
PKC 2024 | 16.04.2024

Rate-1 Fully Local
Somewhere Extractable
Hashing from DDH
P. Branco, N. Döttling, A. Srinivasan, R. Zanotto

I. Background and applications

II. Fully local extractable hashing

III. Our construction

Contents

Background and
applications

4

• The main topic and goal of this line of research are SNARGs

• SNARGs for NP are known from ROM, impossible* in plain model [GW11]

• We can restrict to subclasses, in particular P and batch-NP

− via correlation intractable hashing

− via fully local extractable hashing

Outline of the result and background

BARG
+

SEH

(rate-1)
flSEH

(rate-1)
BARG

SNARG for P

IVC

our work (DDH)

DGKV22 (LWE)
KLVW23

PP22

• Succinctness: proof size and verification time are “small”, i.e.

• Soundness: if , the verifier rejects proofs from PPT adversaries

• No zero-knowledge (hiding) is required!

poly(λ, log |C |)
x ∉ ℒC

5

• SNARG = Succinct Non-interactive ARGument

• Fix a NP language with a relation circuit ℒC C(x, w)

What are SNARGs?

Prover

Verifier

x, π

 ?x ∈ ℒC

x, w

6

• Naive solution: send all witnesses

• Succinctness requirement: , verifier is “fast”. E.g.

• Soundness: if even one statement is false, verifier rejects

• Remark: SNARGs for NP directly imply BARGs

w1, …, wk

|π | < k ⋅ |wi | poly(m, log k)

BARGs: SNARGs for batch-NP

Prover

Verifier

 ?C(xi, wi) = 1 ∀i

 x1, …, xk
w1, …, wk π

7

• A BARG is rate-1 if proof is as small as a single witness, i.e.

• We can do BARGs of BARGs of BARGs… for free!

|π | = m + poly(λ)

Rate-1 BARGs

w1,1 w1,2 w1,3 π1w1,4

w2,1 w2,2 w2,3 π2w2,4

w3,1 w3,2 w3,3 π3w3,4

w4,1 w4,2 w4,3 π4w4,4

π

8

• Multi-hop BARGs

• Incrementally Verifiable Computation

− Strengthening of delegation/“SNARGs for P”

− Compute and update proof of correctness of running computation

• Aggregate signatures

− Generate a shorter “digest” signature from many different signatures

− Also aggregation of aggregation

Applications of rate-1 BARGs

9

• PP22 constructs an almost rate-1 BARGs given SEH and (index) BARGs

− Both can be instantiated from LWE

− KLVW23+CGJ23 gives instantiation from DDH

• DGKV22 constructs rate-1 BARGs from rate-1 flSEH

− They build their rate-1 flSEH from LWE (need FHE)

Constructions of rate-1 BARGs

Fully local
extractable
hashing

11

• Strengthening of “statistically binding” notion by [HW15]

• We can extract bits of the input by hiding trapdoors in the hashing key

• They exist from “strong” primitives: FHE, rate-1 OT

Somewhere Extractable Hashing

x1 x2 xNxi*

h

H𝗁𝗄

E𝗍𝖽

(𝗁𝗄, 𝗍𝖽) = Gen(i*)

xi*ρj Open(j)

12

• We want to be extractable on a set of indices

• Remark: the total hash size has to be at least

• In naive construction, also opening has size

I = {i1, …, im}
m

m

Multiple bits extraction

x1 x2

h1 E𝗍𝖽

(𝗁𝗄1, 𝗍𝖽1) = Gen(i1), …, (𝗁𝗄m, 𝗍𝖽m) = Gen(im)

x2, x5, x8ρ1 Open

x3 x4 x5 x6 x7 x8

h2 h3

H𝗁𝗄𝟣
H𝗁𝗄𝟤

H𝗁𝗄𝟥

ρ2 ρ3

13

• An opening must be short, and verifying it fast

• An additional “small digest” is needed

Why fully local?

x

h𝗋𝗍

H𝗁𝗄

xi1 xi2 xim

ρ

Open

V𝗏𝗄

accept/reject

E𝗍𝖽 xi1, …, xim

(𝗁𝗄, 𝗏𝗄, 𝗍𝖽) = Gen({i1, …, im})

poly(λ)

14

• We also want to be as short as possibleh

Rate-1 flSEH

x

h𝗋𝗍

H𝗁𝗄

xi1 xi2 xim

ρ

Open

V𝗏𝗄

accept/reject

E𝗍𝖽 xi1, …, xim

(𝗁𝗄, 𝗏𝗄, 𝗍𝖽) = Gen({i1, …, im})

poly(λ) m + poly(λ)

15

• We get rate-1 flSEH from any BARG + SEH + DDH

− From rate-1 flSEH we get rate-1 BARGs as in DGKV22

• PP22 can be instantiated with {DDH, LWE}, but has proof size

• Caveat: our CRS is big, but rate-1 BARGs can bootstrap themselves

m + m /λ + poly(λ)

Our result: a rate-1 fully local SEH from DDH

BARG
+

SEH

(rate-1)
flSEH

(rate-1)
BARG

SNARG for P

IVC

our work (DDH)

DGKV22 (LWE)
KLVW23

PP22

Our construction

⋯

17

Idea of construction

x

Enc(xi1) Enc(xi2) Enc(xim)

v1 v2 vm⋯v0

SEH(x)

π
Proof that encryption
has been performed
correctly

18

• Fix a prime order group with generator

• Public key is for some secret

• To encrypt a bit :

− Compute random

− Compute

• This will allow for compression [BBDGM20], i.e. transmit instead of
, where is a bit!

G g
h = ga a

x
c0 = gr

c1 = hr ⋅ gx

(c0, b)
(c0, c1) b

ElGamal encryption

19

• Secret key/trapdoor is array of exponents

• Compute “public keys”

• Sample random

a = (a1, …, am)
hi = gai

r1, …, rN

The hashing key

M =

gr1 gr2 … … grN

hr1
1 … hri1

1 g … hrN
1

⋮ ⋱ ⋱ ⋱ ⋮
hr1m … … hrimm g hrNm

20

Hashing

(x1 x2 x3 x4)

gr1 gr2 gr3 gr4

hr1
1 hr2

1 g hr3
1 hr4

1

hr1
2 hr2

2 hr3
2 g hr4

2

gr1x1 gr2x2 gr3x3 gr4x4

hr1x1
1 hr2x2

1 gx2 hr3x3
1 hr4x4

1

hr1x1
2 hr2x2

2 hr3x3
2 gx3 hr4x4

2

21

Hashing

gr1x1 gr2x2 gr3x3 gr4x4

hr1x1
1 hr2x2

1 gx2 hr3x3
1 hr4x4

1

hr1x1
2 hr2x2

2 hr3x3
2 gx3 hr4x4

2

22

Hashing

gr1x1+r2x2 gr3x3+r4x4

hr1x1+r2x2
1 gx2 hr3x3+r4x4

1

hr1x1+r2x2
2 hr3x3+r4x4

2 gx3

23

Hashing

gr1x1+r2x2+r3x3+r4x4

hr1x1+r2x2+r3x3+r4x4
1 gx2

hr1x1+r2x2+r3x3+r4x4
2 gx3

=
c0
c1
c2

With trapdoor, we can decrypt gxij = cj ⋅ c−aj
0

24

• We get batched ElGamal ciphertexts (at each step!)

• We then compress into a rate-1 hash

• The short digest will be and

− is a short proof that and are consistent

− It will be a BARG that the computation of happened correctly

(c0, c1, …, cm) v = (c0, v1, …, vm)
hx = SEH(x) π

π v hx

v

Hashing

25

• We SE hash all the intermediate matrices into

• For a given step , the index BARG statement is

M0, …, MT h0, …, hT

t

What do we BARG?

• The hash opens to at position
• The hash opens to at positions
•

ht+1 z (i, j)
ht z1, z2 (i, 2j), (i, 2j + 1)

z = z1 ⋅ z2

26

• Short digest is short

− Each hash (of or matrices) needs to be binding on a constant number of
positions. Their size is .

− All BARG proofs are also of size

• The extractable hash is rate-1

− It’s a compressed batch ElGamal ciphertext, of size

• The CRS is a matrix of group elements, very large

− We can shorten the CRS of resulting rate-1 BARG via recursion

x
poly(λ)

poly(λ, log N, log m)

m + poly(λ)
(m + 1) × N

Analysis

27

• We build a rate-1 fully local extractable hash function from DDH

− The extractable hash is built via series of local computations, allows us to
BARG all parallel computation in single step

• We get truly rate-1 BARGs, again from DDH

− We give a generic transformation from large CRS to short CRS

Overview

• Paper: https://ia.cr/2024/216

• Contact: riccardo.zanotto@cispa.de

Thank you for the attention!

https://ia.cr/2024/216
mailto:riccardo.zanotto@cispa.de

