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Overview

1. Laconic cryptography & previous work  
2. Branching programs  
3. Laconic branching programs 
4. Building blocks: 

1. Garbled circuits  
2. Hash encryption  
3. Garbled circuits + hash encryption  

5. Our construction at a high level 
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• Can be built from the computational Diffie-Hellman assumption or 

LWE [DG17, BLSV18]
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Overview

1. Laconic cryptography & previous work  
2. Branching programs  
3. Laconic branching programs  
4. Building blocks: 

1. Garbled circuits  
2. Hash encryption  
3. Garbled circuits + hash encryption  

5. Our construction at a high level 
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Recall: Laconic Branching Programs
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SenderInput: 

Input:

x

h

mWith  and , compute BP m BP(x) m

• Only 1 round of communication allowed (2 messages) 

• Communication size grows with: 

• the size of the sender’s element:  

• the max depth of the receiver’s BP 
• Communication complexity does not otherwise depend on 

|x |

|BP |

|BP | ≫ |x |

Receiver

! "hBP( ⋅ )
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"
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x1 x2
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Construction – depth 1 example
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Summary
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BP

x2

0 1
0 1

x2

01
0 1

x10 1

m

Construction – depth 2 example

20

Input: 

h

Receiver Merkle hash

! h1 = Hash( , , )x2 01h0 = Hash( , , )x2 0 1

hroot = Hash( , h0 , h1)x1

Sender

Input:

x = 01

hroot

m

Merkle hash
"

With  and , compute BP m
BP(x)

Which is BP(01) = 1

 "  message→!Backup



Construction – depth 2 example
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Sender

"
Input: x = 01

Input: Receiver

!
BP

x2

0 1

0 1
x2

01

0 1

x10 1

The Sender defines another function:

F[x]( j, q0, q1) → qxj

The Sender defines the function:

Outputs  or  depending on the 

-th bit of the Sender’s input 

q0 q1
j x

V[x, {lbi,b}](u, h′ 0, h′ 1) = {HEnc(h′ 0, {lbi,b}) if xu = 0
HEnc(h′ 1, {lbi,b}) if xu = 1

Outputs a Hash encryption of garbled circuit labels 
 wrt. {lbi,b} h′ xu

deferred encryption: labels  
for  are hash-encrypted when 

 is evaluated. 

{lbi,b}
F̃

V[x, {lbi,b}]

 "  message←!Backup



{HEnc(h0, {lbi,b}) if x1 = 0
HEnc(h1, {lbi,b}) if x1 = 1V[x, {lbi,b}]( , h0, h1) =x1

Yao’s garbled circuit protocol – depth 2

22

F̃, Ṽ, HEnc(…) (F̃, {lbi,b}) ← Garb(F[x])

{lbi,zroot[i]}
HEnc(Hash(zroot), {lbi,b})

" F[x]( j, q0, q1) → qxjx = 0 1

⟹

HDec(( , h0 , h1), HEnc(Hash(zroot), {lbi,b}))x1

zroot

Eval(Ṽ, {lbi,zroot[i]})
Then evaluate the  garbled circuit:V

Sender

Receiver

x2

0 1

0 1
x2

01

0 1

x10 1!
zroot

hroot = Hash( , h0 , h1)x1

(Ṽ, {lbi,b}) ← Garb(V[x, {lbi,b}])

V[x, {lbi,b}](u, h′ 0, h′ 1) = {HEnc(h′ 0, {lbi,b}) if xu = 0
HEnc(h′ 1, {lbi,b}) if xu = 1

⟹

h0 = Hash( , , )x2 0 1

This brings the Receiver to the depth 1 case. Using 
 and , !  can finish the computation of . HEnc(h0, {lbi,b}) F̃ BP(01)

Backup



Can we use Fully Homomorphic Encryption?

23

Sender Input: x

(c, pk)

c′ 

Receiver

!
"

Input: 

BP

(pk, sk) ← FHE.Gen(1λ)
c ← FHE.Enc(pk, x)

c′ ← FHE.Eval(pk, BP, c) BP(x) ← FHE.Dec(sk, c′ )

But we want the party with larger input (!) to learn the 

output  first, not the party with smaller input (")BP(x)

attempt 1
Backup
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Sender

Input: x
(pk, c)

c′ 

Receiver

!
"

Input: 

BP

(pk, sk) ← FHE.Gen(1λ)
c ← FHE.Enc(pk, BP) c′ ← FHE.Eval(pk, c, x)

BP(x) ← FHE.Dec(sk, c′ )

But the size of the ciphertext, 
, depends on , 

violating laconicism requirements
c ← FHE.Enc(pk, BP) |BP |

attempt 2

Encryption of BP( ⋅ )

Can we use Fully Homomorphic Encryption?
Backup



25

Laconic Oblivious Transfer (OT)
• Regular oblivious 
transfer:

Sender

b ∈ {0,1}

 m0, m1

OT

mb

Receiver
Sender

Input: 

Large 
database 
D ∈ {0,1}M

, m0, m1
L ∈ [M]

Receiver

• Laconic oblivious transfer:

h
msg1

Receiver learns mD[L]

msg2

Backup



Backup: Construction of anonymous hash encryption from CDH [BLSV18]

• Algorithms: Setup, Gen, SingleEnc, SingleDec 

• Setup : Let  and  for  and 

. Output .  

• Gen :   Output  

• SingleEnc : Let , , and

. , let . Output 
. 

•
SingleDec : Let . Output .

(1λ,1n) (8, g, q) ← 9(1λ) αi,b ← ℤq i ∈ [n]
b ∈ {0,1} crs = ((8, g, q), {gαi,b}i,b)

(crs, x) h =
n

∏
i

gαi,xi

(crs, h, i, m) r ← ℤq ̂gαi,b = hrg−r αi,b

μi,b = gl-enc( ̂gαi,b, mi) ∀ b ∈ {0,1}, j ≠ i ̂g αj,b = gr αj,b

ct = ({ ̂gj,b}j≠i,b , {μi,b}b)
(crs, x, i, ct) ̂gαi,xi = ∏

j≠i

̂gαj,xj gl-dec( ̂gαi,xi, μi,xi
)

26

gl-enc(x, b) := (α, ⟨α, x⟩ ⊕ b), α ←$ {0,1}n

gl-dec(x, (α, σ)) := σ ⊕ ⟨α, x⟩
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