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- Group Actions

Let G be a group and & be a set. We say G acts on & by an action x: GX & — & if
1.  (ldentity) I x E = Eforany E € &.

2. (Associativity) a x (b x E) = (ab) x E

We require the group to be abelian.

We further require regular (transitive and free) in this slides:

« Forany E,,E, € &, there exists aunique g Gs.t. g x E, = E,.

Also, say we have a (statistically uniform) sampling method over G and a

distinguished element E € &.




Applications

] .,
« Non-interactive Key Exchange: [AC: - Signature-
CLMRP18
] « Signature Scheme: [EC:DG19],
« PKE in standard model: [AC:MOT20] [AC:BKV19]
[PQC:BP21]

* Linkable Ring Signature:
» Oblivious Transfer: [EC:LGD21] [AC:BKP20]

PKC:BMM+23
[ +23] - Threshold Signature:

- PRF- [PKC:DM20]

* PRF: [AC:ADMP20] [AC:MOT20] « Accountable Ring Signature;

Group Signature: [EC:BDLKP22]
- OPRF: [AC:BKW20] [PKC:DP24]

« Blind Signature: [C:KLLQ23]

- VRF: [Lai23]
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Assumptions: DLog and CDH

*  Group Action Inverse Problem (GAIP / DLog):

Given (E,a % E), the goal is to recover a.

*  Computational Diffie-Hellman Problem (CDH):

Given (E,a x E, b % E), the goal is to compute ab * E.

Obviously,

DLog > CDH.

Is the reverse true?
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» Galbraith, Panny, Smith, Vercauteren [GPSV18] gives a quantum algorithm (Shor’s
algorithm) solving DLog with O (logz( |G| )) quantum queries to a perfect CDH oracle.

=i.e. CDH oracle always outputs the correct answer.

- What if the CDH oracle can only succeeds with a chance ¢ = 1/po|y(/1

li——

|

1\1 Can we still have the reduction CDH > DLog?
| _ . —

. [AC:MZ22] gives an affirmative answer with a reduction using O(e ~>!) queries to an
imperfect CDH oracle.
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« We give the following improvements:

« a full black-box reduction of

.0 (6_4) queries to the oracle using

« simple math: a bunch of Chernoff bounds + group definition.




W WContent

- Background

v

- Group Actions

 Assumptions: DLog and CDH

* Quantum Equivalence of DLog and CDH
- Contributions
* Technical Overview

« Open Problems




% WSeIf—randomized

v

+ Throughout the slides, let’'s assume the oracle has been “self-randomized”:
O (a % E,bx E) := (r;r,))"! % 0 ((ra) % E, (r,b) x E).

where ry, 1, <4 G.

» So the success rate will be independent to the input.

Success

Success Failure
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Easy Case

+ If the error is “quite random” each time,

ab x E, with €
a random set element (curve), with 1 —¢

@(a*E,b*E):{

then to amplify the success rate is easy by running @ multiple times and output the majority.




Model: An Oracle w. Structured Errors

« [AC:MZ22] considers an imperfect oracle with structured errors.

- O is modeled as:

O(a % E,b%x E) = <

-

where §; € G is some unknown group element (aka error).
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O(a *x E,b xE) = <

(ab % E, with e

(0,ab) x E, with €,
(0,ab) x E, with ¢,

L

OSV(a %« E,b % E) = <

(ab % E, with e

(8ab) x E, with ¢]
(8jab) x E, with ¢

.
.
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[MZ22]’s Strategy

(ab % E, with e
< (0,ab) x E, with €,
(0,ab) x E, with ¢,

Olax E,bxE) =
: (ab*E,  with e
s . S\ab) % E ith ¢/
O(a % E,b % E) = 4 0190 x £ with e

(8bab) x E, with €}

.
.
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3. Retrieve x by enumerating elements in x.S.

e

A——




W The Main Idea in [AC:MZ22] T

We have

(proof’) By definition,




~ The Main Idea in [AC:MZ22]

(proof’) By definition,

(ab x E, with €
(6,ab) x E, with €,

1.0(a *x E,b x E) = 4
(52ab) * E, with €

L .




(proof’) By definition,

-

1.0(a *x E,b x E) = 4

-

2. O(E,ab *x E) = 4

ab x E,
(6,ab) x E,
(6,ab) * E,

L .

ab x E,
(6,ab) x E,
(6,ab) % E,

L .

with €

with €
with 61

with 62
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[MZ22] sieves O(a % E, b % E) proceeds as follows.

v

|
Al
AW A4
Al - .

Xl Estimate the statistical distance.

B Sieving...
l & Return the resulting elements.

& Running O(a x E,b x E)...

& Running O([],E)...
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W WSieving in [MZ22] <

[MZ22] sieves O(a % E, b % E) proceeds as follows.

O(a* E,b % E)

& Running O(a x E,b x E)... |

& Running O([],E)...

B Estimate the statistical distance. \ S

& Sieving... Distinguishing distributions is expensive.
l & Return the resulting elements.
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W Key Idea of our Improvement

& Running O(a x E,b x E)...

O(a*x E,b % E)

|

If there is a large gap,

I Large gap  the “heavy elements” above the gap

are quite stable,

I like an “invariance”.
.-

Intuitively, due to the large gap,
the last element above the gap &

the first element below the gap are unlikely to be swapped.



~ Key Idea
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O(ax E,b % E)

& Running O(a x E,b % E)...

& Running O([],E)...

X Compare the heaviest elements. . . -
B Sieving... This reduce the # of queries significantly

—4
1 & Return the resulting elements. (to 0(6 ))
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1.Run T = O(e ) times
O(a x E,b % E) —’ 2 Find the f|rst large gap of T - €°/4
. after the ¢ ~!-th element.

g




W WGap Finding
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" l 3. Record the index 1.

I 2. Find the f|rst large gap of T - €°/4
. after the ¢~ !-th element.

1.Run T = O(e ) times

O(a %« E,b x E) -’
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W Thresholding using / )

We introduce an intermediate @IThr(a *x E.b % E)

to compute the ““invariance” (heaviest I elements).

1
1.Run T = O(e ) times
O(a % E,b * E) . A large gap (might not as large)
’ will appear right at the same place.
(5lab) * E 2. Return the heaviest
(Gab) xE . abxE I elements
sab)xE__(Gab)x E (Ignoring the frequency).




Propositions of Thresholding

j, 1. @IThr is deterministic with an overwhelming chance when I is chosen properly.
|
|1( Thr Thr

= —

> Thatis, say E' € L < @IThr(a *x E,b % E),and let L' « @IThr(E’,E). If
E’" = ab % E (the correct answer), then L, = L.

” View @IThr as an “invariant” wrt the input = Cheaper and more effective for

comparison.
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O(a x E,b x E)

& Running @IThr(a *x E,bxFE)... |

& Running @}rhr( [1,.E)...

E Compare the heaviest elements.

& Sieving... This reduce # of sampling significantly.
1 & Return the resulting elements.
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O(a*x E,b % E)

& Running @IThr(a *x E.bx FE)... |

& Running 61"([1, E)...

E} Compare the heaviest elements.

& Sieving... This reduce # of sampling significantly.
| & Return the resulting elements.




Improvement

Ours [MZ22]

Sieving Sampling + Thresholding Sampling

(deterministic) (probabilistic)

6 — O
And compare And compare
Siv . .
Error Terms of ©® An immediate A set generates
ie. {1} U {0/}
tHu o small subgroup. a small subgroup.

Query of OS5
for [GPSV18]

Overall
Cost




Open Problems

o Quantum Boost?

~ There exist classical/quantum algorithms ( ) from [SODA:CDVV14,
ITCS:GL20] to accelerate [MZ22] (to roughly €_9) but not applicable to our

results.

> Lower bound argument for the best plausible tightness between CDH and DLog?
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