A Simpler and Tighter Reduction from DLog to CDH for Abelian Group Actions

la.cr/2024/191; PKC2024

Steven Galbraith, Yi-Fu Lai, Hart Montgomery

CASA / Ruhr-University Bochum University of Auckland, Linux Foundation

Content

- Background
 - Group Actions
 - Assumptions: DLog and CDH
 - Quantum Equivalence of DLog and CDH
- Contributions
- Technical Overview
- Open Problems

Let G be a group and \mathscr{C} be a set. We say G acts on \mathscr{C} by an action $\star : G \times \mathscr{C} \to \mathscr{C}$ if

- 1. (Identity) $1 \star E = E$ for any $E \in \mathscr{C}$.
- 2. (Associativity) $a \star (b \star E) = (ab) \star E$

Let *G* be a group and \mathscr{C} be a set. We say *G* acts on \mathscr{C} by an action $\star : G \times \mathscr{C} \to \mathscr{C}$ if

- 1. (Identity) $1 \star E = E$ for any $E \in \mathscr{C}$.
- 2. (Associativity) $a \star (b \star E) = (ab) \star E$

We require the group to be abelian.

We further require regular (transitive and free) in this slides:

• For any $E_1, E_2 \in \mathcal{C}$, there exists a unique $g \in G$ s.t. $g \star E_1 = E_2$.

Let *G* be a group and \mathscr{C} be a set. We say *G* acts on \mathscr{C} by an action $\star : G \times \mathscr{C} \to \mathscr{C}$ if

- 1. (Identity) $1 \star E = E$ for any $E \in \mathscr{C}$.
- 2. (Associativity) $a \star (b \star E) = (ab) \star E$

We require the group to be abelian.

We further require regular (transitive and free) in this slides:

• For any $E_1, E_2 \in \mathcal{C}$, there exists a unique $g \in G$ s.t. $g \star E_1 = E_2$.

Let *G* be a group and \mathscr{C} be a set. We say *G* acts on \mathscr{C} by an action $\star : G \times \mathscr{C} \to \mathscr{C}$ if

- 1. (Identity) $1 \star E = E$ for any $E \in \mathscr{C}$.
- 2. (Associativity) $a \star (b \star E) = (ab) \star E$

We require the group to be abelian.

We further require regular (transitive and free) in this slides:

• For any $E_1, E_2 \in \mathcal{C}$, there exists a unique $g \in G$ s.t. $g \star E_1 = E_2$.

Also, say we have a (statistically uniform) sampling method over *G* and a distinguished element $E \in \mathscr{C}$.

Applications

- Non-interactive Key Exchange: [AC: CLMRP18]
- PKE in standard model: [AC:MOT20]
 [PQC:BP21]
- Oblivious Transfer: [EC:LGD21]
 [PKC:BMM+23]
- PRF-
 - PRF: [AC:ADMP20] [AC:MOT20]
 - OPRF: [AC:BKW20] [PKC:DP24]
 - VRF: [Lai23]

- Signature-
 - Signature Scheme: [EC:DG19], [AC:BKV19]
 - Linkable Ring Signature: [AC:BKP20]
 - Threshold Signature: [PKC:DM20]
 - Accountable Ring Signature;
 Group Signature: [EC:BDLKP22]
 - Blind Signature: [C:KLLQ23]

Assumptions: DLog and CDH

Group Action Inverse Problem (GAIP / DLog):

Given $(E, a \star E)$, the goal is to recover *a*.

Assumptions: DLog and CDH

Group Action Inverse Problem (GAIP / DLog):

Given $(E, a \star E)$, the goal is to recover *a*.

Computational Diffie-Hellman Problem (CDH):

Given $(E, a \star E, b \star E)$, the goal is to compute $ab \star E$.

E

 $a \star E$

Assumptions: DLog and CDH

Group Action Inverse Problem (GAIP / DLog):

Given $(E, a \star E)$, the goal is to recover *a*.

Computational Diffie-Hellman Problem (CDH):

Given $(E, a \star E, b \star E)$, the goal is to compute $ab \star E$.

Obviously,

 $DLog \geq CDH.$

Is the reverse true?

- Galbraith, Panny, Smith, Vercauteren [GPSV18] gives a quantum algorithm (Shor's algorithm) solving DLog with $O(\log_2(|G|))$ quantum queries to a perfect CDH oracle.
 - ⇒i.e. CDH oracle always outputs the correct answer.

- Galbraith, Panny, Smith, Vercauteren [GPSV18] gives a quantum algorithm (Shor's algorithm) solving DLog with $O(\log_2(|G|))$ quantum queries to a perfect CDH oracle.
 - ⇒i.e. CDH oracle always outputs the correct answer.

What if the CDH oracle can only succeeds with a chance $\epsilon = 1/\text{poly}(\lambda)$,

Can we still have the reduction $CDH \ge DLog$?

- Galbraith, Panny, Smith, Vercauteren [GPSV18] gives a quantum algorithm (Shor's algorithm) solving DLog with $O(\log_2(|G|))$ quantum queries to a perfect CDH oracle.
 - ⇒i.e. CDH oracle always outputs the correct answer.

What if the CDH oracle can only succeeds with a chance $\epsilon = 1/\text{poly}(\lambda)$,

Can we still have the reduction $CDH \ge DLog$?

• [AC:MZ22] gives an affirmative answer with a reduction using $\tilde{O}(e^{-21})$ queries to an imperfect CDH oracle.

Contributions

- We give the following improvements:
 - a full black-box reduction of
 - $\mathcal{O}\left(\epsilon^{-4}\right)$ queries to the oracle using
 - simple math: a bunch of Chernoff bounds + group definition.

Content

- Background
 - Group Actions
 - Assumptions: DLog and CDH
 - Quantum Equivalence of DLog and CDH
- Contributions
- Technical Overview
- Open Problems

Self-randomized

• Throughout the slides, let's assume the oracle has been "self-randomized":

$$\mathcal{O}\left(a \star E, b \star E\right) := (r_1 r_2)^{-1} \star \mathcal{O}\left((r_1 a) \star E, (r_2 b) \star E\right).$$

where $r_1, r_2 \leftarrow_{\$} G$.

▶ So the success rate will be independent to the input.

• If the error is "quite random" each time,

$$\mathcal{O}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ a \text{ random set element (curve), } & \text{with } 1 - \epsilon \end{cases}$$

then to amplify the success rate is easy by running \mathcal{O} multiple times and output the majority.

Model: An Oracle w. Structured Errors

- [AC:MZ22] considers an imperfect oracle with *structured errors*.
- \mathcal{O} is modeled as:

$$\mathcal{O}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta_1 ab) \star E, & \text{with } \epsilon_1 \\ (\delta_2 ab) \star E, & \text{with } \epsilon_2 \\ \vdots \end{cases}$$

where $\delta_i \in G$ is some unknown group element (aka error).

[MZ22]'s Strategy

 $\mathcal{O}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta_1 ab) \star E, & \text{with } \epsilon_1 \\ (\delta_2 ab) \star E, & \text{with } \epsilon_2 \\ \vdots \end{cases}$

$\begin{aligned} \left[MZ22 \rfloor \supset \bigcup\right] \\ \mathcal{O}(a \star E, b \star E) &= \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta_1 ab) \star E, & \text{with } \epsilon_1 \\ (\delta_2 ab) \star E, & \text{with } \epsilon_2 \\ \vdots & & & & & \\ \end{array} \\ \mathcal{O}^{\text{Siv}}(a \star E, b \star E) &= \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta'_1 ab) \star E, & \text{with } \epsilon'_1 \\ (\delta'_2 ab) \star E, & \text{with } \epsilon'_2 \\ \vdots & & & \\ \end{bmatrix} \end{aligned}$ [MZ22]'s Strategy

$\begin{bmatrix} MZ22 \\ J \\ S \\ (a \\ \pm E, b \\ \pm E) = \begin{cases} ab \\ (\delta_1ab) \\ \pm E, & \text{with } e_1 \\ (\delta_2ab) \\ \pm E, & \text{with } e_2 \\ \vdots & & & & \\ \end{bmatrix} \\ \mathcal{O}^{\text{Siv}}(a \\ \pm E, b \\ \pm E) = \begin{cases} ab \\ \pm E, & \text{with } e_1 \\ (\delta_1'ab) \\ \pm E, & \text{with } e_1' \\ (\delta_2'ab) \\ \pm E, & \text{with } e_2' \\ \vdots & & \\ \end{bmatrix}$ [MZ22]'s Strategy

Let $x \star E$ be the DLog challenge.

- 1. Sieving the oracle \mathcal{O} into \mathcal{O}' where the errors δ'_i are all in some SMALL subgroup S.
 - \mathcal{O}^{Siv} is a perfect CDH oracle on the group G/S acting on the set $\mathcal{X}/\{S \star E\}$.

[MZ22]'s Strategy

Let $x \star E$ be the DLog challenge.

- 1. Sieving the oracle \mathcal{O} into \mathcal{O}' where the errors δ'_i are all in some SMALL subgroup *S*.
 - \mathcal{O}^{Siv} is a perfect CDH oracle on the group G/S acting on the set $\mathcal{X}/\{S \star E\}$.
- 2. Apply [GPSV18] to solving DLog of $x \star E$ over $G/S \curvearrowright \mathcal{X}/\{S \star E\}$ and obtain xS.

$\begin{bmatrix} \mathbf{MZZZ} \\ \mathbf{0}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta_1 ab) \star E, & \text{with } \epsilon_1 \\ (\delta_2 ab) \star E, & \text{with } \epsilon_2 \\ \vdots & & & & \\ \end{bmatrix} \\ \mathcal{O}^{\text{Siv}}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta'_1 ab) \star E, & \text{with } \epsilon'_1 \\ (\delta'_2 ab) \star E, & \text{with } \epsilon'_2 \\ \vdots & & & \\ \end{bmatrix}$ [MZ22]'s Strategy

Let $x \star E$ be the DLog challenge.

- 1. Sieving the oracle \mathcal{O} into \mathcal{O}' where the errors δ'_i are all in some SMALL subgroup *S*.
 - \mathcal{O}^{Siv} is a perfect CDH oracle on the group G/S acting on the set $\mathcal{X}/\{S \star E\}$.
- 2. Apply [GPSV18] to solving DLog of $x \star E$ over $G/S \curvearrowright \mathcal{X}/\{S \star E\}$ and obtain xS.
- 3. Retrieve x by enumerating elements in xS.

$\mathcal{D}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } e \\ (\delta_1 ab) \star E, & \text{with } e_1 \\ (\delta_2 ab) \star E, & \text{with } e_2 \\ \vdots & \mathcal{D}^{\text{Siv}}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } e \\ (\delta'_1 ab) \star E, & \text{with } e'_1 \\ (\delta'_2 ab) \star E, & \text{with } e'_2 \\ \vdots & \mathcal{D}^{\text{Siv}}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } e \\ (\delta'_1 ab) \star E, & \text{with } e'_2 \\ \vdots & \mathcal{D}^{\text{Siv}}(a \star E, b \star E) \end{cases}$

 e^{-16} et $x \star E$ be the DLog challenge.

- 1. Sieving the oracle \mathcal{O} into \mathcal{O}' where the errors δ'_i are all in some SMALL subgroup S.
 - \mathcal{O}^{Siv} is a perfect CDH oracle on the group G/S acting on the set $\mathcal{X}/\{S \star E\}$.
- 2. Apply [GPSV18] to solving DLog of $x \star E$ over $G/S \curvearrowright \mathcal{X}/\{S \star E\}$ and obtain xS.
- 3. Retrieve x by enumerating elements in xS.

[MZ22]'s Strategy $\mathcal{O}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta_1 ab) \star E, & \text{with } \epsilon_1 \\ (\delta_2 ab) \star E, & \text{with } \epsilon_2 \\ \vdots & & & \end{bmatrix}$ $\mathcal{O}^{\mathsf{Siv}}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta'_1 ab) \star E, & \text{with } \epsilon'_1 \\ (\delta'_2 ab) \star E, & \text{with } \epsilon'_2 \\ \vdots \end{cases}$ ϵ^{-16} et $x \star E$ be the DLog challenge. 1. Sieving the oracle \mathcal{O} into \mathcal{O}' where the errors δ'_i are all in some SMALL subgroup *S*. • \mathcal{O}^{Siv} is a perfect CDH oracle on the group G/S acting on the set $\mathcal{X}/\{S \star E\}$. ϵ^{-5} 2. Apply [GPSV18] to solving DLog of $x \star E$ over $G/S \curvearrowright \mathcal{X}/\{S \star E\}$ and obtain xS. 3. Retrieve x by enumerating elements in xS.

The Main Idea in [AC:MZ22]

We have

$\mathcal{O}(a \star E, b \star E) \sim \mathcal{O}(E, ab \star E).$

 $\langle \textit{proof} \rangle$ By definition,

The Main Idea in [AC:MZ22]

We have

 $\mathcal{O}(a \star E, b \star E) \sim \mathcal{O}(E, ab \star E).$

 $\langle proof \rangle$ By definition,

1.
$$\mathcal{O}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta_1 ab) \star E, & \text{with } \epsilon_1 \\ (\delta_2 ab) \star E, & \text{with } \epsilon_2 \\ \vdots \end{cases}$$

The Main Idea in [AC:MZ22]

We have

 $\mathcal{O}(a \star E, b \star E) \sim \mathcal{O}(E, ab \star E).$

 $\langle proof \rangle$ By definition,

1.
$$\mathcal{O}(a \star E, b \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta_1 ab) \star E, & \text{with } \epsilon_1 \\ (\delta_2 ab) \star E, & \text{with } \epsilon_2 \\ \vdots \end{cases}$$

2.
$$\mathcal{O}(E, ab \star E) = \begin{cases} ab \star E, & \text{with } \epsilon \\ (\delta_1 ab) \star E, & \text{with } \epsilon_1 \\ (\delta_2 ab) \star E, & \text{with } \epsilon_2 \\ \vdots \end{cases}$$

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

Running $\mathcal{O}(a \star E, b \star E)$...

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

Running $\mathcal{O}(a \star E, b \star E)$...

Running $\mathcal{O}(\Box, E)$...

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

Running $\mathcal{O}(a \star E, b \star E)$...

Running $\mathcal{O}(\Box, E)$...

Estimate the statistical distance.

 $\mathcal{O}(a \star E, b \star E)$

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

Running $\mathcal{O}(a \star E, b \star E)$...

Running $\mathcal{O}(\Box, E)$...

Estimate the statistical distance.

Sieving...

 $\mathcal{O}(a \star E, b \star E)$

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

Running $\mathcal{O}(a \star E, b \star E)$...

Running $\mathcal{O}(\Box, E)$...

Estimate the statistical distance.

Sieving...

Return the resulting elements.

[MZ22] sieves $\mathcal{O}(a \star E, b \star E)$ proceeds as follows.

Running $\mathcal{O}(a \star E, b \star E)$...

Running $\mathcal{O}(\Box, E)$...

Estimate the statistical distance.

Sieving...

Return the resulting elements.

Distinguishing distributions is expensive.

 ϵ^{-16}

 $\mathcal{O}(a \star E, b \star E)$

 ϵ^{-8}

 ϵ^{-8}

Key Idea of our Improvement

Running $\mathcal{O}(a \star E, b \star E)$...

Key Idea of our Improvement

Running $\mathcal{O}(a \star E, b \star E)$...

Key Idea of our Improvement

Running $\mathcal{O}(a \star E, b \star E)$...

Intuitively, due to the large gap,

the last element above the gap &

the first element below the gap are unlikely to be swapped.

📓 Compare the heaviest elements.

Sieving...

Return the resulting elements.

This reduce the # of queries significantly (to $O(\epsilon^{-4})$).

Gap Finding

Gap Finding

Gap Finding

We introduce an intermediate $\mathcal{O}_{I}^{\text{Thr}}(a \star E, b \star E)$

to compute the ``invariance" (heaviest I elements).

Ι

 $\mathcal{O}(a \star E, b \star E)$

We introduce an intermediate $\mathcal{O}_{I}^{\text{Thr}}(a \star E, b \star E)$

to compute the ``invariance" (heaviest I elements).

We introduce an intermediate $\mathcal{O}_{I}^{\text{Thr}}(a \star E, b \star E)$

to compute the ``invariance" (heaviest I elements).

We introduce an intermediate $\mathcal{O}_{I}^{\text{Thr}}(a \star E, b \star E)$

Propositions of Thresholding

1. $\mathcal{O}_{I}^{\text{Thr}}$ is deterministic with an overwhelming chance when I is chosen properly.

2. $\mathcal{O}_{I}^{\mathsf{Thr}}(a \star E, b \star E) = \mathcal{O}_{I}^{\mathsf{Thr}}(ab \star E, E).$

▶ That is, say $E' \in L_0 \leftarrow \mathcal{O}_I^{\mathsf{Thr}}(a \star E, b \star E)$, and let $L' \leftarrow \mathcal{O}_I^{\mathsf{Thr}}(E', E)$. If $E' = ab \star E$ (the correct answer), then $L_0 = L'$.

▶ View $\mathcal{O}_{I}^{\text{Thr}}$ as an ``invariant" wrt the input \Rightarrow Cheaper and more effective for comparison.

Our Sieving

🔀 Compare the heaviest elements.

Sieving...

Return the resulting elements.

This reduce # of sampling significantly.

Our Sieving

Improvement

Quantum Boost?

• There exist classical/quantum algorithms (ϵ -test) from [SODA:CDVV14, ITCS:GL20] to accelerate [MZ22] (to roughly ϵ^{-9}) but not applicable to our results.

• Lower bound argument for the best plausible tightness between CDH and DLog?

Thank you for listening!

2 2 2

HAPPY EASTER

