A Simpler and Tighter Reduction from DLog to CDH for Abelian Group Actions
la.cr/2024/191; PKC2024
Steven Galbraith, Yi-Fu Lai, Hart Montgomery CASA / Ruhr-University Bochum University of Auckland, Linux Foundation

Content

- Background
- Group Actions
- Assumptions: DLog and CDH
- Quantum Equivalence of DLog and CDH
- Contributions
- Technical Overview
- Open Problems

Group Actions

Let G be a group and \mathscr{E} be a set. We say G acts on \mathscr{E} by an action $\star: G \times \mathscr{E} \rightarrow \mathscr{E}$ if

1. (Identity) $l \star E=E$ for any $E \in \mathscr{E}$.
2. (Associativity) $a \star(b \star E)=(a b) \star E$

Group Actions

Let G be a group and \mathscr{E} be a set. We say G acts on \mathscr{E} by an action $\star: G \times \mathscr{E} \rightarrow \mathscr{E}$ if

1. (Identity) $l \star E=E$ for any $E \in \mathscr{E}$.
2. (Associativity) $a \star(b \star E)=(a b) \star E$

We require the group to be abelian.
We further require regular (transitive and free) in this slides:

- For any $E_{1}, E_{2} \in \mathscr{E}$, there exists a unique $g \in G$ s.t. $g \star E_{1}=E_{2}$.

Group Actions

Let G be a group and \mathscr{E} be a set. We say G acts on \mathscr{E} by an action $\star: G \times \mathscr{E} \rightarrow \mathscr{E}$ if

1. (Identity) $l \star E=E$ for any $E \in \mathscr{E}$.
2. (Associativity) $a \star(b \star E)=(a b) \star E$

We require the group to be abelian.
We further require regular (transitive and free) in this slides:

- For any $E_{1}, E_{2} \in \mathscr{E}$, there exists a unique $g \in G$ s.t. $g \star E_{1}=E_{2}$.

Group Actions

Let G be a group and \mathscr{E} be a set. We say G acts on \mathscr{E} by an action $\star: G \times \mathscr{E} \rightarrow \mathscr{E}$ if

1. (Identity) $l \star E=E$ for any $E \in \mathscr{E}$.
2. (Associativity) $a \star(b \star E)=(a b) \star E$

We require the group to be abelian.
We further require regular (transitive and free) in this slides:

- For any $E_{1}, E_{2} \in \mathscr{E}$, there exists a unique $g \in G$ s.t. $g \star E_{1}=E_{2}$.

Also, say we have a (statistically uniform) sampling method over G and a distinguished element $E \in \mathscr{E}$.

Applications

- Non-interactive Key Exchange: [AC: CLMRP18]
- PKE in standard model: [AC:MOT20] [PQC:BP21]
- Oblivious Transfer: [EC:LGD21] [PKC:BMM+23]
- PRF-
- PRF: [AC:ADMP20] [AC:MOT20]
- OPRF: [AC:BKW20] [PKC:DP24]
- VRF: [Lai23]
- Signature-
- Signature Scheme: [EC:DG19], [AC:BKV19]
- Linkable Ring Signature:
[AC:BKP20]
- Threshold Signature:
[PKC:DM20]
- Accountable Ring Signature;

Group Signature: [EC:BDLKP22]

- Blind Signature: [C:KLLQ23]

Assumptions: DLog and CDH

- Group Action Inverse Problem (GAIP / DLog):

Given $(E, a \star E)$, the goal is to recover a.

Assumptions: DLog and CDH

- Group Action Inverse Problem (GAIP / DLog):

Given $(E, a \star E)$, the goal is to recover a.

- Computational Diffie-Hellman Problem (CDH):

Given $(E, a \star E, b \star E)$, the goal is to compute $a b \star E$.

Assumptions: DLog and CDH

- Group Action Inverse Problem (GAIP / DLog):

Given $(E, a \star E)$, the goal is to recover a.

- Computational Diffie-Hellman Problem (CDH):

Given $(E, a \star E, b \star E)$, the goal is to compute $a b \star E$.

Obviously,

$$
\mathrm{DLog} \geq \mathrm{CDH}
$$

Is the reverse true?

Full Quantum Equivalence of DLog and CDH

Full Quantum Equivalence of DLog and CDH

- Galbraith, Panny, Smith, Vercauteren [GPSV18] gives a quantum algorithm (Shor's algorithm) solving DLog with $O\left(\log _{2}(|G|)\right)$ quantum queries to a perfect CDH oracle.
\Rightarrow i.e. CDH oracle always outputs the correct answer.

Full Quantum Equivalence of DLog and CDH

- Galbraith, Panny, Smith, Vercauteren [GPSV18] gives a quantum algorithm (Shor's algorithm) solving DLog with $O\left(\log _{2}(|G|)\right)$ quantum queries to a perfect CDH oracle.
\Rightarrow i.e. CDH oracle always outputs the correct answer.

What if the CDH oracle can only succeeds with a chance $\epsilon=1 /$ poly (λ),
Can we still have the reduction $\mathrm{CDH} \geq$ DLog?

Full Quantum Equivalence of DLog and CDH

- Galbraith, Panny, Smith, Vercauteren [GPSV18] gives a quantum algorithm (Shor's algorithm) solving DLog with $O\left(\log _{2}(|G|)\right)$ quantum queries to a perfect CDH oracle.
\Rightarrow i.e. CDH oracle always outputs the correct answer.

> What if the CDH oracle can only succeeds with a chance $\epsilon=1 /$ poly (λ), $$
\text { Can we still have the reduction } C D H \geq \operatorname{DLog} ?
$$

- [AC:MZ22] gives an affirmative answer with a reduction using $\tilde{O}\left(\epsilon^{-21}\right)$ queries to an imperfect CDH oracle.

Contributions

Contributions

- We give the following improvements:
- a full black-box reduction of
- $\mathcal{O}\left(\epsilon^{-4}\right)$ queries to the oracle using
- simple math: a bunch of Chernoff bounds + group definition.

Content

- Background
- Group Actions
- Assumptions: DLog and CDH
- Quantum Equivalence of DLog and CDH
- Contributions
- Technical Overview
- Open Problems

Self-randomized

- Throughout the slides, let's assume the oracle has been "self-randomized":

$$
\mathcal{O}(a \star E, b \star E):=\left(r_{1} r_{2}\right)^{-1} \star \mathcal{O}\left(\left(r_{1} a\right) \star E,\left(r_{2} b\right) \star E\right) \text {. }
$$

where $r_{1}, r_{2} \leftarrow_{\$} G$.

So the success rate will be independent to the input.

Success

$\mathscr{E} \times \mathscr{E}$

Easy Case

Easy Case

- If the error is "quite random" each time,

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \text { a random set element (curve), } & \text { with } 1-\epsilon\end{cases}
$$

then to amplify the success rate is easy by running \mathcal{O} multiple times and output the majority.

Model: An Oracle w. Structured Errors

- [AC:MZ22] considers an imperfect oracle with structured errors.
- 0 is modeled as:

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left.\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2}\end{cases}
$$

where $\delta_{i} \in G$ is some unknown group element (aka error).

[MZ22]'s Strategy

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \end{cases}
$$

[MZ22]'s Strategy

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \mathcal{O}^{\operatorname{Siv}}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1}^{\prime} a b\right) \star E, & \text { with } \epsilon_{1}^{\prime} \\ \left(\delta_{2}^{\prime} a b\right) \star E, & \text { with } \epsilon_{2}^{\prime} \\ \vdots\end{cases} \end{cases}
$$

[MZ22]'s Strategy

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \mathcal{O}^{\operatorname{Siv}}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1}^{\prime} a b\right) \star E, & \text { with } \epsilon_{1}^{\prime} \\ \left(\delta_{2}^{\prime} a b\right) \star E, & \text { with } \epsilon_{2}^{\prime} \\ \vdots\end{cases} \end{cases}
$$

Let $x \star E$ be the DLog challenge.

[MZ22]'s Strategy

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \mathcal{O}^{\text {Siv }}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1}^{\prime} a b\right) \star E, & \text { with } \epsilon_{1}^{\prime} \\ \left(\delta_{2}^{\prime} a b\right) \star E, & \text { with } \epsilon_{2}^{\prime} \\ \vdots\end{cases} \end{cases}
$$

Let $x \star E$ be the DLog challenge.

1. Sieving the oracle \mathcal{O} into \mathcal{O}^{\prime} where the errors δ_{i}^{\prime} are all in some SMALL subgroup S.

- $\mathcal{O}^{\text {Siv }}$ is a perfect CDH oracle on the group G / S acting on the set $\mathscr{X} /\{S \star E\}$.

[MZ22]'s Strategy

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \mathcal{O}^{\text {Siv }}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1}^{\prime} a b\right) \star E, & \text { with } \epsilon_{1}^{\prime} \\ \left(\delta_{2}^{\prime} a b\right) \star E, & \text { with } \epsilon_{2}^{\prime} \\ \vdots\end{cases} \end{cases}
$$

Let $x \star E$ be the DLog challenge.

1. Sieving the oracle \mathcal{O} into \mathcal{O}^{\prime} where the errors δ_{i}^{\prime} are all in some SMALL subgroup S.

- $\mathcal{O}^{\text {Siv }}$ is a perfect CDH oracle on the group G / S acting on the set $\mathscr{X} /\{S \star E\}$.

2. Apply [GPSV18] to solving DLog of $x \star E$ over $G / S \curvearrowright \mathscr{X} /\{S \star E\}$ and obtain $x S$.

[MZ22]'s Strategy

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \mathcal{O}^{\text {Siv }}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1}^{\prime} a b\right) \star E, & \text { with } \epsilon_{1}^{\prime} \\ \left(\delta_{2}^{\prime} a b\right) \star E, & \text { with } \epsilon_{2}^{\prime} \\ \vdots\end{cases} \end{cases}
$$

Let $x \star E$ be the DLog challenge.

1. Sieving the oracle \mathcal{O} into \mathcal{O}^{\prime} where the errors δ_{i}^{\prime} are all in some SMALL subgroup S.

- $\mathcal{O}^{\text {Siv }}$ is a perfect CDH oracle on the group G / S acting on the set $\mathscr{X} /\{S \star E\}$.

2. Apply [GPSV18] to solving DLog of $x \star E$ over $G / S \curvearrowright \mathscr{X} /\{S \star E\}$ and obtain $x S$.
3. Retrieve x by enumerating elements in $x S$.

[MZ22]'s Strategy

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \mathcal{O}^{\operatorname{Siv}}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1}^{\prime} a b\right) \star E, & \text { with } \epsilon_{1}^{\prime} \\ \left(\delta_{2}^{\prime} a b\right) \star E, & \text { with } \epsilon_{2}^{\prime} \\ \vdots\end{cases} \end{cases}
$$

ϵ^{-16} et $x \star E$ be the DLog challenge.

1. Sieving the oracle \mathcal{O} into \mathcal{O}^{\prime} where the errors δ_{i}^{\prime} are all in some SMALL subgroup S.

- $\mathcal{O}^{\text {Siv }}$ is a perfect CDH oracle on the group G / S acting on the set $\mathscr{X} /\{S \star E\}$.

2. Apply [GPSV18] to solving DLog of $x \star E$ over $G / S \curvearrowright \mathscr{X} /\{S \star E\}$ and obtain $x S$.
3. Retrieve x by enumerating elements in $x S$.

[MZ22]'s Strategy

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \mathcal{O}^{\text {Siv }}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1}^{\prime} a b\right) \star E, & \text { with } \epsilon_{1}^{\prime} \\ \left(\delta_{2}^{\prime} a b\right) \star E, & \text { with } \epsilon_{2}^{\prime} \\ \vdots\end{cases} \end{cases}
$$

ϵ^{-16} et $x \star E$ be the DLog challenge.

1. Sieving the oracle \mathcal{O} into \mathcal{O}^{\prime} where the errors δ_{i}^{\prime} are all in some SMALL subgroup S.

- $\mathcal{O}^{\text {Siv }}$ is a perfect CDH oracle on the group G / S acting on the set $\mathscr{X} /\{S \star E\}$.

2. Apply [GPSV18] to solving DLog of $x \star E$ over $G / S \curvearrowright \mathscr{X} /\{S \star E\}$ and obtain $x S$.
3. Retrieve x by enumerating elements in $x S$.

[MZ22]'s Strategy

$$
\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \mathcal{O}^{\text {Siv }}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1}^{\prime} a b\right) \star E, & \text { with } \epsilon_{1}^{\prime} \\ \left(\delta_{2}^{\prime} a b\right) \star E, & \text { with } \epsilon_{2}^{\prime} \\ \vdots\end{cases} \end{cases}
$$

ϵ^{-16} et $x \star E$ be the DLog challenge.

1. Sieving the oracle \mathcal{O} into \mathcal{O}^{\prime} where the errors δ_{i}^{\prime} are all in some SMALL subgroup S.

- $\mathcal{O}^{\text {Siv }}$ is a perfect CDH oracle on the group G / S acting on the set $\mathscr{X} /\{S \star E\}$.

2. Apply [GPSV18] to solving DLog of $x \star E$ over $G / S \curvearrowright \mathscr{X} /\{S \star E\}$ and obtain $x S$.
3. Retrieve x by enumerating elements in $x S$.

The Main Idea in [AC:MZ22]

We have

$$
\mathcal{O}(a \star E, b \star E) \sim \mathcal{O}(E, a b \star E) .
$$

\langle proof \rangle By definition,

The Main Idea in [AC:MZ22]

We have

$$
\mathcal{O}(a \star E, b \star E) \sim \mathcal{O}(E, a b \star E) .
$$

$\langle p r o o f\rangle$ By definition,

$$
\text { 1. } \mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \end{cases}
$$

The Main Idea in [AC:MZ22]

We have

$$
\mathcal{O}(a \star E, b \star E) \sim \mathcal{O}(E, a b \star E) .
$$

$\langle p r o o f\rangle$ By definition,

1. $\mathcal{O}(a \star E, b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \end{cases}$
2. $\mathcal{O}(E, a b \star E)= \begin{cases}a b \star E, & \text { with } \epsilon \\ \left(\delta_{1} a b\right) \star E, & \text { with } \epsilon_{1} \\ \left(\delta_{2} a b\right) \star E, & \text { with } \epsilon_{2} \\ \vdots & \end{cases}$

Sieving in [MZ22]

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

$$
\mathcal{O}(a \star E, b \star E)
$$

Running $\mathcal{O}(a \star E, b \star E) \ldots$

Sieving in [MZ22]

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

屡 Running $\mathcal{O}(a \star E, b \star E) \ldots$

$$
\mathcal{O}(a \star E, b \star E)
$$

圈 Running $\mathcal{O}(\square, E) \ldots$

Sieving in [MZ22]

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

䑁 Running $\mathcal{O}(a \star E, b \star E) \ldots$

圈 Running $\mathcal{O}(\square, E) \ldots$

$$
\mathcal{O}(a \star E, b \star E)
$$

Estimate the statistical distance.

Sieving in [MZ22]

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

姿 Running $\mathcal{O}(a \star E, b \star E) \ldots$

$$
\mathcal{O}(a \star E, b \star E)
$$

, Running $\mathcal{O}(\square, E) \ldots$

Estimate the statistical distance.
䍙 Sieving...

Sieving in [MZ22]

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

䑁 Running $\mathcal{O}(a \star E, b \star E) \ldots$
, Running $\mathcal{O}(\square, E) \ldots$

$$
\mathcal{O}(a \star E, b \star E)
$$

Estimate the statistical distance.
㫷 Sieving...
Return the resulting elements.

Sieving in [MZ22]

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

Running $\mathcal{O}(a \star E, b \star E) \ldots$

脿 Running $\mathcal{O}(\square, E) \ldots$

Estimate the statistical distance.
Sieving...
Distinguishing distributions is expensive.
Return the resulting elements.

Key Idea of our Improvement

圈 Running $\mathcal{O}(a \star E, b \star E) \ldots$

Key Idea of our Improvement

圈 Running $\mathcal{O}(a \star E, b \star E) \ldots$

$$
\mathcal{O}(a \star E, b \star E)
$$

If there is a large gap,
Large gap the "heavy elements" above the gap are quite stable, like an `invariance".

Key Idea of our Improvement

圈 Running $\mathcal{O}(a \star E, b \star E) \ldots$

If there is a large gap, the "heavy elements" above the gap are quite stable, like an `'invariance".

Intuitively, due to the large gap,
the last element above the gap \& the first element below the gap are unlikely to be swapped.

Key Idea

$$
\mathcal{O}(a \star E, b \star E)
$$

莶 Running $\mathcal{O}(a \star E, b \star E) \ldots$

屡 Compare the heaviest elements.
Sieving...
Return the resulting elements.

This reduce the \# of queries significantly (to $O\left(\epsilon^{-4}\right)$).

Gap Finding

1. Run $T=O\left(\epsilon^{-3}\right)$ times $\mathcal{O}(a \star E, b \star E)$

Gap Finding

1. Run $T=O\left(\epsilon^{-3}\right)$ times $\mathcal{O}(a \star E, b \star E)$

2. Find the first large gap of $T \cdot \epsilon^{2} / 4$ after the ϵ^{-1}-th element.

Gap Finding

Thresholding using I

We introduce an intermediate $\mathcal{O}_{I}^{\mathrm{Thr}}(a \star E, b \star E)$
to compute the "invariance" (heaviest I elements).
I
$\mathcal{O}(a \star E, b \star E)$

Thresholding using I

We introduce an intermediate $\mathcal{O}_{I}^{\mathrm{Thr}}(a \star E, b \star E)$
to compute the "invariance" (heaviest I elements).
I

1. Run $T=O\left(\epsilon^{-3}\right)$ times $\mathcal{O}(a \star E, b \star E)$

Thresholding using I

We introduce an intermediate $\mathcal{O}_{I}^{\mathrm{Thr}}(a \star E, b \star E)$
to compute the "invariance" (heaviest I elements).

I

1. Run $T=O\left(\epsilon^{-3}\right)$ times $\mathcal{O}(a \star E, b \star E)$

$$
\left.\begin{array}{l}
\left(\delta_{1} a b\right) \star E \\
\quad\left(\delta_{2} a b\right) \star E \quad \ldots
\end{array} \quad a b \star E\right)
$$

2. Return the heaviest I elements (Ignoring the frequency).

Thresholding using I

We introduce an intermediate $\mathcal{O}_{I}^{\mathrm{Thr}}(a \star E, b \star E)$
to compute the "invariance" (heaviest I elements).

1. Run $T=O\left(\epsilon^{-3}\right)$ times $\mathcal{O}(a \star E, b \star E)$

$$
\left.\begin{array}{l}
\left(\delta_{1} a b\right) \star E \\
\left(\delta_{2} a b\right) \star E \quad \ldots \\
\left(\delta_{3} a b\right) \star E
\end{array} \quad\left(\delta_{I} a b \star E\right) \star E\right)
$$

A large gap (might not as large) will appear right at the same place.
2. Return the heaviest I elements (Ignoring the frequency).

Propositions of Thresholding

1. $\mathcal{O}_{I}^{\mathrm{Thr}}$ is deterministic with an overwhelming chance when I is chosen properly.
2. $\mathcal{O}_{I}^{\mathrm{Thr}}(a \star E, b \star E)=\mathcal{O}_{I}^{\mathrm{Thr}}(a b \star E, E)$.

That is, say $E^{\prime} \in L_{0} \leftarrow \mathcal{O}_{I}^{\mathrm{Thr}}(a \star E, b \star E)$, and let $L^{\prime} \leftarrow \mathcal{O}_{I}^{\mathrm{Thr}}\left(E^{\prime}, E\right)$. If $E^{\prime}=a b \star E$ (the correct answer), then $L_{0}=L^{\prime}$.
\otimes View $\mathscr{O}_{I}^{\text {Thr }}$ as an "invariant" wrt the input \Rightarrow Cheaper and more effective for comparison.

Our Sieving

Running $\mathscr{O}_{I}^{\mathrm{Thr}}(a \star E, b \star E) \ldots$

殹Running $\mathcal{O}_{I}^{\text {Thr }}(\square, E) \ldots$

$$
\mathcal{O}(a \star E, b \star E)
$$

，䑁 Compare the heaviest elements．
㾗Sieving．．．
Return the resulting elements．
This reduce \＃of sampling significantly．

Our Sieving

资 Running $\mathcal{O}_{I}^{\text {Thr }}(a \star E, b \star E) \ldots$

臬 Running $\mathcal{O}_{I}^{\text {Thr }}(\square, E) \ldots$

$$
\mathcal{O}(a \star E, b \star E)
$$

Improvement

Open Problems

- Quantum Boost?
- There exist classical/quantum algorithms (ϵ-test) from [SODA:CDVV14, ITCS:GL20] to accelerate [MZ22] (to roughly ϵ^{-9}) but not applicable to our results.
- Lower bound argument for the best plausible tightness between CDH and DLog?

