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• The main topic and goal of this line of research are SNARGs 

• SNARGs for NP are known from ROM, impossible* in plain model [GW11] 

• We can restrict to subclasses, in particular P and batch-NP 

− via correlation intractable hashing  

− via fully local extractable hashing

Outline of the result and background

BARG 
+ 

SEH

(rate-1) 
flSEH

(rate-1) 
BARG

SNARG for P

IVC

our work (DDH) 

DGKV22 (LWE) 
KLVW23

PP22



• Succinctness: proof size and verification time are “small”, i.e.  

• Soundness: if , the verifier rejects proofs from PPT adversaries 

• No zero-knowledge (hiding) is required!

poly(λ, log |C | )
x ∉ ℒC
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• SNARG = Succinct Non-interactive ARGument 

• Fix a NP language  with a relation circuit ℒC C(x, w)

What are SNARGs?

Prover

Verifier

x, π

 ?x ∈ ℒC

x, w
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• Naive solution: send all witnesses  

• Succinctness requirement: , verifier is “fast”. E.g.  

• Soundness: if even one statement is false, verifier rejects 

• Remark: SNARGs for NP directly imply BARGs

w1, …, wk

|π | < k ⋅ |wi | poly(m, log k)

BARGs: SNARGs for batch-NP

Prover

Verifier

 ?C(xi, wi) = 1 ∀i

 x1, …, xk
w1, …, wk π
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• A BARG is rate-1 if proof is as small as a single witness, i.e.  

• We can do BARGs of BARGs of BARGs… for free!

|π | = m + poly(λ)

Rate-1 BARGs

w1,1 w1,2 w1,3 π1w1,4

w2,1 w2,2 w2,3 π2w2,4

w3,1 w3,2 w3,3 π3w3,4

w4,1 w4,2 w4,3 π4w4,4

π
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• Multi-hop BARGs 

• Incrementally Verifiable Computation 

− Strengthening of delegation/“SNARGs for P” 

− Compute and update proof of correctness of running computation 

• Aggregate signatures 

− Generate a shorter “digest” signature from many different signatures 

− Also aggregation of aggregation 

Applications of rate-1 BARGs
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• PP22 constructs an almost rate-1 BARGs given SEH and (index) BARGs 

− Both can be instantiated from LWE 

− KLVW23+CGJ23 gives instantiation from DDH 

• DGKV22 constructs rate-1 BARGs from rate-1 flSEH 

− They build their rate-1 flSEH from LWE (need FHE)

Constructions of rate-1 BARGs
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• Strengthening of “statistically binding” notion by [HW15] 

• We can extract bits of the input by hiding trapdoors in the hashing key 

• They exist from “strong” primitives: FHE, rate-1 OT

Somewhere Extractable Hashing

x1 x2 xNxi*

h

H𝗁𝗄

E𝗍𝖽

(𝗁𝗄, 𝗍𝖽) = Gen(i*)

xi*ρj Open( j)
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• We want to be extractable on a set of indices  

• Remark: the total hash size has to be at least  

• In naive construction, also opening has size 

I = {i1, …, im}
m

m

Multiple bits extraction

x1 x2

h1 E𝗍𝖽

(𝗁𝗄1, 𝗍𝖽1) = Gen(i1), …, (𝗁𝗄m, 𝗍𝖽m) = Gen(im)

x2, x5, x8ρ1 Open

x3 x4 x5 x6 x7 x8

h2 h3

H𝗁𝗄𝟣
H𝗁𝗄𝟤

H𝗁𝗄𝟥

ρ2 ρ3
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• An opening must be short, and verifying it fast 

• An additional “small digest” is needed

Why fully local?

x

h𝗋𝗍

H𝗁𝗄

xi1 xi2 xim

ρ

Open

V𝗏𝗄

accept/reject

E𝗍𝖽 xi1, …, xim

(𝗁𝗄, 𝗏𝗄, 𝗍𝖽) = Gen({i1, …, im})

poly(λ)
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• We also want  to be as short as possibleh

Rate-1 flSEH

x

h𝗋𝗍

H𝗁𝗄

xi1 xi2 xim

ρ

Open

V𝗏𝗄

accept/reject

E𝗍𝖽 xi1, …, xim

(𝗁𝗄, 𝗏𝗄, 𝗍𝖽) = Gen({i1, …, im})

poly(λ) m + poly(λ)
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• We get rate-1 flSEH from any BARG + SEH + DDH 

− From rate-1 flSEH we get rate-1 BARGs as in DGKV22 

• PP22 can be instantiated with {DDH, LWE}, but has proof size 
 

• Caveat: our CRS is big, but rate-1 BARGs can bootstrap themselves

m + m /λ + poly(λ)

Our result: a rate-1 fully local SEH from DDH
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Idea of construction

x

Enc(xi1) Enc(xi2) Enc(xim)

v1 v2 vm⋯v0

SEH(x)

π
Proof that encryption 
has been performed 
correctly
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• Fix a prime order group  with generator  

• Public key is  for some secret  

• To encrypt a bit : 

− Compute random  

− Compute  

• This will allow for compression [BBDGM20], i.e. transmit  instead of 
, where  is a bit!

G g
h = ga a

x
c0 = gr

c1 = hr ⋅ gx

(c0, b)
(c0, c1) b

ElGamal encryption
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• Secret key/trapdoor is array of exponents  

• Compute “public keys”  

• Sample random 

a = (a1, …, am)
hi = gai

r1, …, rN

The hashing key

M =

gr1 gr2 … … grN

hr1
1 … hri1

1 g … hrN
1

⋮ ⋱ ⋱ ⋱ ⋮
hr1m … … hrimm g hrNm
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Hashing

(x1 x2 x3 x4)

gr1 gr2 gr3 gr4

hr1
1 hr2

1 g hr3
1 hr4

1

hr1
2 hr2

2 hr3
2 g hr4

2

gr1x1 gr2x2 gr3x3 gr4x4

hr1x1
1 hr2x2

1 gx2 hr3x3
1 hr4x4

1

hr1x1
2 hr2x2

2 hr3x3
2 gx3 hr4x4

2
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Hashing

gr1x1 gr2x2 gr3x3 gr4x4

hr1x1
1 hr2x2

1 gx2 hr3x3
1 hr4x4

1

hr1x1
2 hr2x2

2 hr3x3
2 gx3 hr4x4

2
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Hashing

gr1x1+r2x2 gr3x3+r4x4

hr1x1+r2x2
1 gx2 hr3x3+r4x4

1

hr1x1+r2x2
2 hr3x3+r4x4

2 gx3
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Hashing

gr1x1+r2x2+r3x3+r4x4

hr1x1+r2x2+r3x3+r4x4
1 gx2

hr1x1+r2x2+r3x3+r4x4
2 gx3

=
c0
c1
c2

With trapdoor, we can decrypt gxij = cj ⋅ c−aj
0
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• We get batched ElGamal ciphertexts (at each step!) 

• We then compress  into a rate-1 hash  

• The short digest will be  and  

−  is a short proof that  and  are consistent 

− It will be a BARG that the computation of  happened correctly

(c0, c1, …, cm) v = (c0, v1, …, vm)
hx = SEH(x) π

π v hx

v

Hashing
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• We SE hash all the intermediate matrices  into  

• For a given step , the index BARG statement is

M0, …, MT h0, …, hT

t

What do we BARG?

• The hash  opens to  at position   
• The hash  opens to  at positions  
•

ht+1 z (i, j)
ht z1, z2 (i, 2j), (i, 2j + 1)

z = z1 ⋅ z2
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• Short digest is short 

− Each hash (of  or matrices) needs to be binding on a constant number of 
positions. Their size is . 

− All BARG proofs are also of size  

• The extractable hash is rate-1 

− It’s a compressed batch ElGamal ciphertext, of size  

• The CRS is a matrix of  group elements, very large 

− We can shorten the CRS of resulting rate-1 BARG via recursion

x
poly(λ)

poly(λ, log N, log m)

m + poly(λ)
(m + 1) × N

Analysis
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• We build a rate-1 fully local extractable hash function from DDH 

− The extractable hash is built via series of local computations, allows us to 
BARG all parallel computation in single step 

• We get truly rate-1 BARGs, again from DDH 

− We give a generic transformation from large CRS to short CRS

Overview



• Paper: https://ia.cr/2024/216 

• Contact: riccardo.zanotto@cispa.de
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