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Let  be a group and  be a set. We say  acts on  by an action  if G ℰ G ℰ ⋆ : G × ℰ → ℰ

1. (Identity)  for any .1 ⋆ 𝐸 = 𝐸 𝐸 ∈ ℰ

2. (Associativity) 𝑎 ⋆ (𝑏 ⋆ 𝐸 ) = (𝑎𝑏) ⋆ 𝐸
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Also, say we have a (statistically uniform) sampling method over  and a 

distinguished element .

𝐺

E ∈ ℰ

Group Actions
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• Non-interactive Key Exchange: [AC: 

CLMRP18]

• PKE in standard model: [AC:MOT20] 

[PQC:BP21]

• Oblivious Transfer: [EC:LGD21] 

[PKC:BMM+23]

• PRF-

• PRF: [AC:ADMP20] [AC:MOT20]

• OPRF: [AC:BKW20] [PKC:DP24]

• VRF: [Lai23]

• …etc

Applications

4

• Signature-

• Signature Scheme: [EC:DG19], 

[AC:BKV19]

• Linkable Ring Signature: 

[AC:BKP20]

• Threshold Signature: 

[PKC:DM20]

• Accountable Ring Signature; 

Group Signature: [EC:BDLKP22]

• Blind Signature: [C:KLLQ23]
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Assumptions: DLog and CDH
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E

a ⋆ E
• Group Action Inverse Problem (GAIP / DLog):

Given , the goal is to recover .(E, a ⋆ E ) 𝑎

Obviously, 

DLog  CDH.

Is the reverse true?

≥

E a ⋆ E

b ⋆ E ab ⋆ E
• Computational Diffie-Hellman Problem (CDH):

Given , the goal is to compute .(E, a ⋆ E, b ⋆ E ) ab ⋆ E
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• Galbraith, Panny, Smith, Vercauteren [GPSV18] gives a quantum algorithm (Shor’s 

algorithm) solving DLog with  quantum queries to a perfect CDH oracle. 

➡i.e. CDH oracle always outputs the correct answer.

O (log2( |G | ))
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What if the CDH oracle can only succeeds with a chance ,

Can we still have the reduction CDH  DLog?

ϵ = 1/𝗉𝗈𝗅𝗒(λ)

≥

• [AC:MZ22] gives an affirmative answer with a reduction using  queries to an 
imperfect CDH oracle.

Õ(ϵ−21)
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• We give the following improvements:

• a full black-box reduction of

•  queries to the oracle using

• simple math: a bunch of Chernoff bounds + group definition.    

𝒪 (ϵ−4)

Contributions
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• Throughout the slides, let’s assume the oracle has been “self-randomized”:

.

where .

So the success rate will be independent to the input.

𝒪 (a ⋆ E, b ⋆ E) := (r1r2)−1 ⋆ 𝒪 ((r1a) ⋆ E, (r2b) ⋆ E)

r1, r2 ←$ G

Self-randomized

9

Success Failure

ℰ × ℰ

Success

ℰ × ℰ
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• If the error is “quite random” each time, 

then to amplify the success rate is easy by running  multiple times and output the majority.

𝒪(a ⋆ E, b ⋆ E ) = {ab ⋆ E, with ϵ
a random set element (curve), with 1 − ϵ

𝒪

Easy Case
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• [AC:MZ22] considers an imperfect oracle with structured errors.

•  is modeled as:

where  is some unknown group element (aka error).

𝒪

𝒪(a ⋆ E, b ⋆ E ) =

ab ⋆ E, with ϵ
(δ1ab) ⋆ E, with ϵ1

(δ2ab) ⋆ E, with ϵ2
⋮

δi ∈ G

Model: An Oracle w. Structured Errors
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𝒪(a ⋆ E, b ⋆ E)

Estimate the statistical distance.

Return the resulting elements. 
Sieving…

Running …𝒪( □ , E) ⋯ ⋯

⋯

Distinguishing distributions is expensive.

ϵ−8

ϵ−8 ϵ−8

ϵ−16
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𝒪(a ⋆ E, b ⋆ E)

If there is a large gap,
the “heavy elements” above the gap 

are quite stable,
like an ``invariance’’.

Large gap

Intuitively, due to the large gap, 
the last element above the gap &

the first element below the gap are unlikely to be swapped.
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𝒪(a ⋆ E, b ⋆ E)

Compare the heaviest elements.

Return the resulting elements. 
Sieving…

Running …𝒪( □ , E) ⋯ ⋯

⋯

This reduce the # of queries significantly 
(to ).O(ϵ−4)



Gap Finding

17

𝒪(a ⋆ E, b ⋆ E )

1. Run  timesT = O(ϵ−3)



Gap Finding

17

𝒪(a ⋆ E, b ⋆ E ) 2. Find the first large gap of  
    after the -th element.

T ⋅ ϵ2 /4
ϵ−1

1. Run  timesT = O(ϵ−3)



Gap Finding

17

𝒪(a ⋆ E, b ⋆ E ) 2. Find the first large gap of  
    after the -th element.

T ⋅ ϵ2 /4
ϵ−1

1. Run  timesT = O(ϵ−3)

I
3. Record the index .I
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A large gap (might not as large) 
will appear right at the same place.

We introduce an intermediate  

                              to compute the ``invariance’’ (heaviest  elements).
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That is, say , and let . If 

 (the correct answer), then .

View  as an ``invariant’’ wrt the input  Cheaper and more effective for 

comparison.

E′ ∈ L0 ← 𝒪𝖳𝗁𝗋
I (a ⋆ E, b ⋆ E) L′ ← 𝒪𝖳𝗁𝗋

I (E′ , E)
E′ = ab ⋆ E L0 = L′ 

𝒪𝖳𝗁𝗋
I ⇒

Propositions of Thresholding

19

1.  is deterministic with an overwhelming chance when  is chosen properly.

2. .

𝒪𝖳𝗁𝗋
I I

𝒪𝖳𝗁𝗋
I (a ⋆ E, b ⋆ E) = 𝒪𝖳𝗁𝗋

I (ab ⋆ E, E)
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𝒪(a ⋆ E, b ⋆ E)

Compare the heaviest elements.

Return the resulting elements. 
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Running …𝒪𝖳𝗁𝗋
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⋯

This reduce # of sampling significantly.

ϵ−3

ϵ−3 ϵ−3

ϵ−4



Sieving

𝒪 → 𝒪𝖲𝗂𝗏

Improvement

21

Ours [MZ22]

Sampling + Thresholding

(deterministic)

 And compare

An immediate

small subgroup.

A set generates

a small subgroup.

Sampling

(probabilistic)

And compare

Error Terms of 

i.e. 

𝒪𝖲𝗂𝗏

{1} ∪ {δ′ i}i

Query of  
for [GPSV18]

𝒪𝖲𝗂𝗏
Constant in .ϵ poly in .ϵ

ϵ−4 ϵ−16

ϵ−5

ϵ−4

1

ϵ−21Overall 
Cost



Quantum Boost?

There exist classical/quantum algorithms ( -test) from [SODA:CDVV14, 

ITCS:GL20] to accelerate [MZ22] (to roughly ) but not applicable to our 
results.

Lower bound argument for the best plausible tightness between CDH and DLog?

ϵ
ϵ−9

Open Problems
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Thank you for listening!
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