
On Instantiating Unleveled Fully-Homomorphic
Signatures from Falsifiable Assumptions

Bogdan Ursu Linea, Consensys

1

IBM Research, ZurichRomain Gay

Fully Homomorphic Encryption

2

𝖼𝗍1 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m1)

𝖤𝗏𝖺𝗅+(𝗉𝗄, 𝖼𝗍1, 𝖼𝗍2)

𝖼𝗍2 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m2)

𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m1 + m2)

Fully Homomorphic Encryption

3

𝖼𝗍1 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m1)

𝖤𝗏𝖺𝗅+(𝗉𝗄, 𝖼𝗍1, 𝖼𝗍2)

𝖼𝗍2 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m2)

𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m1 + m2) 𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m1 ⋅ m2) 𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, C(m1, m2))

Correctness preserved up to a maximal noise bound .B𝗇𝗈𝗂𝗌𝖾

𝖤𝗏𝖺𝗅×(𝗉𝗄, 𝖼𝗍1, 𝖼𝗍2) 𝖤𝗏𝖺𝗅×(𝗉𝗄, 𝖼𝗍1, 𝖼𝗍2)

𝖼𝗍′ = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, 𝗌𝗄)

Bootstrapping for FHE

4

𝖤𝗏𝖺𝗅𝖥𝖧𝖤.𝖣𝖾𝖼(𝗉𝗄, 𝖼𝗍′ , 𝖼𝗍)

𝖼𝗍′ ′ = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m)

𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m)

𝖼𝗍′ = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, 𝗌𝗄)

Bootstrapping for FHE

5

𝖤𝗏𝖺𝗅𝖥𝖧𝖤.𝖣𝖾𝖼(𝗉𝗄, 𝖼𝗍′ , 𝖼𝗍)

𝖼𝗍′ ′ = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m)

𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m)

refresh the noise in (due to the rounding step in)𝖼𝗍′ ′ 𝖣𝖾𝖼

Fully Homomorphic Signatures (FHS)

6

σ1 = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m1)

𝖤𝗏𝖺𝗅+(𝗏𝗄, σ1, σ2)

σ2 = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m2)

σ = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m1 + m2)

Fully Homomorphic Signatures (FHS)

7

σ1 = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m1)

𝖤𝗏𝖺𝗅+(𝗏𝗄, σ1, σ2)

σ2 = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m2)

σ = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m1 + m2) σC = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, C(m1, m2))σ = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m1 ⋅ m2)

𝖤𝗏𝖺𝗅×(𝗏𝗄, σ1, σ2) 𝖤𝗏𝖺𝗅C(𝗏𝗄, σ1, σ2)

Fully Homomorphic Signatures (FHS)

8

σ1 = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m1) σ2 = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m2)

[GVW15] is an FHS based on lattices (SIS) which is levelled.
Correctness preserved up to a maximal noise bound .B𝗇𝗈𝗂𝗌𝖾

σ = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m1 + m2) σC = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, C(m1, m2))σ = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m1 ⋅ m2)

𝖤𝗏𝖺𝗅+(𝗏𝗄, σ1, σ2) 𝖤𝗏𝖺𝗅×(𝗏𝗄, σ1, σ2) 𝖤𝗏𝖺𝗅C(𝗏𝗄, σ1, σ2)

𝖼𝗍′ = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, 𝗌𝗄)

Bootstrapping for FHS?

9

𝖼𝗍′ ′ = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, x)

𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, x)

𝖤𝗏𝖺𝗅𝖥𝖧𝖤.𝖣𝖾𝖼(𝗉𝗄, 𝖼𝗍′ , 𝖼𝗍)

 has its noise refreshed𝖼𝗍′ ′

𝖼𝗍′ = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, 𝗌𝗄)

Bootstrapping for FHS?

10

𝖼𝗍′ ′ = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, x)

𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, x)

 has its noise refreshed𝖼𝗍′ ′

σ′ = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, ?)

𝖤𝗏𝖺𝗅?(𝗏𝗄, ? , σ)

σ = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, m)

No bootstrapping equivalent for FHS.

𝖤𝗏𝖺𝗅𝖥𝖧𝖤.𝖣𝖾𝖼(𝗉𝗄, 𝖼𝗍′ , 𝖼𝗍)

FHS—The Model

11

Key Generation: .(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

Precomputation of a specific for a circuit as .𝗏𝗄C C 𝗏𝗄C ← 𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗏𝗄(C)

FHS—The Model

12

Alice Bob

Key Generation: .(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

Precomputation of a specific for a circuit as .𝗏𝗄C C 𝗏𝗄C ← 𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗏𝗄(C)

FHS—The Model

13

Alice Bob

Key Generation: .(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

Precomputation of a specific for a circuit as .𝗏𝗄C C 𝗏𝗄C ← 𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗏𝗄(C)

σ1…σn(σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn)

FHS—The Model

14

Alice Bob

Key Generation: .(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

Precomputation of a specific for a circuit as .𝗏𝗄C C 𝗏𝗄C ← 𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗏𝗄(C)

σ1…σn

σ* = 𝖤𝗏𝖺𝗅𝗏𝗄(C, (m1, σ1)…(mn, σn))
𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗏𝗄C, y, σ*) ?= 1

(σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn)

when y = C(m1…mn)

FHS—The Model

15

Alice Bob

Key Generation: .(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

Precomputation of a specific for a circuit as .𝗏𝗄C C 𝗏𝗄C ← 𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗏𝗄(C)

(σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn) σ1…σn

σ* = 𝖤𝗏𝖺𝗅𝗏𝗄(C, (m1, σ1)…(mn, σn))
𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗏𝗄C, y, σ*) ?= 1

Succinctness: size of evaluated should not depend on .σ* n
Succinctness: size of circuit verification key should not depend on .𝗏𝗄C |C |
Precomputation of can be done for the circuits of interest depending on the application. 𝗏𝗄C

when y = C(m1…mn)

FHS—Composability

16

Alice Bob
σ1…σn σ* = 𝖤𝗏𝖺𝗅𝗏𝗄(C, (m1, σ1)…(mn, σn))

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗏𝗄C, y, σ) ?= 1

(σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn)

FHS—Composability

17

Alice Bob
σ1…σn σ* = 𝖤𝗏𝖺𝗅𝗏𝗄(C, (m1, σ1)…(mn, σn))

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗏𝗄C, y, σ) ?= 1

𝖤𝗏𝖺𝗅F(σ1…σk)

σG = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, G(m1…mn))

σC1
= 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, C1(m1…mn)) σCk

= 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, Ck(m1…mn))…

(σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn)

 circuits k C1…Ck

FHS—Composability

18

Alice Bob
σ1…σn σ* = 𝖤𝗏𝖺𝗅𝗏𝗄(C, (m1, σ1)…(mn, σn))

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗏𝗄C, y, σ) ?= 1

𝖤𝗏𝖺𝗅F(σ1…σk)

σG = 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, G(m1…mn))

σC1
= 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, C1(m1…mn)) σCk

= 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, Ck(m1…mn))…

Unbounded number of composable operations.

 inputs to k F

Relative to the original . m1…mn

G(m1…mn)
def= F(C1(m1…mn) … Ck(m1…mn))

(σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn)

FHS—Security

19

Adversary Challenger

.(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)𝗏𝗄, 𝗌𝗄

FHS—Security

20

Adversary Challenger

m1…mn (σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn)

.(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)𝗏𝗄, 𝗌𝗄

FHS—Security

21

Adversary Challenger

m1…mn (σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn)

.(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)𝗏𝗄, 𝗌𝗄

σ1…σn

(y*, C*, σ*)

FHS—Security

22

Adversary Challenger

m1…mn (σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn)

.(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)𝗏𝗄, 𝗌𝗄

σ1…σn

(y*, C*, σ*)

Adversary wins if but .𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(C*, y*, σ*) = 1 y* ≠ C*(m1…mn)

Unforgeability is with respect to the original signed messages .m1…mn

FHS—Security

23

Adversary Challenger

m1…mn (σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄(m1…mn)

.(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)𝗏𝗄, 𝗌𝗄

σ1…σn

(y*, C*, σ*)

Adversary wins if but .𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(C*, y*, σ*) = 1 y* ≠ C*(m1…mn)

Unforgeability is with respect to the original signed messages .m1…mn

Is the bound a limitation?n

FHS—Labelled Model (Multi-Dataset)

24

Key Generation: .(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

Precomputation of a specific for a circuit as .𝗏𝗄C C 𝗏𝗄C ← 𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗏𝗄(C)

FHS—Labelled Model (Multi-Dataset)

25

Alice Bob

Key Generation: .(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

Precomputation of a specific for a circuit as .𝗏𝗄C C 𝗏𝗄C ← 𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗏𝗄(C)

στ, σ1…σn

σ* = 𝖤𝗏𝖺𝗅𝗏𝗄(C, στ, (m1, σ1)…(mn, σn))
𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗏𝗄C, y, τ, στ, σ*) ?= 1

(στ, σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄((m1…mn), τ)

FHS—Labelled Model (Multi-Dataset)

26

Alice Bob

Key Generation: .(𝗏𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

Precomputation of a specific for a circuit as .𝗏𝗄C C 𝗏𝗄C ← 𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗏𝗄(C)

στ, σ1…σn

σ* = 𝖤𝗏𝖺𝗅𝗏𝗄(C, στ, (m1, σ1)…(mn, σn))
𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗏𝗄C, y, τ, στ, σ*) ?= 1

Arbitrary labels .τ ∈ {0,1}*

Bound can also be removed using ROM techniques due to [GVW15]. n
Single-data to multi-data can be achieved using a generic transformation due to [GVW15].

(στ, σ1…σn) ← 𝖲𝗂𝗀𝗇𝗌𝗄((m1…mn), τ)

Previous Work

27

Reference Setting Limitations Depth Assumptions

[GW13] MACs security up to O(log(n)) verification
queries. unbounded FHE scheme with ω(log(n)) random bits.

[GVW15] signatures levelled scheme, bounded number of
messages bounded SIS

[GVW15] signatures levelled scheme bounded SIS + ROM

[BCFL23] signatures bounded circuit width unbounded pairings or new lattice assumptions
(extension of SIS)

Snark-based signatures unbounded knowledge assumptions or ROM

This work signatures bounded number of messages unbounded IO + one-way functions + FHE + NIZK

This work signatures unbounded number of messages unbounded IO + one-way functions + FHE + NIZK +
ROM

Previous Work

28

Our goal: fully homomorphic signatures for unbounded-depth circuits in the standard model.
Falsifiable assumptions.

Reference Setting Limitations Depth Assumptions

[GW13] MACs security up to O(log(n)) verification
queries. unbounded FHE scheme with ω(log(n)) random bits.

[GVW15] signatures levelled scheme, bounded number of
messages bounded SIS

[GVW15] signatures levelled scheme bounded SIS + ROM

[BCFL23] signatures bounded circuit width unbounded pairings or new lattice assumptions
(extension of SIS)

Snark-based signatures unbounded knowledge assumptions or ROM

This work signatures bounded number of messages unbounded IO + one-way functions + FHE + NIZK

This work signatures unbounded number of messages unbounded IO + one-way functions + FHE + NIZK +
ROM

Falsifiable Assumptions

29

Adversary Challenger

Assumption can be modelled as an interactive game between the adversary and the challenger.
Condition 1

Challenger can decide efficiently whether the adversary has won the game.
Condition 2

Falsifiable Assumptions

30

Adversary Challenger

The adversary winning probability cannot be smaller than .1/𝗉𝗈𝗅𝗒

Assumption can be modelled as an interactive game between the adversary and the challenger.
Condition 1

Challenger can decide efficiently whether the adversary has won the game.
Condition 2

Falsifiable Assumptions

31

Adversary Challenger

Falsifiable assumptions can be tested by exhibiting an attack against the assumption.

Assumption can be modelled as an interactive game between the adversary and the challenger.
Condition 1

Challenger can decide efficiently whether the adversary has won the game.
Condition 2

Falsifiable Assumptions

32

Adversary Challenger

Assumption can be modelled as an interactive game between the adversary and the challenger.
Condition 1

Challenger can decide efficiently whether the adversary has won the game.
Condition 2

Example of unfalsifiable assumptions: knowledge-assumptions (knowledge of discrete log)

Building Block: Indistinguishability Obfuscation (iO)

33

Obfuscation: functionality of a program is hidden.

but it can still be executed.

Indistinguishability Obfuscation (iO)

Works on any circuits and , such that for all inputs x.C0 C1 C0(x) = C1(x)

C0 C1

≈c

𝗂𝖮

C*0 C*1

The obfuscations and are computationally indistinguishableC*0 C*1𝗂𝖮𝗂𝖮

34

— an obfuscator of circuits.

Indistinguishability Obfuscation (iO)

𝗂𝖮
Very powerful object, implies a myriad of cryptographic primitives:

35

— an obfuscator of circuits.

Indistinguishability Obfuscation (iO)

— an obfuscator of circuits.𝗂𝖮
Very powerful object, implies a myriad of cryptographic primitives:

36

𝗂𝖮
Fully-Homomorphic Encryption

Public-Key Encryption

Functional Encryption

Zero-Knowledge Proofs

Indistinguishability Obfuscation (iO)

— an obfuscator of circuits.𝗂𝖮
Very powerful object, implies a myriad of cryptographic primitives:

37

𝗂𝖮
Fully-Homomorphic Encryption

Public-Key Encryption

Functional Encryption

Zero-Knowledge Proofs

A recent line of works builds IO from falsifiable assumptions.

Main Tool—Punctured PRFs [SW14]

Hardcoded key

Randomness

Use as coins for some other
primitive.

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x)

K

r = 𝖯𝖱𝖥(K, x)

r

Obfuscation

38

Hardcoded key

Randomness

Use as coins for some other
primitive.

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x)

K

r = 𝖯𝖱𝖥(K, x)

r

Obfuscation

Hardcoded key ,

If then

Otherwise

Use as coins for some other primitive.

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x)

K{x*} a = 𝖯𝖱𝖥(K, x*)

x = x* r = a

r = 𝖯𝖱𝖥(K{x*}, x)

r

Obfuscation

iO security
39

Main Tool—Punctured PRFs [SW14]

Hardcoded key ,

If then

Otherwise

Use as coins for some other primitive.

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x)

K{x*} a = 𝖯𝖱𝖥(K, x*)

x = x* r = a

r = 𝖯𝖱𝖥(K{x*}, x)

r

Obfuscation

40

Main Tool—Punctured PRFs [SW14]

Hardcoded key ,

If then

Otherwise

Use as coins for some other primitive.

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x)

K{x*} a = 𝖯𝖱𝖥(K, x*)

x = x* r = a

r = 𝖯𝖱𝖥(K{x*}, x)

r

Obfuscation

Pseudorandomness of 𝖯𝖱𝖥

Hardcoded key ,

If then

Otherwise

Use as coins for some other primitive.

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x)

K{x*}

x = x* r = a

r = 𝖯𝖱𝖥(K{x*}, x)

r

Obfuscation

 random a

41

Main Tool—Punctured PRFs [SW14]

Hardcoded key ,

If then

Otherwise

Use as coins for some other primitive.

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x)

K{x*} a = 𝖯𝖱𝖥(K, x*)

x = x* r = a

r = 𝖯𝖱𝖥(K{x*}, x)

r

Obfuscation

Pseudorandomness of 𝖯𝖱𝖥

Hardcoded key ,

If then

Otherwise

Use as coins for some other primitive.

𝖯𝗋𝗈𝗀𝗋𝖺𝗆(x)

K{x*}

x = x* r = a

r = 𝖯𝖱𝖥(K{x*}, x)

r

Obfuscation

 random a

Use security of the primitive.

42

Main Tool—Punctured PRFs [SW14]

FHS Construction: Idea 1

43

𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = 𝖣𝖲 . 𝖲𝗂𝗀𝗇𝗌𝗄(mi)

Let be a non-homomorphic regular signature. 𝖣𝖲

FHS Construction: Idea 1

44

𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = 𝖣𝖲 . 𝖲𝗂𝗀𝗇𝗌𝗄(mi)

Let be a non-homomorphic regular signature. 𝖣𝖲

Hardcoded key , let

Randomness

Use as the of

if then

 Output

𝖤𝗏𝖺𝗅𝖭𝖺𝗇𝖽((m0, σ0), (m1, σ1))

K x = m0 𝖭𝖠𝖭𝖣 m1

r = 𝖯𝖱𝖥(K, x)

r 𝗌𝗄′ 𝖣𝖲

𝖵𝖾𝗋𝗂𝖿𝗒vkb
(Cb, mb, σb) = 1

𝖣𝖲 . 𝖲𝗂𝗀𝗇𝗌𝗄′ (x)

Obfuscation

FHS Idea 1: Issues

45

𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = 𝖣𝖲 . 𝖲𝗂𝗀𝗇𝗌𝗄(mi)

Let be a non-homomorphic regular signature. 𝖣𝖲

No way to predict at which x the attacker
will forge—in order to puncture at x,

Hardcoded key

Randomness

Use as the of

if then

 Output

𝖤𝗏𝖺𝗅𝖭𝖺𝗇𝖽((m0, σ0), (m1, σ1))

K

r = 𝖯𝖱𝖥(K, x)

r 𝗌𝗄′ 𝖣𝖲

𝖵𝖾𝗋𝗂𝖿𝗒vkb
(Cb, mb, σb) = 1

𝖣𝖲 . 𝖲𝗂𝗀𝗇𝗌𝗄′ (m0 𝖭𝖠𝖭𝖣 m1)

Obfuscation

let x = m0 𝖭𝖠𝖭𝖣 m1

FHS Idea 1: Issues

46

𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = 𝖣𝖲 . 𝖲𝗂𝗀𝗇𝗌𝗄(mi)

Let be a non-homomorphic regular signature. 𝖣𝖲

No way to predict at which x the attacker
will forge—in order to puncture at x,

Hardcoded key

Randomness

Use as the of

if then

 Output

𝖤𝗏𝖺𝗅𝖭𝖺𝗇𝖽((m0, σ0), (m1, σ1))

K

r = 𝖯𝖱𝖥(K, x)

r 𝗌𝗄′ 𝖣𝖲

𝖵𝖾𝗋𝗂𝖿𝗒vkb
(Cb, mb, σb) = 1

𝖣𝖲 . 𝖲𝗂𝗀𝗇𝗌𝗄′ (m0 𝖭𝖠𝖭𝖣 m1)

Obfuscation

EvalNand does not have circuits .Cb

let x = m0 𝖭𝖠𝖭𝖣 m1

FHS Idea 1: Issues

47

𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = 𝖣𝖲 . 𝖲𝗂𝗀𝗇𝗌𝗄(mi)

Let be a non-homomorphic regular signature. 𝖣𝖲

No way to predict at which x the attacker
will forge—in order to puncture at x,

Hardcoded key

Randomness

Use as the of

if then

 Output

𝖤𝗏𝖺𝗅𝖭𝖺𝗇𝖽((m0, σ0), (m1, σ1))

K

r = 𝖯𝖱𝖥(K, x)

r 𝗌𝗄′ 𝖣𝖲

𝖵𝖾𝗋𝗂𝖿𝗒vkb
(Cb, mb, σb) = 1

𝖣𝖲 . 𝖲𝗂𝗀𝗇𝗌𝗄′ (m0 𝖭𝖠𝖭𝖣 m1)

Obfuscation

EvalNand does not have circuits .Cb

Even if we somehow manage to
puncture by guessing— simply
becomes fully random—we still must
remove it from the program to use
unforgettability.

𝗌𝗄

𝖣𝖲

let x = m0 𝖭𝖠𝖭𝖣 m1

Non-Interactive Zero-Knowledge Proofs (NIZKs)

Prover Verifier

π

Interaction consists of only one message.

48

NP language (x, w) ∈ ℒ

Both parties have access to the CRS, generated in an honest setup phase.

common reference string (CRS)

Building Block: NIZKs

Prover Verifier

π

common reference string (CRS)

49

(x, w) ∈ ℒ

CRS is in two modes:

Building Block: NIZKs

Prover Verifier

π

common reference string (CRS)

soundness, is generated along with an extraction trapdoor .
 can be used to retrieve the witness.

𝖼𝗋𝗌 𝗍𝖽𝖾𝗑𝗍

𝗍𝖽𝖾𝗑𝗍

Binding CRS

50

(x, w) ∈ ℒ

CRS is in two modes:

Building Block: NIZKs

Prover Verifier

π

common reference string (CRS)

soundness, is generated along with an extraction trapdoor .
 can be used to retrieve the witness.

𝖼𝗋𝗌 𝗍𝖽𝖾𝗑𝗍

𝗍𝖽𝖾𝗑𝗍

Binding CRS

Hiding CRS

51

(x, w) ∈ ℒ

zero-knowledge, is generated along with a simulation trapdoor .
 can be used to simulate proofs without a witness (fake proofs).

𝖼𝗋𝗌 𝗍𝖽𝗌𝗂𝗆

𝗍𝖽𝗌𝗂𝗆

CRS is in two modes:

Building Block: NIZKs

Prover Verifier

π

common reference string (CRS)

soundness, is generated along with an extraction trapdoor .
 can be used to retrieve the witness.

𝖼𝗋𝗌 𝗍𝖽𝖾𝗑𝗍

𝗍𝖽𝖾𝗑𝗍

Binding CRS

Hiding CRS

52

(x, w) ∈ ℒ

The two modes are computationally indistinguishable.

zero-knowledge, is generated along with a simulation trapdoor .
 can be used to simulate proofs without a witness (fake proofs).

𝖼𝗋𝗌 𝗍𝖽𝗌𝗂𝗆

𝗍𝖽𝗌𝗂𝗆

CRS is in two modes:

53

FHS Idea 2
, where is a NIZK

proof that
𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = σi = (𝖼𝗍i, πi) π

𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼𝗉𝗄(mi)
The component of the signature is homomorphic
by default.

𝖼𝗍i

54

FHS Idea 2
, where is a NIZK

proof that
𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = σi = (𝖼𝗍i, πi) π

𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼𝗉𝗄(mi)
The component of the signature is homomorphic
by default.

𝖼𝗍i
Hardcoded key

Randomness

Use as the generating randomness of
the NIZK (common reference string)

Compute

if then

 Output proof for .

𝖤𝗏𝖺𝗅𝖭𝖺𝗇𝖽((m0, σ0), (m1, σ1))

K

r = 𝖯𝖱𝖥(K, x)

r
𝖼𝗋𝗌

𝖼𝗍′ = 𝖥𝖧𝖤 . 𝖤𝗏𝖺𝗅𝗉𝗄,𝖭𝖠𝖭𝖣(𝖼𝗍0, 𝖼𝗍1)

NIZK . 𝖵𝖾𝗋𝗂𝖿𝗒(𝖼𝗋𝗌, πb) = 1

π′ 𝖼𝗍′

Obfuscation

let x = m0 𝖭𝖠𝖭𝖣 m1

55

How to compute π′

Witness is the randomness of .r′ 𝖼𝗍′

Hardcoded key

Randomness

Use as the generating randomness of
the NIZK (common reference string)

Compute

if then

 Output proof for (using r’).

𝖤𝗏𝖺𝗅𝖭𝖺𝗇𝖽((m0, σ0), (m1, σ1))

K

r = 𝖯𝖱𝖥(K, x)

r
𝖼𝗋𝗌

𝖼𝗍′ = 𝖥𝖧𝖤 . 𝖤𝗏𝖺𝗅𝗉𝗄,𝖭𝖠𝖭𝖣(𝖼𝗍0, 𝖼𝗍1)

NIZK . 𝖵𝖾𝗋𝗂𝖿𝗒(𝖼𝗋𝗌, πb) = 1

π′ 𝖼𝗍′

Obfuscation

extract from using

compute as

rb πb 𝗍𝖽𝖾𝗑𝗍

r′ r′ = 𝖥𝖧𝖤 . 𝖤𝗏𝖺𝗅𝖱𝖺𝗇𝖽𝗉𝗄,𝗌𝗄(r0, r1)

let x = m0 𝖭𝖠𝖭𝖣 m1

56

But Now Anyone Can Sign

, where is a NIZK proof that . 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = σi = (𝖼𝗍i, πi) π 𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼𝗉𝗄(mi)

Simply compute an ciphertext by generating and .𝖥𝖧𝖤 r 𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(m; r)

Then use to compute the corresponding NIZK proof.r

57

But Now Anyone Can Sign—Fix

, where is a NIZK proof that . 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = σi = (𝖼𝗍i, πi) π 𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼𝗉𝗄(mi)

Generate ciphertexts for the initial messages , i.e. .n 𝖥𝖧𝖤 m1…mn 𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(mi; ri)

Include the initial inside the verification key.𝖼𝗍1…𝖼𝗍n

Keep initial randomness private to compute the proofs that certify that encrypts . ri πi 𝖼𝗍i mi

58

But Now Anyone Can Sign—Fix

, where is a NIZK proof that . 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = σi = (𝖼𝗍i, πi) π 𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼𝗉𝗄(mi)

Generate ciphertexts for the initial messages , i.e. .n 𝖥𝖧𝖤 m1…mn 𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(mi; ri)

Include the initial inside the verification key.𝖼𝗍1…𝖼𝗍n

Keep initial randomness private to compute the proofs that certify that encrypts . ri πi 𝖼𝗍i mi

59

But Now Anyone Can Sign—New Issue

, where is a NIZK proof that . 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = σi = (𝖼𝗍i, πi) π 𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼𝗉𝗄(mi)

Generate ciphertexts for the initial messages , i.e. .n 𝖥𝖧𝖤 m1…mn 𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(mi; ri)

Include the initial inside the verification key.𝖼𝗍1…𝖼𝗍n

When computing the we do not know what messages will be signed!𝗏𝗄

Keep initial randomness private to compute the proofs that certify that encrypts . ri πi 𝖼𝗍i mi

60

But Now Anyone Can Sign—New Issue

, where is a NIZK proof that . 𝖥𝖧𝖲 . 𝖲𝗂𝗀𝗇(mi) = σi = (𝖼𝗍i, πi) π 𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼𝗉𝗄(mi)

Generate ciphertexts for the initial messages , i.e. .n 𝖥𝖧𝖤 m1…mn 𝖼𝗍i = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(mi; ri)

Include the initial inside the verification key.𝖼𝗍1…𝖼𝗍n

When computing the we do not know what messages will be signed!𝗏𝗄

Keep initial randomness private to compute the proofs that certify that encrypts . ri πi 𝖼𝗍i mi

Hybrid argument where are encryptions of and are simulated proofs using .𝖼𝗍i 0 πi 𝗍𝖽𝗌𝗂𝗆

61

But Now Anyone Can Sign—New Issue

Many more technical problems to overcome, for details check out the paper.

62

Conclusion

We build a fully-homomorphic signature (FHS) scheme based on iO, FHE and NIZKs.

Our scheme is the first that achieves the following properties simultaneously:

63

Conclusion

We build a fully-homomorphic signature (FHS) scheme based on iO, FHE and NIZKs.

Our scheme is the first that achieves the following properties simultaneously:

• supports an unbounded number of levels.

• is arbitrarily composable.

• based on falsifiable assumptions.

64

Conclusion

We build a fully-homomorphic signature (FHS) scheme based on iO, FHE and NIZKs.

Our scheme is the first that achieves the following properties simultaneously:

• supports an unbounded number of levels.

• is arbitrarily composable.

• based on falsifiable assumptions.

Pairings + iO (subexp)
or

LWE + iO (subexp)

Thank you for your attention!
Questions?

65

Roadmap
• Fully-Homomorphic Encryption, Signatures and Bootstrapping.

• Defining Fully-Homomorphic Signatures.

• State of the Art.

• Preliminaries: iO and NIZKs.

• How to use iO.

• Technical Ideas towards an FHS construction.

• Conclusion.

66

Fully Homomorphic Encryption

67

𝖼𝗍1 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m1)

𝖤𝗏𝖺𝗅(𝗉𝗄, 𝖼𝗍1, 𝖼𝗍2)

𝖼𝗍2 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m2)

𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m1 + m2) 𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, m1 ⋅ m2) 𝖼𝗍 = 𝖥𝖧𝖤 . 𝖤𝗇𝖼(𝗉𝗄, C(m1, m2))

Operations happen modulo a bound parameter .B
LWE-based schemes: every homomorphic operation increases the noise level.
Correctness preserved up to a maximal noise bound .B𝗇𝗈𝗂𝗌𝖾

