Laconic Branching Programs from the Diffie-Hellman Assumption

Sanjam Garg, Mohammad Hajiabadi, Peihan Miao, and Alice Murphy

NTTResearch

PKC 2024 eprint.iacr.org/2024/102

 $|y| \gg |x|$

 $|y| \gg |x|$

• *m* hides *x* to the extent that f(x, y) hides *x*

- Only 1 round of communication allowed (2 messages)
- Communication complexity does not depend on |y|

Security:

- h hides y
- *m* hides *x* to the extent that f(x, y) hides *x*

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH which can be used to get PSI
- [This work] gives a protocol for laconic branching programs based on LWE or CDH

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH which can be used to get PSI
- [This work] gives a protocol for laconic branching programs based on LWE or CDH
- [QWW18] gives a laconic protocol for general functionalities based on LWE

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH which can be used to get PSI
- [This work] gives a protocol for laconic branching programs based on LWE or CDH
- [QWW18] gives a laconic protocol for general functionalities based on LWE

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH which can be used to get PSI
- [This work] gives a protocol for laconic branching programs based on LWE or CDH
- [QWW18] gives a laconic protocol for general functionalities based on LWE

There are also constructions for...

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH which can be used to get PSI
- [This work] gives a protocol for laconic branching programs based on LWE or CDH
- [QWW18] gives a laconic protocol for general functionalities based on LWE

There are also constructions for...

laconic PSI from pairings [ALOS22]

- [ABD+21] gives a protocol for Laconic private set intersection (PSI) of sets based on LWE or CDH
 which can be used to get PSI
- [This work] gives a protocol for laconic branching programs based on LWE or CDH
- [QWW18] gives a laconic protocol for general functionalities based on LWE

There are also constructions for...

- Iaconic PSI from pairings [ALOS22]
- laconic oblivious transfer from DDH, CDH, or QR [CDG+17, DG17]

bit-checking branching programs (for the presentation) but our protocol generalizes to more complicated predicates

• Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$
- Evaluate BP(x) starting at the root

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$
- Evaluate BP(x) starting at the root
 - If $x_i = 0$ then go to the left child

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$
- Evaluate BP(x) starting at the root
 - If $x_i = 0$ then go to the left child
 - If $x_i = 1$ then go to the right child

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$
- Evaluate BP(x) starting at the root
 - If $x_i = 0$ then go to the left child
 - If $x_i = 1$ then go to the right child
- Each leaf node encodes either

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, \dots$
- Evaluate BP(x) starting at the root
 - If $x_i = 0$ then go to the left child
 - If $x_i = 1$ then go to the right child
- Each leaf node encodes either
 - 1 (accept) or

∈ {	1,	$,n\}$	(x_1)			
	/				\mathbf{i}	
	0	$\begin{pmatrix} x_2 \\ 1 \end{pmatrix}$		$0 \xrightarrow{x_2}$	$\langle 1 \rangle$	
(:	(x_3)	r_{2}	$\left(r\right)$	5	r	\mathbf{D}
0/		$\begin{pmatrix} x_3 \\ 0 \end{pmatrix}$	$\begin{pmatrix} x_3 \\ 0 \end{pmatrix}$		$\begin{pmatrix} x_3 \\ 0 \end{pmatrix}$	1
					0	
	\smile	$\smile \bigcirc$				

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$
- Evaluate BP(x) starting at the root
 - If $x_i = 0$ then go to the left child
 - If $x_i = 1$ then go to the right child
- Each leaf node encodes either
 - 1 (accept) or
 - $\bullet 0$ (reject)

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$
- Evaluate BP(x) starting at the root
 - If $x_i = 0$ then go to the left child
 - If $x_i = 1$ then go to the right child
- Each leaf node encodes either
 - 1 (accept) or
 - $\bullet 0$ (reject)

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$
- Evaluate BP(x) starting at the root
 - If $x_i = 0$ then go to the left child
 - If $x_i = 1$ then go to the right child
- Each leaf node encodes either
 - 1 (accept) or
 - $\bullet 0$ (reject)

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$
- Evaluate BP(x) starting at the root
 - If $x_i = 0$ then go to the left child
 - If $x_i = 1$ then go to the right child
- Each leaf node encodes either
 - 1 (accept) or
 - $\bullet 0$ (reject)

- Directed tree that can be evaluated on inputs $x \in \{0,1\}^n$
- Each internal node encodes an index $i \in \{1, ..., n\}$
- Evaluate BP(x) starting at the root
 - If $x_i = 0$ then go to the left child
 - If $x_i = 1$ then go to the right child
- Each leaf node encodes either
 - 1 (accept) or
 - $\bullet 0$ (reject)

• This BP describes the set: $\{001^*, 01^*0, 1^{***}\}$.

 $|\mathsf{BP}| \gg |x|$

 $|\mathsf{BP}| \gg |x|$

• Only 1 round of communication allowed (2 messages)

- Only 1 round of communication allowed (2 messages)
- Communication size grows with:

- Only 1 round of communication allowed (2 messages)
- Communication size grows with:
 - the size of the sender's element: |x|

- Only 1 round of communication allowed (2 messages)
- Communication size grows with:
 - the size of the sender's element: |x|
 - the max depth of the receiver's BP

Laconic Branching Programs

- Only 1 round of communication allowed (2 messages)
- Communication size grows with:
 - the size of the sender's element: |x|
 - the max depth of the receiver's BP
- Communication complexity does not otherwise depend on |BP|

Overview

- 1. Laconic cryptography & previous work
- 2. Branching programs
- 3. Laconic branching programs
- 4. Building blocks:
 - 1. Garbled circuits
 - 2. Hash encryption
 - 3. Garbled circuits + hash encryption
- 5. Our construction at a high level

 A garbling scheme consists of garbling, evaluation, and simulation algorithms

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $Garb(C) \rightarrow (\tilde{C}, \{ \mathsf{lb}_{i,0}, \mathsf{lb}_{i,1} \}_i)$ for all input wires i

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $Garb(C) \rightarrow (\tilde{C}, \{ \mathsf{lb}_{i,0}, \mathsf{lb}_{i,1} \}_i)$ for all input wires i

 A garbling scheme consists of garbling, evaluation, and simulation algorithms

•
$$Garb(C) \rightarrow (\tilde{C}, \{ \mathsf{lb}_{i,0}, \mathsf{lb}_{i,1} \}_i)$$
 for all input wires i
 $\hookrightarrow Garb(C) \rightarrow \left(\tilde{C}, \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right)$

2 labels for every input wire: Label $lb_{i,0}$ for wire value = 0 Label $lb_{i,1}$ for wire value = 1

 A garbling scheme consists of garbling, evaluation, and simulation algorithms

• $Garb(C) \rightarrow (\tilde{C}, \{ \mathsf{lb}_{i,0}, \mathsf{lb}_{i,1} \}_i)$ for all input wires i $\hookrightarrow Garb(C) \rightarrow \left(\tilde{C}, \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right)$ ² labels for every input wire: Label $\mathsf{lb}_{i,0}$ for wire value = 0 Label $\mathsf{lb}_{i,1}$ for wire value = 1

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $Garb(C) \rightarrow (\tilde{C}, \{ \mathsf{lb}_{i,0}, \mathsf{lb}_{i,1} \}_i)$ for all input wires i $\hookrightarrow Garb(C) \rightarrow \left(\tilde{C}, \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right)$ • $Eval(\tilde{C}, \{ \mathsf{lb}_{i,x_i} \}_i) \rightarrow C(x)$

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $Garb(C) \rightarrow (\tilde{C}, \{ \mathsf{lb}_{i,0}, \mathsf{lb}_{i,1} \}_i)$ for all input wires i2 labels for every input wire: Label $lb_{i,0}$ for wire value = 0 $Garb(C) \rightarrow \left(\tilde{C}, \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right)$ Label $lb_{i,1}$ for wire value = 1 • $Eval(\tilde{C}, \{\mathsf{lb}_{i, x_i}\}_i) \to C(x)$ One label per input wire. Label 0 or 1 depending on the bits of *x*

- A garbling scheme consists of garbling, evaluation, and simulation algorithms
- $Garb(C) \rightarrow (\tilde{C}, \{ \mathsf{lb}_{i,0}, \mathsf{lb}_{i,1} \}_i)$ for all input wires i2 labels for every input wire: Label $lb_{i,0}$ for wire value = 0 $Garb(C) \rightarrow \left(\tilde{C}, \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right)$ Label $lb_{i,1}$ for wire value = 1 • $Eval(\tilde{C}, \{\mathsf{lb}_{i, x_i}\}_i) \to C(x)$ One label per input wire. Label 0 or 1 depending on • Security: $(\tilde{C}, \{\mathsf{lb}_{i, x_i}\}_i) \approx_c \mathsf{Sim}(C, C(x))$ the bits of *x* 8

• Consists of algorithms Hash, HEnc, HDec

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value

h = Hash(x) acts like public key

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value h = Hash(x) acts like public key
- Decrypt with the pre-image of that hash

x acts like secret key

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value

```
h = \text{Hash}(x) acts like public key
```

x acts like secret key

• Decrypt with the pre-image of that hash

Public parameters are omitted

• Hash function: $Hash(x) \rightarrow h$

x acts like secret key

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value h = Hash(x) acts like public key
- Decrypt with the pre-image of that hash

Public parameters are omitted

• Hash function: $Hash(x) \rightarrow h$

• Encryption: $c \leftarrow \text{HEnc}\left(\text{Hash}(x), \begin{bmatrix} m_{1,0} & m_{2,0} & \dots & m_{n,0} \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{bmatrix} \right)$

x acts like secret key

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value h = Hash(x) acts like public key
- Decrypt with the pre-image of that hash

Public parameters are omitted

- Hash function: $Hash(x) \rightarrow h$
- Encryption: $c \leftarrow \text{HEnc}\left(\text{Hash}(x), \begin{bmatrix} m_{1,0} & m_{2,0} & \dots & m_{n,0} \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{bmatrix} \right)$

• Decryption: $(m_{1, x_1}, m_{2, x_2}, \dots, m_{n, x_n}) \leftarrow \mathsf{HDec}(x, c)$ if $\mathsf{Hash}(x) = h$

x acts like secret key

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value h = Hash(x) acts like public key
- Decrypt with the pre-image of that hash

Public parameters are omitted

• Hash function: $Hash(x) \rightarrow h$

• Encryption: $c \leftarrow \text{HEnc}\left(\begin{array}{ccc} \text{Hash}(x), \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{array} \right)$

• Decryption: $(m_{1,x_1}, m_{2,x_2}, \dots, m_{n,x_n}) \leftarrow \text{HDec}(x,c)$ if Hash(x) = h

Only one $m_{i,b}$ per column is decrypted

x acts like secret key

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value h = Hash(x) acts like public key
- Decrypt with the pre-image of that hash

Public parameters are omitted

• Hash function: $Hash(x) \rightarrow h$

• Encryption: $c \leftarrow \text{HEnc}\left(\begin{array}{ccc} \text{Hash}(x), \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{array} \right)$

• Decryption: $(m_{1, x_1}, m_{2, x_2}, \dots, m_{n, x_n}) \leftarrow \text{HDec}(x, c)$ if Hash(x) = h

• Security: If $x_i = b$, then $m_{i, b-1}$ remains secure, even if Hash(x) = h

Only one $m_{i,b}$ per column is decrypted

x acts like secret key

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value h = Hash(x) acts like public key
- Decrypt with the pre-image of that hash

Public parameters are omitted

• Hash function: $Hash(x) \rightarrow h$

• Encryption: $c \leftarrow \text{HEnc}\left(\text{Hash}(x), \begin{vmatrix} m_{1,0} & m_{2,0} & \dots & m_{n,0} \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{vmatrix} \right)$

• Decryption: $(m_{1,x_1}, m_{2,x_2}, \dots, m_{n,x_n}) \leftarrow \mathsf{HDec}(x,c)$ if $\mathsf{Hash}(x) = h$

• Security: If $x_i = b$, then $m_{i, b-1}$ remains secure, even if Hash(x) = h

• Note that (i, b) is chosen by the encrypter, not the decrypter

Only one $m_{i,b}$ per column is decrypted

x acts like secret key

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value h = Hash(x) acts like public key
- Decrypt with the pre-image of that hash

Public parameters are omitted

- Hash function: $Hash(x) \rightarrow h$
- Encryption: $c \leftarrow \text{HEnc}\left(\text{Hash}(x), \begin{vmatrix} m_{1,0} & m_{2,0} & \dots & m_{n,0} \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{vmatrix} \right)$
- Decryption: $(m_{1,x_1}, m_{2,x_2}, \dots, m_{n,x_n}) \leftarrow \text{HDec}(x,c)$ if Hash(x) = h
- Security: If $x_i = b$, then $m_{i, b-1}$ remains secure, even if Hash(x) = h
 - Note that (i, b) is chosen by the encrypter, not the decrypter
 - Having the "secret key" x is not sufficient knowledge to decrypt

Only one $m_{i,b}$ per column is decrypted

9

x acts like secret key

- Consists of algorithms Hash, HEnc, HDec
- Encrypt w.r.t. a hash value h = Hash(x) acts like public key
- Decrypt with the pre-image of that hash

Public parameters are omitted

- Hash function: $Hash(x) \rightarrow h$
- Encryption: $c \leftarrow \text{HEnc}\left(\text{Hash}(x), \begin{vmatrix} m_{1,0} & m_{2,0} & \dots & m_{n,0} \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{vmatrix} \right)$
- Decryption: $(m_{1, x_1}, m_{2, x_2}, \dots, m_{n, x_n}) \leftarrow \text{HDec}(x, c)$ if Hash(x) = h
- Security: If $x_i = b$, then $m_{i, b-1}$ remains secure, even if Hash(x) = h
 - Note that (i, b) is chosen by the encrypter, not the decrypter
 - Having the "secret key" x is not sufficient knowledge to decrypt

Not actually a (pk, sk) pair

Only one $m_{i,b}$ per column is decrypted

9

Building blocks: Hash Encryption [DG17, BLSV18] x = 1011 $h \leftarrow Hash(x)$

Building blocks: Hash Encryption [DG17, BLSV18] h = 1011 $h \leftarrow Hash(x)$

• The undecrypted messages $(m_{1,0}, m_{2,1}, m_{3,0}, m_{4,0})$ remain secure

- The undecrypted messages $(m_{1,0}, m_{2,1}, m_{3,0}, m_{4,0})$ remain secure
- Can be built from the computational Diffie-Hellman assumption or LWE [DG17, BLSV18]

Garbled Circuits + Hash Encryption

$$Garb(C) \rightarrow \left(\tilde{C}, \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right)$$

Garbled circuit security holds if only one label per column is known

$$\operatorname{Garb}(C) \to \left(\tilde{C}, \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right)$$

Garbled circuit security holds if only one label per column is known

•
$$\mathsf{HEnc}\left(\mathsf{Hash}(x), \begin{bmatrix} m_{1,0} & m_{2,0} & \dots & m_{n,0} \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{bmatrix} \right) \to c$$

Hash decryption only reveals one message per column

$$Garb(C) \rightarrow \left(\tilde{C}, \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right)$$

Garbled circuit security holds if only one label per column is known

$$\operatorname{HEnc}\left(\operatorname{Hash}(x), \begin{bmatrix} m_{1,0} & m_{2,0} & \dots & m_{n,0} \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{bmatrix} \right) \to c$$

Hash decryption only reveals one message per column

• Hash encrypt the garbled labels:

$$\operatorname{Garb}(C) \to \left(\tilde{C}, \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right)$$

Garbled circuit security holds if only one label per column is known

$$\operatorname{HEnc}\left(\operatorname{Hash}(x), \begin{bmatrix} m_{1,0} & m_{2,0} & \dots & m_{n,0} \\ m_{1,1} & m_{2,1} & \dots & m_{n,1} \end{bmatrix} \right) \to c$$

Hash decryption only reveals one message per column

• Hash encrypt the garbled labels:

$$\downarrow_{\mathsf{HEnc}} \left(\mathsf{Hash}(x), \begin{bmatrix} \mathsf{lb}_{1,0} & \mathsf{lb}_{2,0} & \dots & \mathsf{lb}_{n,0} \\ \mathsf{lb}_{1,1} & \mathsf{lb}_{2,1} & \dots & \mathsf{lb}_{n,1} \end{bmatrix} \right) \to c$$

Overview

- 1. Laconic cryptography & previous work
- 2. Branching programs
- 3. Laconic branching programs
- 4. Building blocks:
 - 1. Garbled circuits
 - 2. Hash encryption
 - 3. Garbled circuits + hash encryption
- 5. Our construction at a high level

Recall: Laconic Branching Programs

- Only 1 round of communication allowed (2 messages)
- Communication size grows with:
 - the size of the sender's element: |x|
 - the max depth of the receiver's BP
- Communication complexity does not otherwise depend on |BP|

Generic depth 1 BP

The Sender defines the function:

 $F[x](j, q_0, q_1) \to q_{x_i}$

Input:

x = 0

 χ_1

 x_2

The Sender defines the function:

$$F[x](j, q_0, q_1) \to q_x$$

Outputs q_0 or q_1 depending on the *j*-th bit of the Sender's input *x*

Generic depth 1 BP

The Sender defines the function:

$$F[x](j, q_0, q_1) \to q_x$$

Outputs q_0 or q_1 depending on the j-th bit of the Sender's input x

What if the Receiver could evaluate F[x] on input $(x_2, 1, 0)$? $F[x](x_2, 1, 0) \rightarrow \begin{cases} 1 & \text{if } x_2 = 0 \\ 0 & \text{if } x_2 = 1 \end{cases}$

The Sender defines the function:

$$F[x](j, q_0, q_1) \to q_x$$

Outputs q_0 or q_1 depending on the *j*-th bit of the Sender's input *x*

What if the Receiver could evaluate F[x] on input $(x_2, 1, 0)$? $F[x](x_2, 1, 0) \rightarrow \begin{cases} 1 & \text{if } x_2 = 0 \\ 0 & \text{if } x_2 = 1 \\ \rightarrow 0 \end{cases}$

Construction – depth 1 example Yao's garbled circuit protocol

Receiver

Then evaluate garbled circuit:

 $Eval(\tilde{F}, \{label_{i,z[i]}\})$

$$\operatorname{Eval}(\tilde{F}, \{\operatorname{label}_{i,z[i]}\}) \longrightarrow 0$$

But sending encryptions wrt. both z and z' would destroy garbled circuit security.

But sending encryptions wrt. both z and z' would destroy garbled circuit security.

And sending both Hash(z) and Hash(z') would cause communication cost blow-up (grow with BP size, not BP depth)

But sending encryptions wrt. both z and z' would destroy garbled circuit security.

And sending both Hash(z) and Hash(z') would cause communication cost blow-up (grow with BP size, not BP depth)

We use deferred encryption to fixed these problems – see the paper for details!

 New construction for laconic 2PC of branching programs from LWE or CDH

- New construction for laconic 2PC of branching programs from LWE or CDH
- First laconic BP construction from an assumption other than LWE

- New construction for laconic 2PC of branching programs from LWE or CDH
- First laconic BP construction from an assumption other than LWE

[ABD+21]	[This work]	[QWW18]
Laconic PSI	Laconic BPs	General laconic 2PC
from LWE or CDH	from LWE or CDH	from LWE
Less general		More general

- New construction for laconic 2PC of branching programs from LWE or CDH
- First laconic BP construction from an assumption other than LWE

[ABD+21]	[This work]	[QWW18]
Laconic PSI	Laconic BPs	General Iaconic 2PC
from LWE or CDH	from LWE or CDH	from LWE
Less general		More general

Can realise private set intersection and private set union

- New construction for laconic 2PC of branching programs from LWE or CDH
- First laconic BP construction from an assumption other than LWE

- Can realise private set intersection and private set union
- Wildcards allow receiver's set to be represented concisely

 x_5

0

Construction – depth 2 example

if $x_u = 0$ deferred encryption: labels { $lb_{i,b}$ }if $x_u = 1$ for \tilde{F} are hash-encrypted when $V[x, {lb_{i,b}}]$ is evaluated.t labels

Backup Yao's garbled circuit protocol – depth 2 Sender $F[x](j, q_0, q_1) \to q_{x_i}$ Receiver x = (0)1000 $Z_{\rm root}$ $V[x, \{\mathsf{lb}_{i,b}\}](u, h'_0, h'_1) = \begin{cases} \mathsf{HEnc}(h'_0, \{\mathsf{lb}_{i,b}\}) & \text{if } x_u = 0\\ \mathsf{HEnc}(h'_1, \{\mathsf{lb}_{i,b}\}) & \text{if } x_u = 1 \end{cases}$ $h_{\text{root}} = \text{Hash}((x_1), h_0, h_1)$ 0 0 $(\tilde{F}, \{\mathsf{lb}_{i,b}\}) \leftarrow \mathsf{Garb}(F[x])$ $\tilde{F}, \tilde{V}, \text{HEnc}(\ldots)$ $(\tilde{V}, \{\mathsf{lb}_{i,b}\}) \leftarrow \mathsf{Garb}(V[x, \{\mathsf{lb}_{i,b}\}])$ $Z_{\rm root}$ $\mathsf{HDec}((x_1, h_0, h_1), \mathsf{HEnc}(\mathsf{Hash}(z_{\mathsf{root}}), \{\mathsf{lb}_{i,b}\}))$ $HEnc(Hash(z_{root}), \{lb_{i,b}\})$ $\{\mathsf{lb}_{i,z_{\text{root}}[i]}\}$ $h_0 = \text{Hash}(x_2, 0, 1)$ Then evaluate the V garbled circuit: $\begin{array}{l} \mathsf{HEnc}(h_0, \{\mathsf{lb}_{i,b}\}) & \text{if } x_1 = 0 \\ \mathsf{HEnc}(h_1, \{\mathsf{lb}_{i,b}\}) & \text{if } x_1 = 1 \end{array}$ $\mathsf{Eval}(\tilde{V}, \{\mathsf{lb}_{i,z_{\mathrm{root}}[i]}\}) \Longrightarrow V[x, \{\mathsf{lb}_{i,b}\}](x_1, h_0, h_1) =$ This brings the Receiver to the depth 1 case. Using HEnc(h_0 , {Ib_{*i*,*b*}}) and \tilde{F} , f_{∞} can finish the computation of BP(01). 22

attempt 1 Can we use Fully Homomorphic Encryption? Input: BP Sender Receiver Input: *x* 000 $(pk, sk) \leftarrow \mathsf{FHE}.\mathsf{Gen}(1^{\lambda})$ (c, pk) $c \leftarrow \mathsf{FHE}.\mathsf{Enc}(pk, x)$ C' $c' \leftarrow \mathsf{FHE}.\mathsf{Eval}(pk, \mathsf{BP}, c)$ $BP(x) \leftarrow FHE.Dec(sk, c')$

But we want the party with larger input (\mathbf{M}) to learn the output BP(x) first, not the party with smaller input (\mathbf{w})

Laconic Oblivious Transfer (OT)

Regular oblivious transfer:

• Laconic oblivious transfer:

Receiver learns $m_{D[L]}$

Backup: Construction of anonymous hash encryption from CDH [BLSV18]

- Algorithms: Setup, Gen, SingleEnc, SingleDec
- Setup $(1^{\lambda}, 1^{n})$: Let $(\mathbb{G}, g, q) \leftarrow \mathscr{G}(1^{\lambda})$ and $\alpha_{i,b} \leftarrow \mathbb{Z}_{q}$ for $i \in [n]$ and $b \in \{0,1\}$. Output crs = $((\mathbb{G}, g, q), \{g^{\alpha_{i,b}}\}_{i,b})$. • Gen (crs, x) : Output $h = \prod_{i=1}^{n} g^{\alpha_{i,x_{i}}}$
- SingleEnc(crs, h, i, \boldsymbol{m}): Let $r \leftarrow \mathbb{Z}_q$, $\hat{g}^{\alpha_{i,b}} = h^r g^{-r \alpha_{i,b}}$, and $\mu_{i,b} = \text{gl-enc}(\hat{g}^{\alpha_{i,b}}, \boldsymbol{m}_i)$. $\forall \ b \in \{0,1\}, j \neq i$, let $\hat{g}^{\alpha_{j,b}} = g^{r \alpha_{j,b}}$. Output ct = $(\{\hat{g}^{j,b}\}_{j\neq i,b}, \{\mu_{i,b}\}_b)$.

• SingleDec(crs, x, i, ct): Let $\hat{g}^{\alpha_{i,x_i}} = \prod \hat{g}^{\alpha_{j,x_j}}$. Output gl-dec($\hat{g}^{\alpha_{i,x_i}}, \mu_{i,x_i}$).

.]≠l

gl-enc(*x*, *b*) := (α , $\langle \alpha, x \rangle \oplus b$), $\alpha \leftarrow^{\$} \{0, 1\}^{n}$ gl-dec(*x*, (α, σ)) := $\sigma \oplus \langle \alpha, x \rangle$