟹

Hash(, ,)x2 01

HDec((, ,), HEnc(Hash(z), {labeli,b}))x2 01

{labeli,z[i]}

HEnc(Hash(z), {labeli,b})

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

z

Eval(F̃, {labeli,z[i]})

x1 x2

Then evaluate garbled circuit:

Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

F̃, HEnc(…) (F̃, {labeli,b}) ← Garb(F[x])

⟹

Hash(, ,)x2 01

HDec((, ,), HEnc(Hash(z), {labeli,b}))x2 01

{labeli,z[i]}

HEnc(Hash(z), {labeli,b})

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

z

→Eval(F̃, {labeli,z[i]}) 0

x1 x2

Then evaluate garbled circuit:

Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

F̃, HEnc(…) (F̃, {labeli,b}) ← Garb(F[x])

⟹

Hash(, ,)x2 01

HDec((, ,), HEnc(Hash(z), {labeli,b}))x2 01

F[x](, ,) →x2 01 { if x2 = 0
if x2 = 10

1{labeli,z[i]}

HEnc(Hash(z), {labeli,b})

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

z

→Eval(F̃, {labeli,z[i]}) 0

z

x1 x2

Then evaluate garbled circuit:

Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol

16

F̃, HEnc(…) (F̃, {labeli,b}) ← Garb(F[x])

⟹

Hash(, ,)x2 01

HDec((, ,), HEnc(Hash(z), {labeli,b}))x2 01

F[x](, ,) →x2 01 { if x2 = 0
if x2 = 10

1{labeli,z[i]}

HEnc(Hash(z), {labeli,b})

!x2

01

0 1

"
F[x](j, q0, q1) → qxj

x = 0 1z

z

→Eval(F̃, {labeli,z[i]}) 0

z

x1 x2

Then evaluate garbled circuit:

Sender

Receiver

Construction – depth 1 example

Yao’s garbled circuit protocol – Depth 2?

17

! "
F[x](j, q0, q1) → qxj

x = 0 1
x2

0 1
0 1

x2

01

0 1

x10 1

SenderReceiver

Yao’s garbled circuit protocol – Depth 2?

17

! "
F[x](j, q0, q1) → qxj

x = 0 1
Hash(, ,)x2 01

z

x2

0 1
0 1

x2

01

0 1

x10 1

SenderReceiver

Yao’s garbled circuit protocol – Depth 2?

17

! "
F[x](j, q0, q1) → qxj

x = 0 1
Hash(, ,)x2 01

z

x2

0 1
0 1

x2

01

0 1

x10 1

Hash(, ,)x2 0 1

z′

SenderReceiver

Yao’s garbled circuit protocol – Depth 2?

17

! "
F[x](j, q0, q1) → qxj

x = 0 1
Hash(, ,)x2 01

z

x2

0 1
0 1

x2

01

0 1

x10 1

Hash(, ,)x2 0 1

z′

SenderReceiver

(F̃, {labeli,b}) ← Garb(F[x])

Yao’s garbled circuit protocol – Depth 2?

17

! "
F[x](j, q0, q1) → qxj

x = 0 1
Hash(, ,)x2 01

z

x2

0 1
0 1

x2

01

0 1

x10 1

Hash(, ,)x2 0 1

z′

SenderReceiver

(F̃, {labeli,b}) ← Garb(F[x])

HEnc(Hash(z′), {labeli,b})
HEnc(Hash(z), {labeli,b})

Yao’s garbled circuit protocol – Depth 2?

17

! "
F[x](j, q0, q1) → qxj

x = 0 1
Hash(, ,)x2 01

z

x2

0 1
0 1

x2

01

0 1

x10 1

Hash(, ,)x2 0 1

z′

SenderReceiver

(F̃, {labeli,b}) ← Garb(F[x])

HEnc(Hash(z′), {labeli,b})
HEnc(Hash(z), {labeli,b})

F̃, HEnc(… z . . .), HEnc(… z′ . . .)

Yao’s garbled circuit protocol – Depth 2?

17

! "
F[x](j, q0, q1) → qxj

x = 0 1
Hash(, ,)x2 01

z

x2

0 1
0 1

x2

01

0 1

x10 1

Hash(, ,)x2 0 1

z′

SenderReceiver

(F̃, {labeli,b}) ← Garb(F[x])

HEnc(Hash(z′), {labeli,b})
HEnc(Hash(z), {labeli,b})

F̃, HEnc(… z . . .), HEnc(… z′ . . .)

But sending encryptions wrt. both and would
destroy garbled circuit security.

z z′

Yao’s garbled circuit protocol – Depth 2?

17

! "
F[x](j, q0, q1) → qxj

x = 0 1
Hash(, ,)x2 01

z

x2

0 1
0 1

x2

01

0 1

x10 1

Hash(, ,)x2 0 1

z′

And sending both and would
cause communication cost blow-up (grow with BP
size, not BP depth)

Hash(z) Hash(z′)

SenderReceiver

(F̃, {labeli,b}) ← Garb(F[x])

HEnc(Hash(z′), {labeli,b})
HEnc(Hash(z), {labeli,b})

F̃, HEnc(… z . . .), HEnc(… z′ . . .)

But sending encryptions wrt. both and would
destroy garbled circuit security.

z z′

Yao’s garbled circuit protocol – Depth 2?

17

! "
F[x](j, q0, q1) → qxj

x = 0 1
Hash(, ,)x2 01

z

x2

0 1
0 1

x2

01

0 1

x10 1

Hash(, ,)x2 0 1

z′

And sending both and would
cause communication cost blow-up (grow with BP
size, not BP depth)

Hash(z) Hash(z′)

SenderReceiver

(F̃, {labeli,b}) ← Garb(F[x])

HEnc(Hash(z′), {labeli,b})
HEnc(Hash(z), {labeli,b})

F̃, HEnc(… z . . .), HEnc(… z′ . . .)

But sending encryptions wrt. both and would
destroy garbled circuit security.

z z′

We use deferred encryption to fixed these problems — see the paper for details!

Summary

18

Summary
• New construction for laconic 2PC of branching programs from LWE

or CDH

18

Summary
• New construction for laconic 2PC of branching programs from LWE

or CDH
• First laconic BP construction from an assumption other than LWE

18

Summary
• New construction for laconic 2PC of branching programs from LWE

or CDH
• First laconic BP construction from an assumption other than LWE

18

[ABD+21]
Laconic PSI

from LWE or CDH

[QWW18]
General laconic 2PC

from LWE

[This work]
Laconic BPs

from LWE or CDH

Less general More general

Summary
• New construction for laconic 2PC of branching programs from LWE

or CDH
• First laconic BP construction from an assumption other than LWE

• Can realise private set intersection and private set union

18

[ABD+21]
Laconic PSI

from LWE or CDH

[QWW18]
General laconic 2PC

from LWE

[This work]
Laconic BPs

from LWE or CDH

Less general More general

Summary
• New construction for laconic 2PC of branching programs from LWE

or CDH
• First laconic BP construction from an assumption other than LWE

• Can realise private set intersection and private set union
• Wildcards allow receiver’s set to be represented concisely

18

[ABD+21]
Laconic PSI

from LWE or CDH

[QWW18]
General laconic 2PC

from LWE

[This work]
Laconic BPs

from LWE or CDH

Less general More general

19

BP

x2

0 1
0 1

x2

01
0 1

x10 1

m

Construction – depth 2 example

20

Input:

h

Receiver Merkle hash

! h1 = Hash(, ,)x2 01h0 = Hash(, ,)x2 0 1

hroot = Hash(, h0 , h1)x1

Sender

Input:

x = 01

hroot

m

Merkle hash
"

With and , compute BP m
BP(x)

Which is BP(01) = 1

 " message→!Backup

Construction – depth 2 example

21

Sender

"
Input: x = 01

Input: Receiver

!
BP

x2

0 1

0 1
x2

01

0 1

x10 1

The Sender defines another function:

F[x](j, q0, q1) → qxj

The Sender defines the function:

Outputs or depending on the

-th bit of the Sender’s input

q0 q1
j x

V[x, {lbi,b}](u, h′ 0, h′ 1) = {HEnc(h′ 0, {lbi,b}) if xu = 0
HEnc(h′ 1, {lbi,b}) if xu = 1

Outputs a Hash encryption of garbled circuit labels
 wrt. {lbi,b} h′ xu

deferred encryption: labels
for are hash-encrypted when

 is evaluated.

{lbi,b}
F̃

V[x, {lbi,b}]

 " message←!Backup

{HEnc(h0, {lbi,b}) if x1 = 0
HEnc(h1, {lbi,b}) if x1 = 1V[x, {lbi,b}](, h0, h1) =x1

Yao’s garbled circuit protocol – depth 2

22

F̃, Ṽ, HEnc(…) (F̃, {lbi,b}) ← Garb(F[x])

{lbi,zroot[i]}
HEnc(Hash(zroot), {lbi,b})

" F[x](j, q0, q1) → qxjx = 0 1

⟹

HDec((, h0 , h1), HEnc(Hash(zroot), {lbi,b}))x1

zroot

Eval(Ṽ, {lbi,zroot[i]})
Then evaluate the garbled circuit:V

Sender

Receiver

x2

0 1

0 1
x2

01

0 1

x10 1!
zroot

hroot = Hash(, h0 , h1)x1

(Ṽ, {lbi,b}) ← Garb(V[x, {lbi,b}])

V[x, {lbi,b}](u, h′ 0, h′ 1) = {HEnc(h′ 0, {lbi,b}) if xu = 0
HEnc(h′ 1, {lbi,b}) if xu = 1

⟹

h0 = Hash(, ,)x2 0 1

This brings the Receiver to the depth 1 case. Using
 and , ! can finish the computation of . HEnc(h0, {lbi,b}) F̃ BP(01)

Backup

Can we use Fully Homomorphic Encryption?

23

Sender Input: x

(c, pk)

c′

Receiver

!
"

Input:

BP

(pk, sk) ← FHE.Gen(1λ)
c ← FHE.Enc(pk, x)

c′ ← FHE.Eval(pk, BP, c) BP(x) ← FHE.Dec(sk, c′)

But we want the party with larger input (!) to learn the

output first, not the party with smaller input (")BP(x)

attempt 1
Backup

24

Sender

Input: x
(pk, c)

c′

Receiver

!
"

Input:

BP

(pk, sk) ← FHE.Gen(1λ)
c ← FHE.Enc(pk, BP) c′ ← FHE.Eval(pk, c, x)

BP(x) ← FHE.Dec(sk, c′)

But the size of the ciphertext,
, depends on ,

violating laconicism requirements
c ← FHE.Enc(pk, BP) |BP |

attempt 2

Encryption of BP(⋅)

Can we use Fully Homomorphic Encryption?
Backup

25

Laconic Oblivious Transfer (OT)
• Regular oblivious
transfer:

Sender

b ∈ {0,1}

 m0, m1

OT

mb

Receiver
Sender

Input:

Large
database
D ∈ {0,1}M

, m0, m1
L ∈ [M]

Receiver

• Laconic oblivious transfer:

h
msg1

Receiver learns mD[L]

msg2

Backup

Backup: Construction of anonymous hash encryption from CDH [BLSV18]

• Algorithms: Setup, Gen, SingleEnc, SingleDec

• Setup : Let and for and

. Output .

• Gen : Output

• SingleEnc : Let , , and

. , let . Output
.

•
SingleDec : Let . Output .

(1λ,1n) (8, g, q) ← 9(1λ) αi,b ← ℤq i ∈ [n]
b ∈ {0,1} crs = ((8, g, q), {gαi,b}i,b)

(crs, x) h =
n

∏
i

gαi,xi

(crs, h, i, m) r ← ℤq ̂gαi,b = hrg−r αi,b

μi,b = gl-enc(̂gαi,b, mi) ∀ b ∈ {0,1}, j ≠ i ̂g αj,b = gr αj,b

ct = ({ ̂gj,b}j≠i,b , {μi,b}b)
(crs, x, i, ct) ̂gαi,xi = ∏

j≠i

̂gαj,xj gl-dec(̂gαi,xi, μi,xi
)

26

gl-enc(x, b) := (α, ⟨α, x⟩ ⊕ b), α ←$ {0,1}n

gl-dec(x, (α, σ)) := σ ⊕ ⟨α, x⟩

27

