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2020

2021

2024

2016

2017

2013

BDD Estimator[1]

BKZ+Enum+Suc Prob of Enum

core-SVP[2]

BKZ+GSA+expected norm

leaky-LWE-Estimator[4]

BKZ+distribution of target norm

lattice-estimator[3]

BKZ+Sieve+GSA+expected norm

Our Work
(Refined) PnjBKZ+Sieve+distribution of target norm

(Lower bound) BKZ+Sieve+GSA+expected norm

Improved leaky-LWE-Estimator[5]

Delete 𝑝!"#$ 

Introduction of LWE Estimators

Two-step mode

BKZ-only mode
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Estimator Mode Reduction 
Process

Search 
Process Terminal Condition Cost

BDD Estimator Two-step BKZ Enumeration Success Probability of last 
Enumeration

𝑇!"#$ + 𝑇%&$'
𝑝($))

core-SVP BKZ-only BKZ / Minimize 𝛽 by GSA and 
expected target norm 𝑇(*"+"(𝛽)

lattice-estimator Two-step BKZ Sieve
Minimize 𝛽 and 𝑑(+, by GSA
and expected target norm 𝑇-./ 𝛽 + 𝑇(*"+"(𝑑(+,)

(Improved) 
leaky-LWE-Estimator BKZ-only BKZ / Estimate 𝛽̅ by distribution 

of target norm 𝑇-./ 𝛽̅

Our work(Refined) Two-step PnjBKZ
with jump>1 Sieve

Minimize 𝑑(+, by 
distribution of target norm 𝑇0&1-./ 𝛽, 𝐽 + 𝑇(*"+"(𝑑(+,)

Our work(Lower 
Bound) Two-step BKZ Sieve

Estimate 𝑑(+, by GSA and 
expected target norm 𝑇(*"+"(𝑑(+,)

Compar ison among d i f ferent  LWE Est imators

Introduction of LWE Estimators
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Our Contribution

8

1. Prove in theory that the Two-step mode is faster in solving uSVP than the BKZ-only mode 

under Geometric Series Assumption.

2. Construct a Refined LWE Hardness Estimator in Two-step mode. Give Experiments: 

(1) Accuracy verification of Success Probability used in Refined LWE Hardness Estimator;

(2) Verification Experiments for Efficiency of Two-step Mode by Refined LWE Hardness 

Estimator.

3. Give a Lower Bound Estimation for LWE in Two-step mode.

4. Re-evaluate the security bit of NIST PQC schemes both by the Refined LWE Hardness 

Estimator and Lower Bound Estimation .
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Heuristic 1 (Gaussian Heuristic) The expected first minimum of a lattice ℒ (denoted as 𝜆!(ℒ(𝑩))) according to

the Gaussian Heuristic denoted by 𝐺𝐻(ℒ) is given by 𝜆! ℒ 𝑩 ≈ 𝐺𝐻 ℒ =
" !

"#! $%&' ℒ
#
!

)
≈ *

+),
* Vol ℒ

#
!.

We also write𝐺𝐻(𝑩) = 𝐺𝐻(ℒ 𝑩 ) and 𝐺𝐻(rr -:/ ) = 𝐺𝐻(𝑩) -:/ ).

Heuristic 2 (Geometric Series Assumption (GSA)) Let 𝑩 be a lattice basis after lattice reduction, then Geometric

Series Assumption states that 𝒃-∗ ≈ 𝛼 * 𝒃-1!∗ , 0 < 𝛼 < 1. Combine the GSA with root-Hermite factor and

𝑉𝑜𝑙 𝐿 𝐵 = ∏-23
*1! 𝒃-∗ , it infers that 𝛼 = 𝛿1

"!
!$# ≈ 𝛿1+.

Heuristic 4 in [7]

Let 𝑩 be a lattice basis after reduction of several PnjBKZ-(𝛽- , 𝐽-) tours, 𝐽- ≤
456 7%

+
. If 𝑩 has same quality with a

BKZ-𝛽 reduced basis, then the basis cannot be further improved by a PnjBKZ-(𝛽, 𝐽) tour for any 𝐽 ≥ 1.
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Theorem 1. Assume Gaussian Heuristic (Heuristic 1),
GSA(Heuristic 2) and Heuristic 4 in [7] hold. Let 𝑑 be
the dimension of lattice, 𝑑 ≥ 100, we assume that
uSVPγ instance can be solved by BKZ-only mode

through a BKZ-𝛽 reduced basis with !"#$
%

≤ 𝛽 ≤ !
&
,

and let the time cost for sieving on 𝑑-dimensional
lattice be 2'(!"'2 where 𝑐 ≤ 0.35. Then, there exists
a parameter choice for the two-step mode which
solves the uSVPγ instance in less time than BKZ-only
mode.

BKZ-only Mode Two-step Mode
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1. How to estimate the success probability of finding
the target vector ?

2. How to estimate the time cost and memory cost?

1. Propose the success probability computation model
combining BKZ and Sieve.

2. Compute the expected time cost and memory cost
through success probability.

Two-step Mode



n W: The event of solving LWE successfully during running Progressive BKZ or the final high-

dimension progressive sieve of Two-step mode.

n W)
(#): The event of solving LWE by BKZ-𝛽 successfully, F)

(#) = ¬W)
(#).

n E)3
(#): The event of solving LWE successfully during the process of running Progressive BKZ: from

BKZ-𝛽# to BKZ-𝛽, .

n W!456
(&) : The event of solving LWE by 𝑑-./-dimensional progressive sieve successfully, F!456

(&) = ¬W!456
(&) .

n E!456
(&) : The event of finding the projection of the target vector exactly after a 𝑑-./-dimensional sieve

during progressive sieving .

14

Our Refined LWE Estimator in Two-step Mode



Heuristic 3. The lattice basis is randomized each time by a reduction of BKZ-𝛽 with larger 𝛽. Then, events𝑊7%
(!) and

𝐹7&
(!) are independent for 𝑖 ≠ 𝑗.

Based on Heuristic 3, Pr E7'
! = ∑-2!: Pr W7%

! ⋀⋀-;!,/2!-1! F7&
! = Pr E7'$#

! + Pr W7'
! * 1 − Pr E7'$#

! .  (2)

The cumulative probability of solving LWE in our refined LWE estimator in Two-step mode:

Pr W = Pr W7#
! + Pr W7"

! ⋀F7#
! + Pr W7"

! ⋀F7"
! ⋀F7#

! +⋯+ Pr W7"
! ⋀⋀/2!=>41! F7&

! + Pr W*()*
+ ⋀⋀/2!=>4 F7&

!

= ∑-2!=>4 Pr W7%
! ⋀⋀-;!,/2!-1! F7&

! + Pr W*()*
+ ⋀⋀/2!=>4 F7&

! (1)

= Pr E7+,-
(!) + 1 − Pr 𝐸7+,-

! * ∑-2*(./0.
*()* Pr[E-

(+)]

= Pr E7+,-
(!) + 1 − Pr 𝐸7+,-

! * Pr W*()*
+ .     (4)
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Heuristic 4. For 𝑖 ∈ 2, … , 𝑑?@A , W-
(+) ⊇ W-1!

+ ⊇ W-1+
+ ⊇ ⋯ ⊇ W+

(+). Then E-
(+) = W-

(+) −W-1!
+ .

Let Pr[W*(./0.1!
+ ] = 0. Based on Heuristic 4, Pr E*()*

+ = Pr 𝑊*()*
(+) − Pr 𝑊*()*1!

(+) .    (3)

If Pr W = 1, then it implies all the
LWE instance with specific average
value and variance could be solved,
time to terminate estimator.

Our Refined LWE Estimator in Two-step Mode

Success event of
each sieve in a
Progressive sieve
is dependently.

Success event of each BKZ is independently.



The cumulative probability of solving LWE in our refined LWE estimator 
in Two-step mode:

Pr W = Pr W7#
! + Pr W7"

! ⋀F7#
! + Pr W7"

! ⋀F7"
! ⋀F7#

! +⋯

+Pr W7"
! ⋀⋀/2!=>41! F7&

! + Pr W*()*
+ ⋀⋀/2!=>4 F7&

!

= ∑-2!=>4 Pr W7%
! ⋀⋀-;!,/2!-1! F7&

! + Pr W*()*
+ ⋀⋀/2!=>4 F7&

!

(1)

= Pr E7+,-
(!) + 1 − Pr 𝐸B+,-

! * ∑-2*(./0.
*()* Pr[E-

(+)]

= Pr E7+,-
(!) + 1 − Pr 𝐸B+,-

! * Pr W*()*
+ .     (4)

Our Refined LWE Estimator in Two-step Mode
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Success Probability Verification Experiments

≈ ≈

0 1

n The predication of the success rate of solving LWE given by Eq. 
(4) is consistent with the experimental results. 
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Total Gate Count: 𝐺 = 𝐺! + 𝐺+

Gate Count of reduction step: 𝐺! = ∑-2!=>4 Pr W7%
! * 1 − Pr E7%$#

! * ∑/23- pbgate 𝛽/ − d4f 𝛽/

Gate Count of search step: 𝐺+ = ∑-2*(./0.
*()* Pr E-

+ * 1 − Pr E7+,-
! * ∑/23=>4 pbgate 𝛽/ − d4f 𝛽/ + pgate 𝑖 − d4f 𝑖

Total Memory Count: 𝐵 = 𝐵! + 𝐵+

Memory Count of reduction step: 𝐵! = ∑-2!=>4 Pr W7%
! * 1 − Pr E7%$#

! * bit 𝛽/ − d4f 𝛽/

Memory Count of search step: 𝐵+ = ∑-2*(./0.
*()* Pr E-

+ * 1 − Pr E7+,-
! * max bit 𝛽/ − d4f 𝛽/ , bit 𝑖 − d4f 𝑖

gate(𝛽): The gate count of a sieve algorithm with dimension 𝛽.

pgate 𝛽 = 𝐶 · gate 𝛽 : The gate count of a progressive sieve algorithm with dimension 𝛽.

pbgate 𝛽 = (𝑑 − 𝛽 + 1) * pgate 𝛽 : The gate count of BKZ-𝛽.

pbgate 𝛽, 𝐽 = *17#!
C

* pgate 𝛽 : The gate count of PnjBKZ- 𝛽, 𝐽 .



n The Two-step mode is faster than that of using 
BKZ reduction only.

Our Refined LWE Estimator in Two-step Mode
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Estimation Comparison with leaky-LWE-Estimator
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Notation

𝑉: Lattice Volume.

𝛿 𝛽 : The root Hermite factor of a BKZ-𝛽 reduced lattice basis.

rhf(𝛿, 𝛽): A new root Hermite factor of lattice basis after one BKZ-𝛽 tour under GSA.

md 𝛿,𝑀 : Minimum dimension for sieving to find the target vector with norm 𝑀.

Heuristic 5

BKZ is the optimal algorithm for lattice reduction, i.e. generating a lattice basis satisfying GSA.

Heuristic 6

The best way of solving uSVPγ or LWE is by performing lattice sieving on a projected sublattice of a reduced lattice

basis satisfying GSA.

Improved Conservative Estimation for LWE 

20
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How to compute rhf(𝛿, 𝛽)?

basis quality 𝛿
lattice Volume 𝑉

𝛿 > 𝛿 𝛽
(Lattice basis could be 

further reduced by 
BKZ-𝛽)

new RHF

1. Compute 𝒃7 after a 
BKZ-𝛽 by GH ℒ8 7::

2. Expand the remain GS-
lengths by GSA.

GS-lengths under GSA

𝛿#𝑉
%
&, 𝛼𝛿#𝑉

%
&, … , 𝛼#;<𝛿#𝑉

%
& ,

𝛼 = 𝛿;
#;<
=#

rhf 𝛿, 𝛽 ≈ :
=8" 4 𝛿

& &'(
&'%

%
&

= 𝛿
&'(
&'% 4 :

=8"

%
)&

𝛿 ≤ 𝛿 𝛽
(Lattice basis cannot 

be further reduced by 
BKZ-𝛽)

rhf(𝛿, 𝛽) = 𝛿
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Find a 𝛽 and 𝑑?@A = md(𝛿 𝛽 ,𝑀) such that
𝑇?D=@= 𝑑?@A ≤ 𝑇EFG 𝛽H + 𝑇?D=@= md 𝛿H, 𝑀

holds for all 𝛽H ≥ 𝛽 + 1 , where 𝛿H = rhf 𝛿 𝛽 , 𝛽H .
Then, output 𝑇?D=@= 𝑑?@A as the Lower Bound
Estimation of LWE(or uSVP).

Theorem 2. Assume that Gaussian Heuristic (Heuristic 1),
GSA(Heuristic 2), Heuristic 5, 6, and Heuristic 4 in [7]
hold, then the estimated cost of our lower bound
estimation is strictly lower than the actual cost for
solving uSVPγ in almost all lattices.

Find a 𝛽 and 𝑑?@A such that one more BKZ-𝛽′ before
last sieve cannot shorten the total cost for solving
LWE( or uSVP).



Improved Conservative Estimation for LWE 
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n Numerically optimize the number of 
LWE samples 𝑚 to minimize the lower-
bound security estimation by Alg. 5. 
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n S0: Trivial Progressive BKZ in
Two-step mode

n Sop: Progressive BKZ in Two-
step mode with strategy
generated by EnumBS[7]

n * :  Gate  Count  of  all 
estimations  in  this  Table 
uses  the  improved  list-
decoding  technique 
proposed by MATZOV[6]

n The security bit drops by
2.2~4.6 bits.

NIST standards

log2G/log2(gates)* log2B/log2(bits)
Δlog2G

Previous
Our Refined 

LWE Estimator Previous
Our Refined 

LWE Estimator

S0 Sop S0 Sop S0 Sop

Kyber512 146.0 142.6 141.4 94.0 99.1 98.1 3.4 4.6

Kyber768 208.9 205.5 204.4 138.7 144 143.2 3.4 4.5

Kyber1024 281.1 277.7 276.9 189.78 195.4 194.6 3.3 4.2

Dilithium-II 152.9 150.8 150.6 98.0 104.3 104.4 2.1 2.3

Dilithium-III 210.2 207.9 207.9 138.8 145.3 145.3 2.3 2.3

Dilithium-V 279.2 277.0 277.0 187.5 194.1 194.1 2.2 2.2

Estimated Results

25

Estimation of NIST standards by Our Refined LWE Estimator



n Our lower bound estimation 
is 4.17∼8.11 bits higher 
than the Core-SVP 
estimation. 

n If considering d4f technique, 
lower bound estimation will 
decrease by 3.42 ∼ 14.76 
bits, which declares that 
Core-SVP model is not 
conservative enough to 
offset the influence of the 
d4f technique.

Estimated Results

26

Estimation of NIST standards by Our Lower Bound LWE Estimator

NIST standards Kyber512 Kyber768 Kyber1024 DilithiumII DilithiumIII DilithiumV

Lattice Dim 𝑑 1003 1424 1885 2049 2561 3582

BKZ 𝛽 406 625 877 423 624 863

CoreSVP 118 182 256 123 182 252

Lattice Dim 𝑑 1025 1477 1954 2039 2672 3461

𝛽>?@ABCD 392 608 857 415 614 853

𝑑EF? 423 641 891 449 649 889

LBE 123.52 187.17 260.17 131.11 189.51 259.59

LBE(d4f) 112.44 172.32 241.24 119.57 174.52 240.69

∆Hardness 5.52 5.17 4.17 8.11 7.51 7.59

∆Hardness(d4f) -5.56 -9.68 -14.76 -3.43 -7.48 -11.31



Article Access: https://eprint.iacr.org/2024/067.pdf

Open Source Code for Estimator: https://github.com/Summwer/lwe-estimator-with-
pnjbkz/tree/refined-lwe-estimator

Open Source Code for Verfication Experiments: https://github.com/Summwer/test-for-refined-
lwe-estimator

Thanks

https://eprint.iacr.org/2024/067.pdf
https://github.com/Summwer/lwe-estimator-with-pnjbkz/tree/refined-lwe-estimator
https://github.com/Summwer/lwe-estimator-with-pnjbkz/tree/refined-lwe-estimator
https://github.com/Summwer/test-for-refined-lwe-estimator
https://github.com/Summwer/test-for-refined-lwe-estimator
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