


Introduction of LWE Estimator

Our Contribution

Efficiency of Two-step Mode

Our Refined LWE Estimator in Two-step Mode
Improved Conservative Estimation for LWE

Estimated Results of Kyber and Dilithium



\

duction of LWE Estimator




Introduction of LWE Estimator

B
B !
d :
Reduction Process
Reduction Process l
! Reduction Process
Reduction Process I
o L
l Reduction Process
Reduction Process !
l Search Process
B’ l
B’

BKZ-only Mode Two-step Mode



Introduction of LWE Estimators

Our Work

lattice-estimator(3l

BKZ+Sieve+GSA+expected norm

Two-step mode

BDD Estimator!'l
BKZ+Enum+Suc Prob of Enum m

(Refined) PnjBKZ+Sieve+distribution of target norm (\

(Lower bound) BKZ+Sieve+GSA+expected norm

2017

Improved leaky-LWE-Estimator(®]
Delete Drift

BKZ-only mode

BKZ+distribution of target norm

leaky-LWE-Estimatori4l

core-SVPI2]

BKZ+GSA+expected norm




Introduction of LWE Estimators

Comparison among different LWE Estimators

Estimator Mode R:fouccetlzn PSr iacfshs Terminal Condition Cost
BDD Estimator Two-step BKZ Enumeration SuccesEsnI::gI:raali:I;tril of last Tredup+ lmum
succ
core-SVP BKZ-only BKZ / '\é')'(”g:(';z dﬁ tg:’g‘:ts‘:o?rrf Tsieve (B)
|lattice-estimator Two-step BKZ Sieve I\gi:(ijn;i)z(zeﬁctaen: tii'gei)};\c?r?r‘:\ Tekz(B) + Tsieve(dspp)
Ieaky(-ll_r{]/\I/DI;?\éz?iZnator BKZ-only BKZ / EStimitfetfrzitdri;t:ri: tion Toxz(P)
Our work(Refined) | Two-step wi;r}jt?n}%ﬂ Sieve distrimﬂi;nriszﬁ”ﬁ;zty norm | [Pniekz(B.)) + Tsieve (dsvp)
Our work(Lower Two-step BKZ Sieve Estimate d,,,, by GSA and Tsieve (dsup)

Bound)

expected target norm







Our Contribution

. Prove in theory that the Two-step mode is faster in solving uSVP than the BKZ-only mode
under Geometric Series Assumption.

. Construct a Refined LWE Hardness Estimator in Two-step mode. Give Experiments:

(1) Accuracy verification of Success Probability used in Refined LWE Hardness Estimator;
(2) Verification Experiments for Efficiency of Two-step Mode by Refined LWE Hardness
Estimator.

. Give a Lower Bound Estimation for LWE in Two-step mode.

. Re-evaluate the security bit of NIST PQC schemes both by the Refined LWE Hardness

Estimator and Lower Bound Estimation .




= /




Efficiency of Two-step Mode

Heuristic 1 (Gaussian Heuristic) The expected first minimum of a lattice L (denoted as A, (L(B))) according to

1

(F(%i+1).Vol(L))a . 1
the Gaussian Heuristic denoted by GH (L) is given by A, (L(B)) ~ GH(L) = = = /% - Vol(£)a.

We also writeGH(B) = GH(L(B)) and GH (rry;.;1)) = GH(Bgj.j))-
Heuristic 2 (Geometric Series Assumption (GSA)) Let B be a lattice basis after lattice reduction, then Geometric

Series Assumption states that ||b}|| = a - ||b;_{|l, 0 < a < 1. Combine the GSA with root-Hermite factor and

2d

Vol(L(B)) = H?;01||b;‘||, itinfersthata = § a1~ §~2.
Heuristic 4 in [7]

d4f(B)
—

Let B be a lattice basis after reduction of several PnjBKZ-(f; ,];) tours, J; < If B has same quality with a

BKZ-f reduced basis, then the basis cannot be further improved by a PnjBKZ-(S,]) tour forany ] = 1.




Efficiency of Two-step Mode

B
f l Theorem 1. Assume Gaussian Heuristic (Heuristic 1),
. Reduction Process GSA(Heuristic 2) and Heuristic 4 in [7] hold. Let d be
Reduction Process l the dimension of lattice, d = 100, we assume that
y Reduction Process uSVP, instance can be solved by BKZ-only mode
Reduction Process i d+16 d
1 through a BKZ-f reduced basis with — = b=
l and let the time cost for sieving on d-dimensional
. ! Reduction Process lattice be 2€%*C where ¢ < 0.35. Then, there exists

Reduction Process 1 . :

] a parameter choice for the two-step mode which
B’ SCONGIRrOcesS solves the uSVP, instance in less time than BKZ-only

!

B’ mode.

BKZ-only Mode Two-step Mode
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Our Refined LWE Estimator in Two-step Mode
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1. How to estimate the success probability of finding
the target vector ?

2. How to estimate the time cost and memory cost?

1. Propose the success probability computation model
combining BKZ and Sieve.

2. Compute the expected time cost and memory cost

through success probability.

Search Process

l
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Our Refined LWE Estimator in Two-step Mode

B W: The event of solving IWE successfully during running Progressive BKZ or the final high-

dimension progressive sieve of Two-step mode.

u Wél): The event of solving IWE by BKZ-f successfully, F[gl) = —|W[gl).

_ Eg): The event of solving IWE successfully during the process of running Progressive BKZ: from

BKZ-B; to BKZ-5; .

u Wc(i?,p: The event of solving LWE by d,,-dimensional progressive sieve successfully, Fgliip = _'Wc(zi),p-
_ Eglzsip: The event of finding the projection of the target vector exactly after a d,,-dimensional sieve

during progressive sieving .




Our Refined LWE Estimator in Two-step Mode

Heuristic 3. The lattice basis is randomized each time by a reduction of BKZ-f3 with larger [5. Then, events Wﬁ(l ) and

1 . ..
Fﬁ(') are independent fori # j. Success event of each BKZ is independently.

Based on Heuristic 3, Pr [E(l)] Zl 1 Pr lW(l)/\ /\l>1] 1 E) = Pr lE[%c)_l] + Pr [WB(I?] : ( — Pr [E(l) ) (2)

Success event of
each sieve in a

Let Pr[W(Z) _.] = 0. Based on Heuristic 4, Pr [E(Z) — Pr lW(Z) ] Pr lW(Z) ) ] (3) !Drogressive sieve
Istart— Asvp svp dsvp—1 is dependently.

Heuristic 4. For i € {2, ..., dgyp}, W 2 W) 2 W) 2 - 2 WP Then EP) = w® — w2

The cumulative probability of solving LWE in our refined LWE estimator in Two-step mode:

Pr[W] = Pr W] )] + Pr [WEOARSD] + Pr [WEDAFDAFSD] + -+ Pr [WEDA A FSD] + Pr [ W A SRS FEY]

_ d (1) (1) (2) d (1)
= (2?21 Pr|W, /\/\l>1] 1 Fg; ) + Pr lwdsvp/\ A5z Fpg. ] (1)
: dsy .
= Pr lEétld (1 Pr [Eﬁ(;)ld ).Zijditart Pr[El.(Z)] If Pr[W] = 1, then it implies all the
D) ] D @) LWE instance with specific average
= Pr [Eﬁend_ + (1 — Pr [E.Ben ) - Pr [stvp (4) value and variance could be solved,

time to terminate estimator.




Our Refined LWE Estimator in Two-step Mode

Lop= Psuc(davp) = Eq. (4) o Lo Psuc(dsvp) = Eq. (4) T
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The cumulative probability of solving LWE in our refined LWE estimator

in Two-step mode:

Pr{w] = Pr|WSD| + Pr|WEPAFSY | + Pr|WEPARDAFSD | + -

(1)

+Pr [WOAASSFRY | + Pr (WD AN FL

(1)

= (zedpr|WSPANST L FR| ) + Pr|w® AnsdEg)|

=pr[gg) |+ (1= Pr(Eg),|) - 2. PriE:”
— Pr [Eéﬁl +(1 Pr lEéz )-Pr [wfljip (4)
Q Q
0 1

B The predication of the success rate of solving LWE given by Eq.

(4) is consistent with the experimental results.




Our Refined LWE Estimator in Two-step Mode

gate(f): The gate count of a sieve algorithm with dimension (.
pgate(f) = C - gate(f): The gate count of a progressive sieve algorithm with dimension f3.
pbgate(8) = (d — B + 1) - pgate(B): The gate count of BKZ-f.

d_
pbgate(B,]) = f =

Gate Count of reduction step: G; = Y24 Pr lW/gll)] - (1 — Pr IEELD : lZ§'=o pbgate (,8]- — d4f(,8j))]
Gate Count of search step: G, = st"p Pr [Egz)] : (1 — Pr lEézld]) : l(Z?Eg pbgate (,8]- — d4f(,8j))) + pgate(i — d4f(i))]

I=dstart

- pgate(B): The gate count of PnjBKZ-(83, ]).

Total Gate Count: G = G + G,
Memory Count of reduction step: B; = Y14 pr [Wﬁ(il) : (1 — Pr [Egzl ) . bit (,8]- - d4f(,8j))
Memory Count of search step: B, = Z?:C?Ztart Pr lEgz)] . (1 — Pr lE.ézld ) - max {bit (,Bj — d4f(,8j)) , bit(i — d4f(i))}

Total Memory Count: B = B, + B,




Our Refined LWE Estimator in Two-step Mode

input :n,m,q,x,S;
output: GBpin;

—6— Two-step[M] —6— Two-step[M] % ;
= leaky-LWE-Estimator[M],l10g,G = 146.0 e e leaky-LWE-Estimator[M],l0g,G = 281.1 1 Function TwoStepLWEE31mator (n, m,q, X, S)
G147 QCN& Bop =398, logaG = 142.6 @282 ] Bop = 879, 10g;G = 2777 2 GBmin « (4+00,+00); GB « (0,0); GBpre < (0,0); peot + 0;
+ 146 - - +281 R P 3 rr < expected length of GS-basis of an LLL reduced LWE, m,q,5 instance
e % ' 0 BED 4 for €S or (B,J) €S do
%144 %279 5 rr < BKZSim(rr, 8); // PnjBKZSim(rr, 8, J) if J > 1;
[V SN 278 6 P(B) «+ Pr [a: — x3|z < (rr[d - [3])2] ;
142 ((398,142.6) 277 (879,277.7) 8 '
380 390 400 410 420 860 870 880 890 900 7 GBeum ¢ (Zb=50 pbgate(b — d4£ (b)), bit(B — d4£(B)));
B B :
(a) Kyber512 (b) Kyber1024 = GBpre = GBpre + GBeum - (1 - pt°t) ’ P(ﬂ)’
9 Ptot < Ptot + (1 = ptot) : P(,B)y GBcsieve ¢ (0,0)3 P(dstart = 1) + 0;
—o— Two-step[M] B s oy e 10 for dyyp  dstart to d do
8 leaky-LWE-Estimator{M],log,G =152.9| | . || |- leaky-LWE-Estimator[M],log,G = 279.2 2 2
@156 ————— Bop = 424, 10g,G = 150.8 @;: = Boy = 874, l0g2G = 277.0 11 P(dsvp) + Pr |z « Xdgup |Z - (GH("[d—dsvp:d])) :
p e 12 GBcum|[0] <= GBcum[0] + pgate(dsvp — d4f(dsvp));
L1sa J 280 | 13 GBcum[1l] ¢+ max{GBcum[1], bit(dsvp — d4£f(dsvp))};
;é; : © 5279 i - 14 GBcsieve «— GBcsieve + GBeum - (1 — ptot) : (P(dsvp) = P(dsvp — 1))
— 152 278 i 15 if ptot + (1 - ptot) ¢ P(dsvp) Z 0.999 then
50 (424,150.8) 277 (874,277.0) = |_ break;
415 420 425 430 435 27%60 865 870 8l735 880 885 890 5 G_B  GByre + GBesiove
(c) Dilithium-II (d) Dilithium-V 18 if GB[0] < GBmin[0] then
L] L] L] o 4 19 GBmm < GB‘
Estimation Comparison with leaky-LWE-Estimator L
20 | return GBuin;
B The Two-step mode is faster than that of using ixlgorrtion 2 Tworstep: W E Hatimator

BKZ reduction only.
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Improved Conservative Estimation for LWE

Notation

I Lattice Volume.

& (B): The root Hermite factor of a BKZ-f reduced lattice basis.

rhf(d, £): A new root Hermite factor of lattice basis after one BKZ-f tour under GSA.

md (8, M): Minimum dimension for sieving to find the target vector with norm M.

Heuristic 5

BKZ is the optimal algorithm for lattice reduction, i.e. generating a lattice basis satisfying GSA.

Heuristic 6

The best way of solving uSVP, or LWE is by performing lattice sieving on a projected sublattice of a reduced lattice

basis satisfying GSA.



Improved Conservative Estimation for LWE

How to compute rhf(§, 5)?

basis quality 6
lattice Volume IV

A

GS-lengths under GSA

1 1 1
(SdVd, adva, ..., ad‘15dVd),

_d-1
a=0 2d

d > 38(B)

(Lattice basis could be
further reduced by
BKZ-B)

§ < 6(B)

(Lattice basis cannot
be further reduced by
BKZ-B)

W

Compute ||by|| after a
BKZ-B by GH(L[0.51)

Expand the remain GS-

lengths by GSA.

W

new RHF

1

B d(d-p) \ ¢
||» rhf(8, B)= %-5 d—1
1

s 2

2Te

iy thi(5, ) = &




Improved Conservative Estimation for LWE

o N O oA N M

10
11

input : M, V « Vol(L);
output: T}
Function LowerBoundEst (M, V < Vol(£)):

for B3 < [y to d do

con < true;

dsvp < md(6(8), M);
for ' < B+ 1 toddo

& < rhf(6(B), B');
if Tsieve(dsvp) > TBKZ (,B/) + Tsieve(md((S/a M)) then
L con <« false; break;

if con then

,Boptimal — ,8,
return /Boptimaly dsvp, Tsieve(dsvp);

Algorithm 4: Lower Bound Estimation

Find a § and dg,, = md(8(B), M) such that
Tsieve (dsvp) < TBKZ (,3’) + Tsieve (md((sl: M))
holds for all B’ > + 1, where & =rhf(6(B),L").

Then, output Tsieve(dsvp) as the Lower Bound
Estimation of LWE(or uSVP).

Find a § and dgy;, such that one more BKZ-3" before

last sieve cannot shorten the total cost for solving
LWE( or uSVP).

Theorem 2. Assume that Gaussian Heuristic (Heuristic 1),
GSA(Heuristic 2), Heuristic 5, 6, and Heuristic 4 in [7]
hold, then the estimated cost of our lower bound

estimation is strictly lower than the actual cost for
solving uSVP, in almost all lattices.



Improved Conservative Estimation for LWE

SR~ T B N R R

input : mmax, n, 0, q;
OUtPUt: 6optima1, dsvp, Tsieve(dsvp);
Function LowerBoundEstWithOptimalM(mmax, N, 0, q):

d:vp — Mmax + N + ]-, Moptimal < Mmax; ,Boptirnal — Mmax + N + 1,
for m <+ mmp.x to 1 do

den+m+1;, Mo -Vd; Vq™;

Beurrent s Asvps Isieve(dsvp) < LowerBoundEst (M, V);
if d3yp > dsvp then

*

L dsvp — Clsvp; Moptimal < M 6optimal — ﬁcurrent;

doptimal < Moptimal +n+ ]-,
* 3k .
return doptimal, ,Boptimaly dsvp7 Tsieve (dsvp )

Algorithm 5: Lower Bound Estimation with Optimal m

B Numerically optimize the number of
LWE samples m to minimize the lower-
bound security estimation by Alg. 5.
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Estimated Results

log,G/log,(gates)” log,B/log,(bits) B S,: Trivial Progressive BKZ in

NIST standards Our Refined Our Refined Alog,G Two-step mode
Previous LWEEstimator p.qi5,s LWE Estimator W S,.: Progressive BKZ in Two-

step mode with strate
S0 Sop S0 Sop P &Y

generated by EnumBSl!

Kyber512 146.0 | 1426 | 141.4 | 940 | 99.1 | 98.1 | 3.4 4.6 B+ Cate Count of all
Kyber768 2089 | 2055 | 204.4 | 1387 | 144 | 1432 | 3.4 4.5 estimations in this Table
Kyber1024 281.1 | 277.7 | 2769 | 189.78 | 195.4 | 1946 | 3.3 4.2 uses the improved list-

decoding technique
Dilithium-II 152.9 | 150.8 | 150.6 | 98.0 | 104.3 | 104.4 | 2.1 2.3 oroposed by MATZOVE
Dilithium-IIl 210.2 | 207.9 | 2079 | 1388 | 1453 | 1453 | 23 2.3 B The security bit drops by
Dilithium-V 2792 | 2770 | 277.0 | 1875 | 1941 | 1941 | 22 | 22 Z2a8bloits

Estimation of NIST standards by Our Refined LWE Estimator



Estimated Results

NIST standards  Kyber512 Kyber768 Kyber1024 Dilithiumll Dilithiumlll DilithiumV B Our lower bound estimation
Lattice Dim d 1003 1424 1885 2049 2561 3582 is 4.17~8.11 bits higher
BKZ 8 406 625 877 423 624 863 than the Core-SVP
CoreSVP 118 182 256 123 182 252 estimation.
B If considering d4f technique,
Lattice Dim d 1025 1477 1954 2039 2672 3461 o .
lower bound estimation will
Boptimal 392 608 857 415 614 853 decrease by 3.42 ~ 14.76
dsvp 423 641 891 449 649 889 bits, which declares that
LBE 123.52 187.17 260.17 131.11 189.51 259.59 Core-SVP model is not
LBE(d4f) 112.44 172.32 241.24 119.57 174.52 240.69 conservative enough to
AHardness 5.52 5.17 4.17 8.11 7.51 7.59 SifsetticinilicREElOMntc
d4f technique.
AHardness (d4f) -5.56 -9.68 -14.76 -3.43 -7.48 -11.31

Estimation of NIST standards by Our Lower Bound LWE Estimator





https://eprint.iacr.org/2024/067.pdf
https://github.com/Summwer/lwe-estimator-with-pnjbkz/tree/refined-lwe-estimator
https://github.com/Summwer/lwe-estimator-with-pnjbkz/tree/refined-lwe-estimator
https://github.com/Summwer/test-for-refined-lwe-estimator
https://github.com/Summwer/test-for-refined-lwe-estimator
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