On Instantiating Unleveled Fully-Homomorphic
Signatures from Falsifiable Assumptions

Romain Gay IBM Research, Zurich
Bogdan Ursu Linea, Consensys

Linea

Fully Homomorphic Encryption

ct; = FHE . Enc(pk,m;) ct, = FHE.Enc(pk, m,)

~N,

EV8|_|_(p|(, cty, Ctz)

l

ct = FHE . Enc(pk, m; + m,)

Linea

Fully Homomorphic Encryption

ct; = FHE . Enc(pk,m;) ct, = FHE.Enc(pk, m,)

~N,

Eval, (pk, cty, cty) Eval.(pk, ct;, cty) Eval.(pk, ct;, cty)

l l l

ct = FHE . Enc(pk, m; + m,) ct = FHE.Enc(pk,m, - m,) ct = FHE.Enc(pk, C(m,, m,))

Correctness preserved up to a maximal noise bound B, ;...

Linea

Bootstrapping for FHE

ct = FHE .Enc(pk,sk) ct = FHE . Enc(pk, m)

N

Evalpye pec(Pk, Ct, Ct)

l

ct = FHE . Enc(pk, m)

Linea

Bootstrapping for FHE

ct = FHE .Enc(pk,sk) ct = FHE . Enc(pk, m)

N

Evalpye pec(Pk, Ct, Ct)

l

ct = FHE . Enc(pk,m) refresh the noise in ct (due to the rounding step in Dec)

Linea

Fully Homomorphic Signatures (FHS)

o, = FHS . Sign(sk,m;) o0, = FHS . Sign(sk, m,)

Eval, (vk, 6y, 0,)

o = FHS . Sign(sk, m; + m,)

Linea

Fully Homomorphic Signatures (FHS)

o, = FHS .Sign(sk,m;) o, = FHS . Sign(sk, m,)

N

Eval, (vk, 6y, 0,) Eval.(vk, o, 6,) Eval(vk, oy, 6,)

l l

o = FHS . Sign(sk,m; + m,) o = FHS.Sign(sk,m; - m,) o= FHS.Sign(sk, C(im, m,))

Linea

Fully Homomorphic Signatures (FHS)

o, = FHS .Sign(sk,m;) o, = FHS . Sign(sk, m,)

N

Eval, (vk, 6y, 0,) Eval.(vk, o, 6,) Eval(vk, oy, 6,)

l l l

o = FHS . Sign(sk,m; + m,) o = FHS.Sign(sk,m; - m,) o= FHS.Sign(sk, C(im, m,))

[GVW15] is an FHS based on lattices (SIS) which is levelled.

Correctness preserved up to a maximal noise bound B, ;...

Linea

Bootstrapping for FHS?

ct = FHE . Enc(pk, sk) ct = FHE . Enc(pk, x)

N

Evalpye pec(Pk, Ct, Ct)

l

ct' = FHE . Enc(pk, x)

ct has its noise refreshed

Linea

Bootstrapping for FHS?

ct = FHE . Enc(pk, sk) ct = FHE . Enc(pk, x) ¢’ = FHS . Sign(sk, ?) o = FHS . Sign(sk, m)

N N

Evalrye pec(pk, ct, ct) Evals(vk, ? , o)

1 X

ct' = FHE . Enc(pk, x)
ct has its noise refreshed No bootstrapping equivalent for FHS.

Linea

10

FHS —The Model

Key Generation: (vk, sk) < KeyGen(1%).

Precomputation of a specific vk for a circuit C as vk < Process, (C).

Linea

11

FHS —The Model

Key Generation: (vk, sk) < KeyGen(1%).

Precomputation of a specific vk for a circuit C as vk < Process, (C).

Alice Bob

Linea

12

FHS —The Model

Key Generation: (vk, sk) < KeyGen(1%).

Precomputation of a specific vk for a circuit C as vk < Process, (C).

Alice Bob

(0...0,) < Sign_ (m,...m,)

Linea

13

FHS —The Model

Key Generation: (vk, sk) < KeyGen(1%).

Precomputation of a specific vk for a circuit C as vk < Process, (C).

Alice Bob

(0...0,) < Sign_ (m,...m,)

0* — Evalvk(C, (mla 01)°°°(mn’ Gn)>
Verifyvk(vkc, Vs 0*) = 1

wheny = C(m,...m,)

Linea

14

FHS —The Model

Key Generation: (vk, sk) < KeyGen(1%).

Precomputation of a specific vk for a circuit C as vk < Process, (C).

Alice Bob
(01..-0,) < Sign, (my..m,) 4

0* — Evalvk<C, (m19 01)°°'(mn9 Gn)>
Verifyvk(vkc, Vs 6*> = 1

Succinctness: size of evaluated o™ should not depend on n. wheny = C(m,...m,)

Succinctness: size of circuit verification key vk should not depend on | C|.

Precomputation of vk can be done for the circuits of interest depending on the application.

Linea

15

FHS—ComposabiIity

Alice

(6y...0,) < Sign_ (m.. m)% ﬁ
-——»

oF = Evalvk C (my,07)...(m ,an))

Verify ka Y, 0) =1

Linea

16

FHS—ComposabiIity

Alice

(6y...0,) < Sign_ (m.. m)% ﬁ
-——»

k circuits C;.

oc = FHS.Sign(sk, C;(m,...m,)) ... o = FHS.Sign(sk, C;(m,...m,))

N N

Evalp(o;...0,)

l

o = FHS . Sign(sk, G(m,...m,))

ot = Evalvk C (my,07)...(m, n))

Verlfy ka, y, O) =

Linea

17

FHS —Composability

Alice

(6y...0,) < Sign_ (m.. m)“ ﬁ
—»

oc = FHS.Sign(sk, C;(m,...m,)) ... o = FHS.Sign(sk, C;(m,...m,))

\ / k inputs to F
e ————————

Evalp(o;...0,) G(m,.. m)d_ef F(Cl(ml m,) ... Ck(ml...mn)>

ot = Evalvk<C (my, 0)...(m,, n))

Verlfy ka, y, O) =

l Unbounded number of composable operations.

o, = FHS . Sign(sk, G(m;,...m,)) Relative to the original m,...m,.

Linea

18

FHS —Security

/ } Adversary Challenger “

4_V_I<’S_k_ (vk, sk) < KeyGen(1%).

Linea

19

FHS —Security

/ } Adversary Challenger “

— 2" (vk,sk) < KeyGen(1%).

my...m,

Linea

20

FHS —Security

/ } Adversary Challenger “

— 2" (vk,sk) < KeyGen(1%).

ml...m .

(v*, C*,0%)

e

Linea

21

FHS —Security

/ } Adversary Challenger “

— 2" (vk,sk) < KeyGen(1%).

ml...m .

(v*, C*,0%)

ey
Adversary wins if Verify (C*,y*,0%) = 1buty* # C*(m,...m,).

Unforgeability is with respect to the original signed messages m,...m,.

Linea

22

FHS —Security

/ } Adversary Challenger “

— 2" (vk,sk) < KeyGen(1%).

ml...m .

Is the bound 7 a limitation?
(y*, C*,’U*)

ey
Adversary wins if Verify (C*,y*,0%) = 1buty* # C*(m,...m,).

Unforgeability is with respect to the original signed messages m,...m,.

Linea

23

FHS —Labelled Model (Multi-Dataset)

Key Generation: (vk, sk) < KeyGen(1%).

Precomputation of a specific vk for a circuit C as vk < Process, (C).

Linea

24

FHS —Labelled Model (Multi-Dataset)

Key Generation: (vk, sk) < KeyGen(1%).

Precomputation of a specific vk for a circuit C as vk < Process, (C).

Alice Bob

(6,,0...0,) < Signsk<(m1...mn),1) % c,,01...0,
—

o = Evalvk(C &8 (m,,))...(m,, an))

> Yo

> T

Verifyvk(vkc, Y, T, 0 0*) =1

Linea

25

FHS —Labelled Model (Multi-Dataset)

Key Generation: (vk, sk) < KeyGen(1%).

Precomputation of a specific vk for a circuit C as vk < Process, (C).

Alice Bob
@o,..0) Signsk((ml...mn),f) A

> Yo

o = Evalvk(C &8 (m,,))...(m,, an))
Verifyvk(vkc, Y, T, 0 0*) = |

> T
Arbitrary labels 7 € {0,1 }*.
Single-data to multi-data can be achieved using a generic transformation due to [GVW15].

Bound 7 can also be removed using ROM techniques due to [GVW15].

Linea

20

Previous Work

Reference Setting Limitations Depth Assumptions
(GW13] MACs Zi‘;‘;lre'tg’ up to Oflog(n)) verification | o inded |FHE scheme with w(log(n) random bits.
(GVW15] signatures levelled scheme, bounded number of bounded SIS
messages
[GVW15] signatures |levelled scheme bounded SIS + ROM
IBCFL23] signatures |bounded circuit width unbounded |PANGs OFNEW lattice assumptions
(extension of SIS)
Snark-based |signatures unbounded |knowledge assumptions or ROM
This work signatures |bounded number of messages unbounded |IO + one-way functions + FHE + NIZK
This work sighatures unbounded number of messages unbounded IO + one-way functions + FHE + NIZK +

ROM

27

Linea

Previous Work

Reference Setting Limitations Depth Assumptions
(GW13] MACs Zi‘;‘;lre'tg’ up to Oflog(n)) verification | o inded |FHE scheme with w(log(n) random bits.
(GVW15] signatures levelled scheme, bounded number of bounded SIS
messages
[GVW15] signatures |levelled scheme bounded SIS + ROM
IBCFL23] signatures |bounded circuit width unbounded |PANGs OFNEW lattice assumptions
(extension of SIS)
Snark-based |signatures unbounded |knowledge assumptions or ROM
This work signatures |bounded number of messages unbounded |IO + one-way functions + FHE + NIZK
This work sighatures unbounded number of messages unbounded IO + one-way functions + FHE + NIZK +

ROM

Our goal: fully homomorphic signatures for unbounded-depth circuits in the standard model.

Falsifiable assumptions.

28

Linea

Falsifiable Assumptions

/ } Adversary Challenger “

L J

—_— >
Condition 1

Assumption can be modelled as an interactive game between the adversary and the challenger.

Condition 2
Challenger can decide efficiently whether the adversary has won the game.

Linea

29

Falsifiable Assumptions

/ } Adversary Challenger “

L J

—_— >
Condition 1

Assumption can be modelled as an interactive game between the adversary and the challenger.

Condition 2
Challenger can decide efficiently whether the adversary has won the game.

The adversary winning probability cannot be smaller than 1/poly.

Linea

30

Falsifiable Assumptions

/ } Adversary Challenger “

L J

—_—
Condition 1

Assumption can be modelled as an interactive game between the adversary and the challenger.

Condition 2
Challenger can decide efficiently whether the adversary has won the game.

Falsifiable assumptions can be tested by exhibiting an attack against the assumption.

Linea

31

Falsifiable Assumptions

/ } Adversary Challenger “

L J

—_—
Condition 1

Assumption can be modelled as an interactive game between the adversary and the challenger.

Condition 2
Challenger can decide efficiently whether the adversary has won the game.

Example of unfalsifiable assumptions: knowledge-assumptions (knowledge of discrete log)

Linea

32

Building Block: Indistinguishability Obfuscation (iO)

Obfuscation: functionality of a program 1s hidden.

but 1t can still be executed.

Linea

33

Indistinguishability Obfuscation (iO)

M — an obfuscator of circuits.

Works on any circuits Cy and C, such that Cy(x) = C;(x) for all inputs x.

Linea

34

Indistinguishability Obfuscation (iO)

M — an obfuscator of circuits.

Very powerful object, implies a myriad of cryptographic primitives:

Linea

35

Indistinguishability Obfuscation (iO)

iL'j — an obfuscator of circuits.

Very powerful object, implies a myriad of cryptographic primitives:

Public-Key Encryption
% Fully-Homomorphic Encryption
u — ————p Functional Encryption

\> Zero-Knowledge Proofs

Linea

36

Indistinguishability Obfuscation (iO)

ih'i — an obfuscator of circuits.

Very powerful object, implies a myriad of cryptographic primitives:

Public-Key Encryption
/ Fully-Homomorphic Encryption
M — ———» Functional Encryption

\ Zero-Knowledge Proofs

A recent line of works builds 10 from falsifiable assumptions.

Linea

37

Main Tool—Punctured PRFs [SW14]

PrOgram(x) Obfuscation

Hardcoded key K
Randomness r = PRF(X, x)

Use r as coins for some other
primitive.

Linea

33

Main Tool—Punctured PRFs [SW14]

Program(x) Obfuscation Program(x) Obfuscation

Hardcoded key K Hardcoded key K{x*}, a = PRF(K, x*)
Randomness r = PRF(K, x) If x = x*thenr =a

Use r as coins for some other Otherwise r = PRF(K{x*}, x)

primitive.
\/ste r as coins for some other primitive.

IO security

Linea

39

Main Tool—Punctured PRFs [SW14]

Program(x) Obfuscation
Hardcoded key K{x*}, a = PRF(K, x*)
If x = x* thenr = a
Otherwise r = PRF(K{x*}, x)

Use r as coins for some other primitive.

40

Linea

Main Tool—Punctured PRFs [SW14]

Program(x) Obfuscation Program(x) Obfuscation
Hardcoded key K{x*}, a = PRF(K, x*) Hardcoded key K{X*},_
If x = x*thenr = a fx =x*thenr =a
Otherwise r = PRF(K{x*}, x) Otherwise r = PRF(K{x*}, x)
Use r as coins for some other primitive. Use r as coins for some other primitive.

\/

Pseudorandomness of PRF - Linea’

41

Main Tool—Punctured PRFs [SW14]

Program(x) Obfuscation Program(x) Obfuscation
Hardcoded key K{x*}, a = PRF(K, x**) Hardcoded key K{x*}, _
f x =x*thenr =a If x = x*thenr =a
Otherwise r = PRF(K{x*}, x) Otherwise r = PRF(K{x*}, x)
Use r as coins for some other primitive. Use r as coins for some other primitive.

\/ _
Pseudorandomness of PRF LInea

42

FHS Construction: Idea 1

Let DS be a non-homomorphic regular signature.

FHS . Sign(m,) = DS. Signsk(ml-)

Linea

43

FHS Construction: Idea 1

Let DS be a non-homomorphic regular signature.

FHS . Sign(m,) = DS. Signsk(mi) EvalNand((m,, 6y), (m;,0;)) Obfuscation
Hardcoded key K, let x = my NAND m,
Randomness r = PRF(K, x)
Use r as the sk of DS

If Verifyvkb(Cb, ny, Gb) = | then

Output DS . Sign_ (x) o
LiNea

44

FHS Idea 1: Issues

Let DS be a non-homomorphic regular signature.
FHS . Sign(m,;) = DS . Sign_, (m,) EvalNand((m,, 6y), (m,0;)) Obfuscation

No way to predict at which x the attacker Hardcoded key K let x = my NAND m,
will forge—in order to puncture at x,

Randomness r = PRF(K, x)
Use 7 as the sk of DS

If Verifyvkb(cb, ny, Gb) = | then

Output DS . Sign_ (my NAND m,) ,
LiNnea

45

FHS Idea 1: Issues

Let DS be a non-homomorphic regular signature.
FHS . Sign(m,;) = DS . Sign_, (m,) EvalNand((m,, 6y), (m,0;)) Obfuscation

No way to predict at which x the attacker Hardcoded key K let x = my NAND m,
will forge—in order to puncture at x,

- Randomness r = PRF(K, x)
EvalNand does not have circuits C,,

Use 7 as the sk of DS

If Verifyvkb(cb, ny, Gb) = | then

Output DS . Sign_ (my NAND m,) ,
LiNnea

46

FHS Idea 1: Issues

Let DS be a non-homomorphic regular signature.
FHS . Sign(m,;) = DS . Sign_, (m,) EvalNand((m,, 6y), (m,0;)) Obfuscation

No way to predict at which x the attacker Hardcoded key K let x = my NAND m,
will forge—in order to puncture at x,

- Randomness r = PRF(K, x)
EvalNand does not have circuits C,,

Even if we somehow manage to Use r as the sk of DS

puncture by guessing—sk simply

becomes fully random—we still must if Verify (C,,m;,0,) = 1 then
v, \ & b> s O

remove it from the program to use DS

forgettability.
unrtorgetiability Output DS . Sign_ (my NAND m;)

Linhea

47

Non-Interactive Zero-Knowledge Proofs (NIZKs)

common reference string (CRS)

Prover Verifier

—_—

NP language (x,w) € & ﬁ T

Interaction consists of only one message.

Both parties have access to the CRS, generated 1in an honest setup phase.

Linea

48

Building Block: NIZKs

common reference string (CRS)

Prover Verifier

(x,w) € &L ﬁ pu
—_—

CRS is in two modes:

Linea

49

Building Block: NIZKs

common reference string (CRS)

Prover Verifier

(x,w) € &L ﬁ pu
S ——

CRS is in two modes:

Binding CRS soundness, crs is generated along with an extraction trapdoor tdey:.

td.,+ can be used to retrieve the witness.

Linea

50

Building Block: NIZKs

common reference string (CRS)

Prover Verifier

(x,w) € &L db

CRS is in two modes:

Binding CRS soundness, crs is generated along with an extraction trapdoor tdey:.

td.,+ can be used to retrieve the witness.

Hiding CRS zero-knowledge, crs is generated along with a simulation trapdoor tdg;,.
td;, can be used to simulate proofs without a witness (fake proofs).

Linea

51

Building Block: NIZKs

common reference string (CRS)

Prover Verifier

(x,w) € &L b pu

CRS is in two modes:

Binding CRS soundness, crs is generated along with an extraction trapdoor tdey:.

td.,+ can be used to retrieve the witness.

Hiding CRS zero-knowledge, crs is generated along with a simulation trapdoor tdg;,.
td;, can be used to simulate proofs without a witness (fake proofs).

The two modes are computationally indistinguishable.

Linea

52

FHS Idea 2

FHS . Sign(m;) = o, = (ct;, &;), where mis a NIZK
proof that ct; = FHE . Enc,(m;)

The ct; component of the signature is homomorphic
by default.

Linea

53

FHS Idea 2

FHS . Sign(m,) = 6. = (ct;, x;), where m is a NIZK EvalNand((m,, 6y), (m{,6,)) Obfuscation
proof that ct; = FHE . Encp (m,)

The ct; component of the signature is homomorphic Hardcoded key K letx = my NAND m,
by default.

Randomness r = PRF(K, x)

Use r as the generating randomness of
the NIZK crs (common reference string)

Cqmpute
ct = FHE . Eval, nanp(Cto, Ct)

if NIZK . Verify(crs, 1) = 1 then

Output proof 7’ for ct.

Linea

54

How to compute 7’

EvaINand((mO, 0y), (M, 61)) Obfuscation

Hardcoded key K letx = my NAND m,

Witness is the randomness r’ of ct . Randomness r = PRF(K, x)

Use r as the generating randomness of
the NIZK crs (common reference string)

Compute

ct = FHE . Eval, nanp(Cto, Ct1)
extract r;, from 7, using tdgy ==

if NIZK . Verity(crs,) = 1 then
compute r"as ¥’ = FHE . EvalRand (7, 71)

Output proof 7z’ for ct (using r’).

Linea

55

But Now Anyone Can Sign

FHS . Sign(m;) = o; = (ct;, m;), where 7 is a NIZK proof that ct; = FHE . Enc (m,).
Simply compute an FHE ciphertext by generating r and ct = FHE . Enc(m; 7).

Then use r to compute the corresponding NIZK proof.

Linea

56

But Now Anyone Can Signh—Fix

FHS . Sign(m,) = o; = (ct;, x;), where 7 is a NIZK proof that ct; = FHE . Enc, (m,).
Generate n FHE ciphertexts for the initial messages m,...m,, i.e. ct; = FHE . Enc(m; r;).
Include the initial cty...ct, inside the verification key.

Keep initial randomness r; private to compute the proofs z; that certity that ct; encrypts m..

Linea

o57

But Now Anyone Can Signh—Fix

FHS . Sign(m,) = o; = (ct;, x;), where 7 is a NIZK proof that ct; = FHE . Enc, (m,).
Generate n FHE ciphertexts for the initial messages m,...m,, i.e. ct; = FHE . Enc(m; r;).
Include the initial cty...ct, inside the verification key.

Keep initial randomness r; private to compute the proofs z; that certity that ct; encrypts m..

Linea

58

But Now Anyone Can Sign—New Issue

FHS . Sign(m;) = o; = (ct;, m;), where r is a NIZK proof that ct; = FHE . Enc (m,).
Generate n FHE ciphertexts for the initial messages m,...m,, i.e. ct; = FHE . Enc(m; r,).
Include the initial cty...ct, inside the verification key.

Keep initial randomness r; private to compute the proofs 7; that certify that ct; encrypts m..

When computing the vk we do not know what messages will be signed!

Linea

59

But Now Anyone Can Sign—New Issue

FHS . Sign(m;) = o; = (ct;, m;), where is a NIZK proof that ct; = FHE . Enc (m,).
Generate n FHE ciphertexts for the initial messages m,...m,, i.e. ct; = FHE . Enc(m; r,).
Include the initial cty...ct, inside the verification key.

Keep Iinitial randomness r; private to compute the proofs 7; that certify that ct; encrypts m..

When computing the vk we do not know what messages will be signed!

Hybrid argument where ct; are encryptions of 0 and r; are simulated proofs using tdgjn.

Linea

60

But Now Anyone Can Sign—New Issue

Many more technical problems to overcome, for details check out the paper.

Linea

o1

Conclusion

We build a fully-homomorphic signature (FHS) scheme based on iO, FHE and NIZKs.

Our scheme is the first that achieves the following properties simultaneously:

Linea

62

Conclusion

We build a fully-homomorphic signature (FHS) scheme based on iO, FHE and NIZKs.
Our scheme is the first that achieves the following properties simultaneously:

e supports an unbounded number of levels.

 |s arbitrarily composable.

* based on falsifiable assumptions.

Linea

03

Conclusion

We build a fully-homomorphic signature (FHS) scheme based on iO, FHE and NIZKs.
Our scheme is the first that achieves the following properties simultaneously:

e supports an unbounded number of levels.

 |s arbitrarily composable.

* based on falsifiable assumptions.

Pairings + 10 (subexp)
or

LWE + iO (subexp)

Linea

o4

Thank you for your attention!

Questions?

Linea

65

Roadmap

Fully-Homomorphic Encryption, Signatures and Bootstrapping.
Defining Fully-Homomorphic Signatures.

State of the Art.

Preliminaries: 10 and NIZKs.

How to use 10.

Technical Ideas towards an FHS construction.

Conclusion.

Linea

006

Fully Homomorphic Encryption

ct; = FHE . Enc(pk,m;) ct, = FHE.Enc(pk, m,)

N,

Eval(pk, cty, Ctz)

l l l

ct = FHE . Enc(pk, m; + m,) ct = FHE.Enc(pk,m, - m,) ct = FHE.Enc(pk, C(m,, m,))

Operations happen modulo a bound parameter B.

LWE-based schemes: every homomorphic operation increases the noise level.

Correctness preserved up to a maximal noise bound B, ;..

Linea

67

