On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions

Romain Gay Bogdan Ursu

IBM Research, Zurich Linea, Consensys

Fully Homomorphic Encryption

Fully Homomorphic Encryption

Correctness preserved up to a maximal noise bound B_{noise} .

Bootstrapping for FHE

Bootstrapping for FHE

$ct'' = FHE \cdot Enc(pk, m)$ refresh the noise in ct'' (due to the rounding step in Dec)

Fully Homomorphic Signatures (FHS)

[GVW15] is an FHS based on lattices (SIS) which is levelled. Correctness preserved up to a maximal noise bound B_{noise} .

Bootstrapping for FHS?

ct["] has its noise refreshed

Bootstrapping for FHS?

ct["] has its noise refreshed

No bootstrapping equivalent for FHS.

Precomputation of a specific vk_C for a circuit C as $vk_C \leftarrow Proces_{vk}(C)$.

Precomputation of a specific vk_C for a circuit C as $vk_C \leftarrow Process_{vk}(C)$.

Alice

Precomputation of a specific vk_C for a circuit C as $vk_C \leftarrow Proces_{vk}(C)$.

Alice

 $(\sigma_1 \dots \sigma_n) \leftarrow \operatorname{Sign}_{sk}(m_1 \dots m_n)$ $\sigma_1 \dots \sigma_n$

Precomputation of a specific vk_C for a circuit C as $vk_C \leftarrow Proces_{vk}(C)$.

Alice

 $(\sigma_1 \dots \sigma_n) \leftarrow \operatorname{Sign}_{\operatorname{sk}}(m_1 \dots m_n)$

FHS—The Model

Bob $\sigma_1 \dots \sigma_n$ $\sigma^* = \operatorname{Eval}_{vk} \left(C, (m_1, \sigma_1) \dots (m_n, \sigma_n) \right)$ $\operatorname{Verify}_{vk} \left(vk_C, y, \sigma^* \right) \stackrel{?}{=} 1$ when $y = C(m_1 \dots m_n)$

Alice

Key Generation: $(vk, sk) \leftarrow KeyGen(1^{\lambda})$.

Precomputation of a specific vk_C for a circuit C

 $(\sigma_1 \dots \sigma_n) \leftarrow \operatorname{Sign}_{\operatorname{sk}}(m_1 \dots m_n)$

Succinctness: size of evaluated σ^* should not depend on *n*. Succinctness: size of circuit verification key vk_C should not depend on |C|. Precomputation of vk_C can be done for the circuits of interest depending on the application.

$$C \text{ as } \mathsf{vk}_{C} \leftarrow \mathsf{Process}_{\mathsf{vk}}(C).$$

$$\begin{array}{c} \mathsf{Bob} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \sigma^{*} = \mathsf{Eval}_{\mathsf{vk}}\Big(C, (m_{1}, \sigma_{1}) \dots (m_{n}, \sigma_{n})\Big) \\ & & \\ &$$

FHS—Composability Bob

$$Bob$$

$$\sigma^{*} = Eval_{vk} (C, (m_{1}, \sigma_{1})...(m_{n}, \sigma_{n}))$$

$$Verify_{vk} (vk_{C}, y, \sigma) \stackrel{?}{=} 1$$

$$FHS . Sign(sk, C_{k}(m_{1}...m_{n}))$$

$$k \text{ inputs to } F$$

$$G(m_{1}...m_{n}) \stackrel{\text{def}}{=} F(C_{1}(m_{1}...m_{n}) \dots C_{k}(m_{1}...m_{n}))$$

Unbounded number of composable operations. Relative to the original $m_1 \dots m_n$.

Unforgeability is with respect to the original signed messages $m_1 \dots m_n$.

Unforgeability is with respect to the original signed messages $m_1 \dots m_n$.

FHS—Labelled Model (Multi-Dataset)

Key Generation: $(vk, sk) \leftarrow KeyGen(1^{\lambda})$.

Precomputation of a specific vk_C for a circuit C as $vk_C \leftarrow Proces_{vk}(C)$.

FHS—Labelled Model (Multi-Dataset)

Key Generation: $(vk, sk) \leftarrow KeyGen(1^{\lambda})$.

Precomputation of a specific vk_C for a circuit C as $vk_C \leftarrow Process_{vk}(C)$.

Alice

 $(\sigma_{\tau}, \sigma_1 \dots \sigma_n) \leftarrow \operatorname{Sign}_{sk}((m_1 \dots m_n), \tau)$

 $\sigma^* = \operatorname{Eval}_{vk} \left(C, \sigma_{\tau}, (m_1, \sigma_1) \dots (m_n, \sigma_n) \right)$ $\operatorname{Verify}_{vk} \left(vk_C, y, \tau, \sigma_{\tau}, \sigma^* \right) \stackrel{?}{=} 1$

Bob

FHS—Labelled Model (Multi-Dataset)

Key Generation: $(vk, sk) \leftarrow KeyGen(1^{\lambda})$.

Precomputation of a specific vk_C for a circuit C as $vk_C \leftarrow Process_{vk}(C)$.

Alice

$$(\sigma_{\tau}, \sigma_1 \dots \sigma_n) \leftarrow \operatorname{Sign}_{\operatorname{sk}}((m_1 \dots m_n), \tau)$$

Arbitrary labels $\tau \in \{0,1\}^*$.

Single-data to multi-data can be achieved using a generic transformation due to [GVW15]. Bound *n* can also be removed using ROM techniques due to [GVW15].

Bob

$$\sigma_{\tau}, \sigma_{1}...\sigma_{n}$$

$$\sigma^{*} = \operatorname{Eval}_{vk} \left(C, \sigma_{\tau}, (m_{1}, \sigma_{1})...(m_{n}, \sigma_{n}) \right)$$

$$\operatorname{Verify}_{vk} \left(vk_{C}, y, \tau, \sigma_{\tau}, \sigma^{*} \right) \stackrel{?}{=} 1$$

Previous Work

Reference	Setting	Limitations	Depth	Assumptions
[GW13]	MACs	security up to O(log(n)) verification queries.	unbounded	FHE scheme with ω(log(n)) random bit
[GVW15]	signatures	levelled scheme, bounded number of messages	bounded	SIS
[GVW15]	signatures	levelled scheme	bounded	SIS + ROM
[BCFL23]	signatures	bounded circuit width	unbounded	pairings or new lattice assumptions (extension of SIS)
Snark-based	signatures		unbounded	knowledge assumptions or ROM
This work	signatures	bounded number of messages	unbounded	IO + one-way functions + FHE + NIZK
This work	signatures	unbounded number of messages	unbounded	IO + one-way functions + FHE + NIZK ROM

Previous Work

Reference	Setting	Limitations	Depth	Assumptions
[GW13]	MACs	security up to O(log(n)) verification queries.	unbounded	FHE scheme with ω(log(n)) random bit
[GVW15]	signatures	levelled scheme, bounded number of messages	bounded	SIS
[GVW15]	signatures	levelled scheme	bounded	SIS + ROM
[BCFL23]	signatures	bounded circuit width	unbounded	pairings or new lattice assumptions (extension of SIS)
Snark-based	signatures		unbounded	knowledge assumptions or ROM
This work	signatures	bounded number of messages	unbounded	IO + one-way functions + FHE + NIZK
This work	signatures	unbounded number of messages	unbounded	IO + one-way functions + FHE + NIZK ROM

Our goal: fully homomorphic signatures for <u>unbounded-depth</u> circuits in the standard model.

Falsifiable assumptions.

Condition 1

Assumption can be modelled as an interactive game between the adversary and the challenger.

Condition 2

Challenger can decide efficiently whether the adversary has won the game.

Adversary

Condition 1

Assumption can be modelled as an interactive game between the adversary and the challenger.

Condition 2

Challenger can decide efficiently whether the adversary has won the game.

The adversary winning probability cannot be smaller than 1/poly.

Adversary

Condition 1

Assumption can be modelled as an interactive game between the adversary and the challenger.

Condition 2

Challenger can decide efficiently whether the adversary has won the game.

Falsifiable assumptions can be tested by exhibiting an attack against the assumption.

Adversary

Condition 1

Assumption can be modelled as an interactive game between the adversary and the challenger.

Condition 2

Challenger can decide efficiently whether the adversary has won the game.

Example of unfalsifiable assumptions: knowledge-assumptions (knowledge of discrete log)

Building Block: Indistinguishability Obfuscation (iO)

Obfuscation: functionality of a program is hidden. but it can still be executed.

Indistinguishability Obfuscation (iO)

Works on any circuits C_0 and C_1 , such that $C_0(x) = C_1(x)$ for all inputs x.

The obfuscations C_0^* and C_1^* are computationally indistinguishable

Indistinguishability Obfuscation (iO)

Very powerful object, implies a myriad of cryptographic primitives:

Indistinguishability Obfuscation (iO)

— an obfuscator of circuits.

Very powerful object, implies a myriad of cryptographic primitives:

Indistinguishability Obfuscation (iO)

- an obfuscator of circuits.

Very powerful object, implies a myriad of cryptographic primitives:

A recent line of works builds IO from falsifiable assumptions.

Program(x)

Obfuscation

Hardcoded key *K*

Randomness r = PRF(K, x)

Use *r* as coins for some other primitive.

Linea

Program(x)

Obfuscation

Hardcoded key K

Randomness r = PRF(K, x)

Use *r* as coins for some other primitive.

Program(x)

Obfuscation

Hardcoded key $K\{x^*\}$, $a = PRF(K, x^*)$

If
$$x = x^*$$
 then $r = a$

Otherwise $r = PRF(K\{x^*\}, x)$

Use *r* as coins for some other primitive.

Obfuscation Program(x)Hardcoded key $K\{x^*\}, a = \mathsf{PRF}(K, x^*)$ If $x = x^*$ then r = aOtherwise $r = PRF(K\{x^*\}, x)$ Use *r* as coins for some other primitive.

Linea

Obfuscation Program(x)Hardcoded key $K\{x^*\}, a = \mathsf{PRF}(K, x^*)$ If $x = x^*$ then r = aOtherwise $r = PRF(K\{x^*\}, x)$ Use *r* as coins for some other primitive.

Obfuscation Program(x)Hardcoded key $K\{x^*\}$, random *a* If $x = x^*$ then r = aOtherwise $r = PRF(K\{x^*\}, x)$ Use *r* as coins for some other primitive.

Program(x)ObfuscationHardcoded key $K\{x^*\}, a = PRF(K, x^*)$ If $x = x^*$ then r = aOtherwise $r = PRF(K\{x^*\}, x)$ Use r as coins for some other primitive.

Obfuscation Program(x)Hardcoded key $K\{x^*\}$, random a If $x = x^*$ then r = aOtherwise $r = PRF(K\{x^*\}, x)$ Use *r* as coins for some other primitive. Use security of the primitive.

FHS Construction: Idea 1

Let DS be a non-homomorphic regular signature.

FHS. $Sign(m_i) = DS. Sign_{sk}(m_i)$

FHS Construction: Idea 1

Let DS be a non-homomorphic regular signature.

FHS. $Sign(m_i) = DS. Sign_{sk}(m_i)$

- EvalNand($(m_0, \sigma_0), (m_1, \sigma_1)$) Obfuscation
 - Hardcoded key *K*, let $x = m_0$ NAND m_1
 - Randomness r = PRF(K, x)
 - Use *r* as the sk['] of DS
 - if $\operatorname{Verify}_{vk_b}(C_b, m_b, \sigma_b) = 1$ then

Output DS . $Sign_{sk}(x)$

FHS Idea 1: Issues

Let DS be a non-homomorphic regular signature.

FHS. $Sign(m_i) = DS. Sign_{sk}(m_i)$

No way to predict at which x the attacker will forge—in order to puncture at x,

- EvalNand($(m_0, \sigma_0), (m_1, \sigma_1)$) Obfuscation
 - Hardcoded key *K* let $x = m_0$ NAND m_1
 - Randomness r = PRF(K, x)
 - Use *r* as the sk of DS
 - if $\operatorname{Verify}_{vk_b}(C_b, m_b, \sigma_b) = 1$ then

Output DS. $Sign_{sk}(m_0 \text{ NAND } m_1)$

FHS Idea 1: Issues

Let DS be a non-homomorphic regular signature.

FHS. $Sign(m_i) = DS. Sign_{sk}(m_i)$

No way to predict at which x the attacker will forge—in order to puncture at x,

EvalNand does not have circuits C_b .

- EvalNand($(m_0, \sigma_0), (m_1, \sigma_1)$) Obfuscation
 - Hardcoded key *K* let $x = m_0$ NAND m_1
 - Randomness r = PRF(K, x)
 - Use *r* as the sk['] of DS
 - if $\operatorname{Verify}_{vk_b}(C_b, m_b, \sigma_b) = 1$ then

Output DS. $Sign_{sk}(m_0 \text{ NAND } m_1)$

FHS Idea 1: Issues

Let DS be a non-homomorphic regular signature.

FHS. $Sign(m_i) = DS. Sign_{sk}(m_i)$

No way to predict at which x the attacker will forge—in order to puncture at x,

EvalNand does not have circuits C_b .

Even if we somehow manage to puncture by guessing—sk simply becomes fully random—we still must remove it from the program to use DS unforgettability.

- EvalNand($(m_0, \sigma_0), (m_1, \sigma_1)$) Obfuscation
 - Hardcoded key *K* let $x = m_0$ NAND m_1
 - Randomness r = PRF(K, x)
 - Use *r* as the sk['] of DS
 - if $\operatorname{Verify}_{vk_b}(C_b, m_b, \sigma_b) = 1$ then

Output DS. $Sign_{sk}(m_0 \text{ NAND } m_1)$

Non-Interactive Zero-Knowledge Proofs (NIZKs)

Prover

NP language $(x, w) \in \mathscr{L}$

Both parties have access to the CRS, generated in an honest setup phase.

Interaction consists of only one message.

Building Block: NIZKs

Prover

 $(x,w) \in \mathscr{L}$

CRS is in two modes:

common reference string (CRS)

Verifier

Prover $(x,w) \in \mathscr{L}$

CRS is in two modes:

Binding CRS soundness, crs is generated along with an extraction trapdoor td_{ext} . td_{ext} can be used to retrieve the witness.

Building Block: NIZKs

Building Block: NIZKs

Prover $(x,w) \in \mathscr{L}$

CRS is in two modes:

Binding CRS

td_{ext} can be used to retrieve the witness.

Hiding CRS

- soundness, crs is generated along with an extraction trapdoor td_{ext} .
- zero-knowledge, crs is generated along with a simulation trapdoor td_{sim} . td_{sim} can be used to simulate proofs without a witness (fake proofs).

Building Block: NIZKs

Prover $(x,w) \in \mathscr{L}$

CRS is in two modes:

Binding CRS

td_{ext} can be used to retrieve the witness.

Hiding CRS

The two modes are computationally indistinguishable.

- soundness, crs is generated along with an extraction trapdoor td_{ext} .
- zero-knowledge, crs is generated along with a simulation trapdoor td_{sim} . td_{sim} can be used to simulate proofs without a witness (fake proofs).

FHS Idea 2

FHS. Sign $(m_i) = \sigma_i = (ct_i, \pi_i)$, where π is a NIZK proof that $ct_i = FHE \cdot Enc_{pk}(m_i)$

The ct_i component of the signature is homomorphic by default.

FHS Idea 2

FHS. Sign $(m_i) = \sigma_i = (ct_i, \pi_i)$, where π is a NIZK proof that $ct_i = FHE \cdot Enc_{pk}(m_i)$

The ct_i component of the signature is homomorphic by default.

EvalNand($(m_0, \sigma_0), (m_1, \sigma_1)$) Obfuscation let $x = m_0$ NAND m_1 Hardcoded key K Randomness r = PRF(K, x)Use *r* as the generating randomness of the NIZK crs (common reference string) Compute $ct' = FHE \cdot Eval_{pk,NAND}(ct_0, ct_1)$ if NIZK. Verify(crs, π_h) = 1 then Output proof π' for ct'.

How to compute π'

Witness is the randomness r' of ct.

extract r_b from π_b using td_{ext}

compute r' as $r' = FHE \cdot EvalRand_{pk,sk}(r_0, r_1)$

EvalNand($(m_0, \sigma_0), (m_1, \sigma_1)$) Obfuscation

let $x = m_0$ NAND m_1 Hardcoded key K

Randomness r = PRF(K, x)

Use *r* as the generating randomness of the NIZK crs (common reference string)

Compute $ct' = FHE \cdot Eval_{pk,NAND}(ct_0, ct_1)$

if NIZK. Verify(crs, π_h) = 1 then

Output proof π' for ct['] (using r').

But Now Anyone Can Sign

FHS. Sign $(m_i) = \sigma_i = (ct_i, \pi_i)$, where π is a NIZK proof that $ct_i = FHE$. Enc_{pk} (m_i) .

Simply compute an FHE ciphertext by generating r and ct = FHE. Enc(m; r).

Then use *r* to compute the corresponding NIZK proof.

But Now Anyone Can Sign – Fix

FHS. Sign $(m_i) = \sigma_i = (ct_i, \pi_i)$, where π is a NIZK proof that $ct_i = FHE$. Enc_{pk} (m_i) .

Generate *n* FHE ciphertexts for the initial messages $m_1 \dots m_n$, i.e. $ct_i = FHE \dots Enc(m_i; r_i)$.

Include the initial $ct_1...ct_n$ inside the verification key.

Keep initial randomness r_i private to compute the proofs π_i that certify that ct_i encrypts m_i .

But Now Anyone Can Sign – Fix

FHS. Sign $(m_i) = \sigma_i = (ct_i, \pi_i)$, where π is a NIZK proof that $ct_i = FHE$. Enc_{pk} (m_i) .

Generate *n* FHE ciphertexts for the initial messages $m_1 \dots m_n$, i.e. $ct_i = FHE \dots Enc(m_i; r_i)$.

Include the initial $ct_1...ct_n$ inside the verification key.

Keep initial randomness r_i private to compute the proofs π_i that certify that ct_i encrypts m_i .

But Now Anyone Can Sign—New Issue

FHS. Sign $(m_i) = \sigma_i = (ct_i, \pi_i)$, where π is a NIZK proof that $ct_i = FHE$. Enc_{pk} (m_i) .

Generate *n* FHE ciphertexts for the initial messages $m_1 \dots m_n$, i.e. $ct_i = FHE \dots Enc(m_i; r_i)$.

Include the initial $ct_1...ct_n$ inside the verification key.

Keep initial randomness r_i private to compute the proofs π_i that certify that ct_i encrypts m_i .

- When computing the vk we do not know what messages will be signed!

But Now Anyone Can Sign—New Issue

- FHS. Sign $(m_i) = \sigma_i = (ct_i, \pi_i)$, where π is a NIZK proof that $ct_i = FHE$. Enc_{pk} (m_i) .
- Generate *n* FHE ciphertexts for the initial messages $m_1 \dots m_n$, i.e. $ct_i = FHE \dots Enc(m_i; r_i)$.
- Include the initial $ct_1...ct_n$ inside the verification key.
- Keep initial randomness r_i private to compute the proofs π_i that certify that ct_i encrypts m_i .
 - When computing the vk we do not know what messages will be signed!
 - Hybrid argument where ct_i are encryptions of 0 and π_i are simulated proofs using td_{sim} .

But Now Anyone Can Sign—New Issue

Many more technical problems to overcome, for details check out the paper.

We build a fully-homomorphic signature (FHS) scheme based on iO, FHE and NIZKs.

Our scheme is the first that achieves the following properties simultaneously:

Conclusion

We build a fully-homomorphic signature (FHS) scheme based on iO, FHE and NIZKs.

Our scheme is the first that achieves the following properties simultaneously:

- supports an unbounded number of levels.
- is arbitrarily composable.
- based on falsifiable assumptions.

Conclusion

We build a fully-homomorphic signature (FHS) scheme based on iO, FHE and NIZKs.

Our scheme is the first that achieves the following properties simultaneously:

- supports an unbounded number of levels.
- is arbitrarily composable.
- based on falsifiable assumptions.

Conclusion

Or

LWE + iO (subexp)

Thank you for your attention!

Questions?

Roadmap

- Fully-Homomorphic Encryption, Signatures and Bootstrapping.
- Defining Fully-Homomorphic Signatures.
- State of the Art.
- Preliminaries: iO and NIZKs.
- How to use iO.
- Technical Ideas towards an FHS construction.
- Conclusion.

Operations happen modulo a bound parameter B. LWE-based schemes: every homomorphic operation increases the noise level. Correctness preserved up to a maximal noise bound B_{noise} .

LINea

