Simulation-Extractable KZG Polynomial Commitments and Applications to HyperPlonk

PKC 2024 - Sydney

ZAIMA

Succinct Non-Interactive Arguments

- Succinctness: $|\pi| \ll|\mathcal{C}|,|w|$
- Knowledge-soundness: a convincing P must "know" a witness w such that $R(x, w)=1$
- Zero-knowledge: π leaks nothing about w

Polynomial Interactive Oracle Proofs (PIOPs)

 (Ben-Sasson et al.; TCC'16-B)
$+$

- PIOP: multi-round protocol where \mathbf{P} sends oracles to polynomials at each round
- PCS: \mathbf{P} commits to polynomial $f[X] \in \mathbb{F}$ and succinctly proves $y=f(z)$ for any $z \in \mathbb{F}$;

Evaluation proofs of size $|\pi| \ll \operatorname{deg}(f)$; verification cost $\ll \operatorname{deg}(f)$

Simulation-Extractability: Motivation

- Knowledge-soundness: given oracle access to \mathbf{P}^{*} that outputs a verifying pair (x^{\star}, π^{\star}), an efficient extractor \mathcal{E} can reconstruct w^{\star} such that $R\left(x^{\star}, w^{\star}\right)=1$
- Adversary observing legitimate proofs may be able to maul them and fake a proof without knowing a witness

Simulation-Extractability

Definition (Sahai, FOCS'99; De Santis et al., Crypto'01):

No PPT attacker can defeat knowledge-extraction after having seen simulated proofs:
$(\mathrm{crs}, \mathrm{tk}) \leftarrow \operatorname{CRS}-\operatorname{Gen}(\lambda, p p)$

$\left(x^{\star}, \pi^{\star}\right)$

Adversary wins if:

- Verify ${ }_{\text {srs }}\left(x^{*}, \pi^{*}\right)=1$ and $\left(x^{*}, \pi^{*}\right) \neq\left(x_{i}, \pi_{i}\right)$ for all queries x_{i} to $\operatorname{Sim}\left(\mathrm{tk}_{\mathrm{k}}, \cdot\right)$ $R\left(x^{*}, w^{*}\right)=0$ where $w^{*} \leftarrow \mathcal{E}\left(\mathrm{tk}, x^{*}, \pi^{*}\right)$

Sim(tk, •)

$R(x, w)=0$ wnere $w \leftarrow \varepsilon(t k, x, \pi)$

Simulation-Extractability

Definition (Sahai, FOCS'99; De Santis et al., Crypto'01):

No PPT attacker can defeat knowledge-extraction after having seen simulated proofs:
$(\mathrm{crs}, \mathrm{tk}) \leftarrow \operatorname{CRS}-\operatorname{Gen}(\lambda, p p)$

Adversary wins if:

- Verify srs $\left(x^{\star}, \pi^{\star}\right)=1$ and $\left(x^{\star}, \pi^{\star}\right) \neq\left(x_{i}, \pi_{i}\right)$ for all queries x_{i} to $\operatorname{Sim}(\mathrm{tk}, \cdot)$
- $R\left(x^{\star}, w^{\star}\right)=0$ where $w^{\star} \leftarrow \mathcal{E}\left(\mathrm{tk}, x^{\star}, \pi^{\star}\right)$

SIM-EXT SNARKs: Prior Work

- Scheme-specific results
- (Variants of) Groth16 in the AGM (Baghery et al., CANS'20; FC'01)
- Plonk, Sonic, Marlin in the AGM+ROM using trapdoor-less simulators (Ganesh et al., SCN’22)
- BulletProofs and Spartan in the ROM (Dao-Grubbs, Eurocrypt'23; Ganesh et al., ePrint 2023/147)
- General compilers with black-box straight-line extractors
- Without witnesss succinctness (Abdolmaleki et al.; ACM-CCS'20, CSF'24)
- UC security with witness succinctness (Ganesh et al., Eurocrypt'23)
- Compilers applying to existing univariate PIOPs (Marlin, Lunar, Plonk, ...)
- Based on arguments with trapdoor-less simulators and weak unique responses (Kohlweiss et al., TCC'23)
- From PCS with trapdoor-based simulators and satisfying a relaxed notion of SIM-EXT (Faonio et al., TCC'23)

Contributions

Building a SIM-EXT SNARK from a multilinear PIOP:

- Use strongly SIM-EXT PCS in the AGM+ROM with a simple trapdoor-less simulator
- Non-generic, but can be applied to multilinear PIOPs
- Two constructions of KZG-based PCS with straight-line SIM-EXT in the AGM+ROM:
- Multivariate PST commitments
(based on Papamanthou-Shi-Tamassia, TCC'13; Zhang et al., ePrint 2017/1146):
$O(1)$-size commitments to μ-variate polynomials, proofs live in $\mathbb{G}^{\mu+1} \times \mathbb{Z}_{p}$
- Univariate (i.e., $\mu=1$) randomized KZG: proof in $\mathbb{G} \times \mathbb{Z}_{p}^{2}$
- Application to HyperPlonk (Chen et al., Eurocrypt'23):
- Instantiation with straight-line SIM-EXT in the AGM+ROM (retains linear-time prover and large-degree custom gates)

Agenda

SNARKs

Simulation-Extractable SNARKs: Motivation and prior work

Simulation-Extractable PCS in the AGM+ROM
Reminder on KZG and PST Polynomial Commitments
A Simulation-Extractable Variant of Multivariate KZG/PST Commitments Proof Intuition

Application: Simulation-Extractable instantiation of HyperPlonk

KZG Polynomial Commitments

- Use pairings $e: \mathbb{G} \times \hat{\mathbb{G}} \rightarrow \mathbb{G}_{T}$ and a CRS of size $O(\lambda \cdot d)$, where $d=\max (\operatorname{deg}(f))$:

$$
\operatorname{srs}=\left(g,\left\{g^{\left(\alpha^{i}\right)}\right\}_{i \in[d]},\left(\hat{g}, \hat{g}^{\alpha}\right)\right)
$$

- Commitment to polynomial $f[X]$ consists of $C=g^{f(\alpha)}$

Key idea (Kate-Zaverucha-Goldberg; Asiacrypt'10):

- $y=f(z) \Leftrightarrow \exists q[X]$ s.t.

$$
f[X]-y=q[X] \cdot(X-z)
$$

- Proof that $y=f(z)$ is $\pi=g^{q(\alpha)} \in \mathbb{G}$ and satisfies

$$
e\left(C \cdot g^{-y}, \hat{g}\right)=e\left(\pi, \hat{g}^{\alpha} \cdot \hat{g}^{-z}\right)
$$

- Evaluation-binding under the d-SDH assumption; Knowledge-sound in the AGM
- Malleable since homomorphic, but still satisfies a form of (policy-based) SIM-EXT (Faonio et al.; TCC’23)

Multivariate KZG/PST Commitments

- μ-variate polynomials of variable-degree d require a CRS of size $O\left(\lambda \cdot d^{\mu}\right)$:

$$
\operatorname{srs}=\left(\left\{g^{\alpha_{1}^{i_{1}} \ldots \alpha_{\mu}^{i_{\mu}}}\right\}_{\left(i_{1}, \ldots, i_{\mu}\right) \in[0, d]^{\mu}},\left(\hat{g},\left\{\hat{g}^{\alpha_{i}}\right\}_{i=1}^{\mu}\right)\right)
$$

- Commitment to polynomial $f\left[X_{1}, \ldots, X_{\mu}\right]$ consists of $C=g^{f\left(\alpha_{1}, \ldots, \alpha_{\mu}\right)}$

Key idea (Papamanthou-Shi-Tamassia; TCC'13):

- $y=f\left(z_{1}, \ldots, z_{\mu}\right) \Leftrightarrow \exists q_{i}\left[X_{1}, \ldots, X_{\mu}\right]$ for $i \in[\mu]$ s.t.

$$
f\left[x_{1}, \ldots, x_{\mu}\right]-y=\sum_{i=1}^{\mu} q_{i}\left[x_{1}, \ldots, x_{\mu}\right] \cdot\left(X_{i}-z_{i}\right)
$$

- Proof that $y=f\left(z_{1}, \ldots, z_{\mu}\right)$ is $\left\{\pi_{i}=g^{q_{i}\left(\alpha_{1}, \ldots, \alpha_{\mu}\right)}\right\}_{i=1}^{\mu}$ satisfying

$$
e\left(C \cdot g^{-y}, \hat{g}\right)=\prod_{i=1}^{\mu} e\left(\pi_{i}, \hat{g}^{\alpha_{i}} \cdot \hat{g}^{-z_{i}}\right)
$$

Randomized PST Commitments

Zhang et al.'s randomized PST commitments (ePrint 2017/1146):

- μ-variate polynomials of variable-degree d require a CRS of size $O\left(\lambda \cdot d^{\mu}\right)$:

$$
\operatorname{srs}=\left(\left\{g^{\alpha_{1}^{i_{1}} \ldots \alpha_{\mu}^{i \mu}}\right\}_{\left(i_{1}, \ldots, i_{\mu}\right) \in[0, d]^{\mu}}, g^{\alpha_{r}},\left(\hat{g},\left\{\hat{g}^{\alpha_{i}}\right\}_{i=1}^{\mu}, \hat{g}^{\alpha_{r}}\right)\right)
$$

- Commitment to $f\left[X_{1}, \ldots, X_{\mu}\right]$ consists of $C=g^{f\left(\alpha_{1}, \ldots, \alpha_{\mu}\right)+\alpha_{r} \cdot r}$ with $r \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$
- Evaluation proof is $\left(\pi_{1}, \ldots, \pi_{\mu}, \pi_{r}\right)$ with $\pi_{i}=g^{q_{i}\left(\alpha_{1}, \ldots, \alpha_{\mu}\right)+\alpha_{r} \cdot s_{i}}$ for $s_{i} \stackrel{R}{\gtrless} \mathbb{Z}_{p}$
- Verification equation is

$$
e\left(C \cdot g^{-y}, \hat{g}\right)=\prod_{i=1}^{\mu} e\left(\pi_{i}, \hat{g}^{\alpha_{i}} \cdot \hat{g}^{-z_{i}}\right) \cdot e\left(\pi_{r}, \hat{g}^{\alpha_{r}}\right)
$$

- Knowledge-sound in the AGM under the $(d \cdot \mu, d \cdot \mu)$-DLOG assumption, but malleable

Simulation-Extractable Variant of rPST

- μ-variate polynomials of variable-degree d require a CRS of size $O\left(\lambda \cdot d^{\mu}\right)$:

$$
\operatorname{srs}=\left(\left\{g^{\alpha_{1}^{i_{1}} \ldots \alpha_{\mu}^{i_{\mu}}}\right\}_{\left(i_{1}, \ldots, i_{\mu}\right) \in[0, d]^{\mu}}, g^{\alpha_{r}},\left(\hat{g},\left\{\hat{g}^{\alpha_{i}}\right\}_{i=1}^{\mu}, \hat{g}^{\alpha_{r}}\right)\right)
$$

- Commitment to $f\left[X_{1}, \ldots, X_{\mu}\right]$ consists of $C=g^{f\left(\alpha_{1}, \ldots, \alpha_{\mu}\right)+\alpha_{r} \cdot r}$ with $r \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$

Our non-malleable evaluation proofs

- P proves $y=f(\mathbf{z})$ by revealing $\left(\pi_{1}, \ldots, \pi_{\mu}\right) \in \mathbb{G}^{\mu}$ and proving knowledge of π_{r} s.t.

$$
e\left(C \cdot g^{-y}, \hat{g}\right) / \prod_{i=1}^{\mu} e\left(\pi_{i}, \hat{g}^{\alpha_{i}} \cdot \hat{g}^{-z_{i}}\right)=e\left(\boxed{\pi_{r}}, \hat{g}^{\alpha_{r}}\right)
$$

- Σ-protocol proof is $\left(\left(\pi_{1}, \ldots, \pi_{\mu}\right),\left(c, S_{\pi}\right)\right)$ with $c=H\left(\mathbf{z}, y, C,\left(\pi_{i}\right)_{i=1}^{\mu}, R_{\pi}\right.$, label $)$

Simulation-Extractable Variant of rPST

- Given $\left(\left(\pi_{1}, \ldots, \pi_{\mu}\right),\left(c, S_{\pi}\right)\right)$, verifier \mathbf{V} accepts if $c=H\left(\mathbf{z}, y, C,\left(\pi_{i}\right)_{i=1}^{\mu}, R_{\pi}\right.$, label $)$ where

$$
\begin{equation*}
R_{\pi}=e\left(S_{\pi}, \hat{g}^{\alpha_{r}}\right) \cdot\left(\frac{e\left(C \cdot g^{-y}, \hat{g}\right)}{\prod_{i=1}^{\mu} e\left(\pi_{i}, \hat{g}^{\alpha_{i}} \cdot \hat{g}^{-z_{i}}\right)}\right)^{-c} \tag{1}
\end{equation*}
$$

Theorem

The scheme is SIM-EXT in the AGM+ROM under the $(d \cdot \mu, d \cdot \mu)$-DLOG assumption:
i.e., computing $\alpha \in \mathbb{Z}_{p}$ is hard given $\left(g,\left\{g^{\left(\alpha^{i}\right)}\right\}_{i \in[d \cdot \mu]},\left\{\hat{g}^{\left(\alpha^{i}\right)}\right\}_{i \in[d \cdot \mu]}\right)$

Proof idea:

- In \mathcal{A} 's forgery, element R_{π} of (1) must have been queried to H and \mathcal{A} must have supplied an AGM representation defining $R\left[X_{1}, \ldots, X_{\mu}, X_{r}\right]$ s.t. R

AGM representations of $\left.\left(C, S,\{\pi\}^{\mu}\right\}_{1}\right)$ define $T\left[X_{1}, \ldots, X_{\mu}, X_{r}\right]$ s.t. $T\left(\alpha_{1}, \ldots, \alpha_{\mu}, \alpha_{r}\right)=0$

Simulation-Extractable Variant of rPST

- Given $\left(\left(\pi_{1}, \ldots, \pi_{\mu}\right),\left(c, S_{\pi}\right)\right)$, verifier \mathbf{V} accepts if $c=H\left(\mathbf{z}, y, C,\left(\pi_{i}\right)_{i=1}^{\mu}, R_{\pi}\right.$, label $)$ where

$$
\begin{equation*}
R_{\pi}=e\left(S_{\pi}, \hat{g}^{\alpha_{r}}\right) \cdot\left(\frac{e\left(C \cdot g^{-y}, \hat{g}\right)}{\prod_{i=1}^{\mu} e\left(\pi_{i}, \hat{g}^{\alpha_{i}} \cdot \hat{g}^{-z_{i}}\right)}\right)^{-c} \tag{1}
\end{equation*}
$$

Theorem

The scheme is SIM-EXT in the AGM+ROM under the $(d \cdot \mu, d \cdot \mu)$-DLOG assumption:
i.e., computing $\alpha \in \mathbb{Z}_{p}$ is hard given $\left(g,\left\{g^{\left(\alpha^{i}\right)}\right\}_{i \in[d \cdot \mu]},\left\{\hat{g}^{\left(\alpha^{i}\right)}\right\}_{i \in[d \cdot \mu]}\right)$

Proof idea:

- In \mathcal{A} 's forgery, element R_{π} of (1) must have been queried to H and \mathcal{A} must have supplied an AGM representation defining $R\left[X_{1}, \ldots, X_{\mu}, X_{r}\right]$ s.t. $R_{\pi}=e(g, \hat{g})^{R\left(\alpha_{1}, \ldots, \alpha_{\mu}, \alpha_{r}\right)}$

Simulation-Extractable Variant of rPST

- Given $\left(\left(\pi_{1}, \ldots, \pi_{\mu}\right),\left(c, S_{\pi}\right)\right)$, verifier \mathbf{V} accepts if $c=H\left(\mathbf{z}, y, C,\left(\pi_{i}\right)_{i=1}^{\mu}, R_{\pi}\right.$, label $)$ where

$$
\begin{equation*}
R_{\pi}=e\left(S_{\pi}, \hat{g}^{\alpha_{r}}\right) \cdot\left(\frac{e\left(C \cdot g^{-y}, \hat{g}\right)}{\prod_{i=1}^{\mu} e\left(\pi_{i}, \hat{g}^{\alpha_{i}} \cdot \hat{g}^{-z_{i}}\right)}\right)^{-c} \tag{1}
\end{equation*}
$$

Theorem

The scheme is SIM-EXT in the AGM+ROM under the $(d \cdot \mu, d \cdot \mu)$-DLOG assumption:
i.e., computing $\alpha \in \mathbb{Z}_{p}$ is hard given $\left(g,\left\{g^{\left(\alpha^{i}\right)}\right\}_{i \in[d \cdot \mu]},\left\{\hat{g}^{\left(\alpha^{i}\right)}\right\}_{i \in[d \cdot \mu]}\right)$

Proof idea:

- In \mathcal{A} 's forgery, element R_{π} of (1) must have been queried to H and \mathcal{A} must have supplied an AGM representation defining $R\left[X_{1}, \ldots, X_{\mu}, X_{r}\right]$ s.t. $R_{\pi}=e(g, \hat{g})^{R\left(\alpha_{1}, \ldots, \alpha_{\mu}, \alpha_{r}\right)}$
- AGM representations of $\left(C, S_{\pi},\left\{\pi_{i}\right\}_{i=1}^{\mu}\right)$ define $T\left[X_{1}, \ldots, X_{\mu}, X_{r}\right]$ s.t. $T\left(\alpha_{1}, \ldots, \alpha_{\mu}, \alpha_{r}\right)=0$
- Statistical argument shows that $T\left[X_{I}, \ldots, X_{\mu}, X_{r}\right] \not \equiv 0$ w.h.p. unless AGM representation of C provide a witness $f\left[X_{1}, \ldots, X_{\mu}\right]$ s.t. $y=f(\mathbf{z})$

Simulation-Extractable Variant of rPST

- Given $\left(\left(\pi_{1}, \ldots, \pi_{\mu}\right),\left(c, S_{\pi}\right)\right)$, verifier \mathbf{V} accepts if $c=H\left(\mathbf{z}, y, C,\left(\pi_{i}\right)_{i=1}^{\mu}, R_{\pi}\right.$, label $)$ where

$$
\begin{equation*}
R_{\pi}=e\left(S_{\pi}, \hat{g}^{\alpha_{r}}\right) \cdot\left(\frac{e\left(C \cdot g^{-y}, \hat{g}\right)}{\prod_{i=1}^{\mu} e\left(\pi_{i}, \hat{g}^{\alpha_{i}} \cdot \hat{g}^{-z_{i}}\right)}\right)^{-c} \tag{1}
\end{equation*}
$$

Theorem

The scheme is SIM-EXT in the AGM+ROM under the $(d \cdot \mu, d \cdot \mu)$-DLOG assumption:
i.e., computing $\alpha \in \mathbb{Z}_{p}$ is hard given $\left(g,\left\{g^{\left(\alpha^{i}\right)}\right\}_{i \in[d \cdot \mu]},\left\{\hat{g}^{\left(\alpha^{i}\right)}\right\}_{i \in[d / \mu]}\right)$

Proof idea:

- In \mathcal{A} 's forgery, element R_{π} of (1) must have been queried to H and \mathcal{A} must have supplied an AGM representation defining $R\left[X_{1}, \ldots, X_{\mu}, X_{r}\right]$ s.t. $R_{\pi}=e(g, \hat{g})^{R\left(\alpha_{1}, \ldots, \alpha_{\mu}, \alpha_{r}\right)}$
- AGM representations of $\left(C, S_{\pi},\left\{\pi_{i}\right\}_{i=1}^{\mu}\right)$ define $T\left[X_{1}, \ldots, X_{\mu}, X_{r}\right]$ s.t. $T\left(\alpha_{1}, \ldots, \alpha_{\mu}, \alpha_{r}\right)=0$
- Statistical argument shows that $T\left[X_{1}, \ldots, X_{\mu}, X_{r}\right] \not \equiv 0$ w.h.p. unless AGM representation of C provide a witness $f\left[X_{1}, \ldots, X_{\mu}\right]$ s.t. $y=f(\mathbf{z})$

Application: Simulation-Extractable instantiation of HyperPlonk
 ```SNARKs \\ Simulation-Extractable SNARKs: Motivation and prior work \\ SNARKs \\```
Simulation-Extractable PCS in the AGM+ROM
 Reminder on KZG and PST Polynomial Commitments A Simulation-Extractable Variant of Multivariate KZG/PST Commitments Proof Intuition Poof Intuition
 \qquad

 \author{

```
```

Simulation-Extractable PCS in the AGM+ROM

 \author{

```
```

Simulation-Extractable PCS in the AGM+ROM

 \author{

```
```

Simulation-Extractable PCS in the AGM+ROM

 \author{

```
```

Simulation-Extractable PCS in the AGM+ROM

 *

```
```

``` \\ \\ \\ \\ *
```

```
``` \\ \\ \\ \\ *
```

```
``` \\ \\ \\ \\ *
```

```
``` \\  \\ \\ ```
mulation-Extractable SNARKs: Motivation and prior work
```

} <br> <br> ```
mulation-Extractable SNARKs: Motivation and prior work

```
} Proof Intuition

Application Simulation -Extractable instantiation of HyperPlonk

\(\qquad\)

Application to HyperPlonk
.

HyperPlonk at a high level：
－Prover encodes computation trace in matrix \(\mathbf{M}=\left\{\left(L_{i}, R_{i}, O_{i}\right)\right\}_{i=1}^{N}\) where \(N=2^{\mu}\)
－Commits to multilinear \(\left\{M\left[X_{1}, \ldots, X_{\mu}, \operatorname{bin}(i)\right]\right\}_{i=0}^{2}\) evaluating to M＇s columns over \(\{0,1\}^{\mu}\)
f
```

$$
\square
$$

```五
\[
1
\]
\[
\square
\]

 者
 \(4+2\)
 Application to HyperPlonk
\(\qquad\)
```

```
Prove that {M[\mp@subsup{X}{1}{},\ldots.,\mp@subsup{X}{\mu}{},\operatorname{bin}(i)]\mp@subsup{}}{i=0}{2}\mathrm{ satisfies a gate identity by showing that}
```

```
Prove that {M[\mp@subsup{X}{1}{},\ldots.,\mp@subsup{X}{\mu}{},\operatorname{bin}(i)]\mp@subsup{}}{i=0}{2}\mathrm{ satisfies a gate identity by showing that}
```

```
Prove that {M[\mp@subsup{X}{1}{},\ldots.,\mp@subsup{X}{\mu}{},\operatorname{bin}(i)]\mp@subsup{}}{i=0}{2}\mathrm{ satisfies a gate identity by showing that}
```

```
Prove that {M[\mp@subsup{X}{1}{},\ldots.,\mp@subsup{X}{\mu}{},\operatorname{bin}(i)]\mp@subsup{}}{i=0}{2}\mathrm{ satisfies a gate identity by showing that}
 \forallx\in{0,1\mp@subsup{}}{}{\mu}:}f(x)=
```

```
 \forallx\in{0,1\mp@subsup{}}{}{\mu}:}f(x)=
```

```



```

```
Prove that {M[X, bin(i)]} {=0,I,2 satisfies a wiring identity
```

```
Prove that {M[X, bin(i)]} {=0,I,2 satisfies a wiring identity
```

```
Prove that {M[X, bin(i)]} {=0,I,2 satisfies a wiring identity
```

```
Prove that {M[X, bin(i)]} {=0,I,2 satisfies a wiring identity
M[x,bin(i)]=M[\sigma(x hin(i))] }\quad\forallx\in{0,1}\mu,i\in{0,1,2
```

M[x,bin(i)]=M[\sigma(x hin(i))] }\quad\forallx\in{0,1}\mu,i\in{0,1,2

```
M[x,bin(i)]=M[\sigma(x hin(i))] }\quad\forallx\in{0,1}\mu,i\in{0,1,2
```

M[x,bin(i)]=M[\sigma(x hin(i))] }\quad\forallx\in{0,1}\mu,i\in{0,1,2

```
M[x,bin(i)]=M[\sigma(x hin(i))] }\quad\forallx\in{0,1}\mu,i\in{0,1,2
```

M[x,bin(i)]=M[\sigma(x hin(i))] }\quad\forallx\in{0,1}\mu,i\in{0,1,2

```
```

Prove

```
```

Prove

```
```

Prove

```
```

Prove

```

\[
>
\] （

\section*{Application to HyperPIonk}

HyperPlonk at a high level:
- Prover encodes computation trace in matrix \(\mathbf{M}=\left\{\left(L_{i}, R_{i}, O_{i}\right)\right\}_{i=1}^{N}\) where \(N=2^{\mu}\)
- Commits to multilinear \(\left\{M\left[X_{1}, \ldots, X_{\mu} \text {, bin }(i)\right]\right\}_{i=0}^{2}\) evaluating to M's columns over \(\{0,1\}^{\mu}\)
- Prove that \(\left\{M\left[X_{1}, \ldots, X_{\mu}, \operatorname{bin}(i)\right]\right\}_{i=0}^{2}\) satisfies a gate identity by showing that
\[
\forall \mathbf{x} \in\{0,1\}^{\mu}: f(\mathbf{x})=0
\]
for some \(f\left[X_{1}, \ldots, X_{\mu}\right]\) depending on \(\left\{M\left[X_{1}, \ldots, X_{\mu}, \operatorname{bin}(i)\right]\right\}_{i=0}^{2}\), input-encoding polynomial \(\left[\left[X_{1}, \ldots, X_{\mu}\right]\right.\), and selector polynomials \(\left\{S_{j}\left[X_{1}, \ldots, X_{\mu}\right]\right\}_{j=1,2,3}\)

\section*{Application to HyperPlonk}

HyperPlonk at a high level:
- Prover encodes computation trace in matrix \(\mathbf{M}=\left\{\left(L_{i}, R_{i}, O_{i}\right)\right\}_{i=1}^{N}\) where \(N=2^{\mu}\)
- Commits to multilinear \(\left\{M\left[X_{1}, \ldots, X_{\mu} \text {, bin }(i)\right]\right\}_{i=0}^{2}\) evaluating to M's columns over \(\{0,1\}^{\mu}\)
- Prove that \(\left\{M\left[X_{1}, \ldots, X_{\mu}, \operatorname{bin}(i)\right]\right\}_{i=0}^{2}\) satisfies a gate identity by showing that
\[
\forall \mathbf{x} \in\{0,1\}^{\mu}: f(\mathbf{x})=0
\]
for some \(f\left[X_{1}, \ldots, X_{\mu}\right]\) depending on \(\left\{M\left[X_{1}, \ldots, X_{\mu}, \operatorname{bin}(i)\right]\right\}_{i=0}^{2}\), input-encoding polynomial \(I\left[X_{1}, \ldots, X_{\mu}\right]\), and selector polynomials \(\left\{S_{j}\left[X_{1}, \ldots, X_{\mu}\right]\right\}_{j=1,2,3}\)
- Prove that \(\{M[\mathbf{X}, \operatorname{bin}(i)]\}_{i=0,1,2}\) satisfies a wiring identity
\[
M[\mathbf{x}, \operatorname{bin}(i)]=M[\sigma(\mathbf{x}, \operatorname{bin}(i))] \quad \forall \mathbf{x} \in\{0,1\}^{\mu}, i \in\{0,1,2\}
\]
for a public permutation \(\sigma\)

\section*{SIM-EXT Instantiation of HyperPlonk}
- Our trapdoor-less simulator:
- Computes fake witnesses \(\left\{\hat{M}\left[X_{1}, \ldots, X_{\mu}, \operatorname{bin}(i)\right]\right\}_{i=0}^{2}\) satisfying the gate identity
\[
\forall \mathbf{x} \in\{0,1\}^{\mu}: f(\mathbf{x})=0
\]
...but not the wiring identity
\[
\begin{equation*}
\hat{M}[\mathbf{x}, \operatorname{bin}(i)]=\hat{M}[\sigma(\mathbf{x}, \operatorname{bin}(i))] \quad \forall \mathbf{x} \in\{0,1\}^{\mu}, i \in\{0,1,2\} \tag{2}
\end{equation*}
\]
(easy by computing \(\hat{M}\left[X_{1}, \ldots, X_{\mu}, X_{\mu+1}, X_{\mu+2}\right]\) as a multilinear extension)
Simulates proof for (2) via a simulated PCS proof that some polynomial \(\tilde{v}\left[X_{1}, \ldots, X_{\mu+1}\right]\) satisfies \(\tilde{v}(1,1, \ldots, 1,0)=1\)
- Earlier prover messages are embedded in label of each PCS evaluation proof (for non-malleability)

\section*{SIM-EXT Instantiation of HyperPlonk}
- Our trapdoor-less simulator:
- Computes fake witnesses \(\left\{\hat{M}\left[X_{1}, \ldots, X_{\mu}, \operatorname{bin}(i)\right]\right\}_{i=0}^{2}\) satisfying the gate identity
\[
\forall \mathbf{x} \in\{0,1\}^{\mu}: f(\mathbf{x})=0
\]
...but not the wiring identity
\[
\begin{equation*}
\hat{M}[\mathbf{x}, \operatorname{bin}(i)]=\hat{M}[\sigma(\mathbf{x}, \operatorname{bin}(i))] \quad \forall \mathbf{x} \in\{0,1\}^{\mu}, i \in\{0,1,2\} \tag{2}
\end{equation*}
\]
(easy by computing \(\hat{M}\left[X_{1}, \ldots, X_{\mu}, X_{\mu+1}, X_{\mu+2}\right]\) as a multilinear extension)
- Simulates proof for (2) via a simulated PCS proof that some polynomial \(\tilde{v}\left[X_{1}, \ldots, X_{\mu+1}\right]\) satisfies \(\tilde{v}(1,1, \ldots, 1,0)=1\)
- Earlier prover messages are embedded in label of each PCS evaluation proof (for non-malleability)

\section*{Summary}
- Constructions of SIM-EXT PCS (with straight-line extractability) in the AGM+ROM; almost as efficient as the underlying malleable schemes
- \(\mu+2\) pairings to verify in \(\mu\)-variate PCS
- 2 pairings for a variant of rKZG
- Randomness of only one field element in both cases (no need for a large masking polynomial)
- Simple trapdoor-less simulator via Fiat-Shamir and \(\Sigma\)-protocols
- Provide a SIM-EXT variant of HyperPlonk in the AGM+ROM
- Possible optimization using Zeromorph (Kohrita-Towa; ePrint 2023/917) to get \(O(1)\) pairings \(\mathbf{V}\) at the cost of a \(2.5 x\) overhead at \(\mathbf{P}\)

2.

（1）

 \(+2\)

(

\begin{abstract}
\(\qquad\)
\end{abstract}
都

1.2
1.2
1.2
1.2
1.2 \(\qquad\)
 \(+\)

1.2 \(\qquad\)
雨
1.2
 Questions？
\(\qquad\)
\(\qquad\)
\(\qquad\)

－
\(\qquad\)

\begin{abstract}
\(\qquad\)
\(\square\)
\(\square\)
\(\square \square\)

共
－Thio
（1）\(\rightarrow\)
\end{abstract}

\(\qquad\)
\(\qquad\)```

