Simulation-Extractable KZG Polynomial Commitments and Applications to HyperPlonk

PKC 2024 - Sydney

Succinct Non-Interactive Arguments

- Succinctness: $|\pi| \ll |\mathcal{C}|$, |w|
- Knowledge-soundness: a convincing **P** must "know" a witness w such that R(x, w) = 1
- **Zero-knowledge:** π leaks nothing about w

SNARKs from PCS and PIOPs

Polynomial Interactive Oracle Proofs (PIOPs) (Ben-Sasson et al.; TCC'16-B)

+

Polynomial Commitment Schemes (PCS) (Kate-Zaverucha-Goldberg; Asiacrypt'10)

```
FS

⇒ SNARKs
```

- PIOP: multi-round protocol where P sends oracles to polynomials at each round
- PCS: **P** commits to polynomial $f[X] \in \mathbb{F}$ and succinctly proves y = f(z) for any $z \in \mathbb{F}$; Evaluation proofs of size $|\pi| \ll \deg(f)$; verification cost $\ll \deg(f)$

Simulation-Extractability: Motivation

- Knowledge-soundness: given oracle access to P^* that outputs a verifying pair (x^*, π^*) , an efficient extractor \mathcal{E} can reconstruct w^* such that $R(x^*, w^*) = 1$
- Adversary observing legitimate proofs may be able to maul them and fake a proof without knowing a witness

Simulation-Extractability

Definition (Sahai, FOCS'99; De Santis et αl., Crypto'01):

No PPT attacker can defeat knowledge-extraction after having seen simulated proofs:

 $(crs, tk) \leftarrow CRS-Gen(\lambda, pp)$

 $\mathbf{Sim}(\mathbf{tk}, \cdot)$

Adversary wins if:

- Verify_{srs} $(x^*, \pi^*) = 1$ and $(x^*, \pi^*) \neq (x_i, \pi_i)$ for all queries x_i to Sim(tk, ·)
- $R(x^*, w^*) = 0$ where $w^* \leftarrow \mathcal{E}(\mathbf{tk}, x^*, \pi^*)$

Simulation-Extractability

Definition (Sahai, FOCS'99; De Santis et αl., Crypto'01):

No PPT attacker can defeat knowledge-extraction after having seen simulated proofs:

 $(crs, tk) \leftarrow CRS-Gen(\lambda, pp)$

Adversary wins if:

- Verify_{srs} $(x^*, \pi^*) = 1$ and $(x^*, \pi^*) \neq (x_i, \pi_i)$ for all queries x_i to Sim(tk, ·)
- $R(x^*, w^*) = 0$ where $w^* \leftarrow \mathcal{E}(\mathbf{tk}, x^*, \pi^*)$

SIM-EXT SNARKs: Prior Work

- Scheme-specific results
 - (Variants of) Groth16 in the AGM (Baghery et αl., CANS'20; FC'01)
 - Plonk, Sonic, Marlin in the AGM+ROM using trapdoor-less simulators (Ganesh et αl., SCN'22)
 - BulletProofs and Spartan in the ROM (Dao-Grubbs, Eurocrypt'23; Ganesh et αl., ePrint 2023/147)
- General compilers with black-box straight-line extractors
 - Without witnesss succinctness (Abdolmaleki et αl.; ACM-CCS'20, CSF'24)
 - UC security with witness succinctness (Ganesh et αl., Eurocrypt'23)
- Compilers applying to existing univariate PIOPs (Marlin, Lunar, Plonk, ...)
 - Based on arguments with trapdoor-less simulators and weak unique responses (Kohlweiss et αl., TCC'23)
 - From PCS with trapdoor-based simulators and satisfying a relaxed notion of SIM-EXT (Faonio et αl., TCC'23)

Contributions

Building a SIM-EXT SNARK from a multilinear PIOP:

- Use strongly SIM-EXT PCS in the AGM+ROM with a simple trapdoor-less simulator
- Non-generic, but can be applied to multilinear PIOPs

- Two constructions of KZG-based PCS with straight-line SIM-EXT in the AGM+ROM:
 - Multivariate PST commitments (based on Papamanthou-Shi-Tamassia, TCC'13; Zhang et al., ePrint 2017/1146):
 - O(1)-size commitments to μ -variate polynomials, proofs live in $\mathbb{G}^{\mu+1} \times \mathbb{Z}_p$
 - Univariate (i.e., $\mu = 1$) randomized KZG: proof in $\mathbb{G} \times \mathbb{Z}_p^2$
- **Application** to HyperPlonk (Chen et αl., Eurocrypt'23):
 - Instantiation with straight-line SIM-EXT in the AGM+ROM (retains linear-time prover and large-degree custom gates)

Agenda

SNARKs

Simulation-Extractable SNARKs: Motivation and prior work

Simulation-Extractable PCS in the AGM+ROM

Reminder on KZG and PST Polynomial Commitments A Simulation-Extractable Variant of Multivariate KZG/PST Commitments Proof Intuition

Application: Simulation-Extractable instantiation of HyperPlonk

KZG Polynomial Commitments

• Use pairings $e : \mathbb{G} \times \hat{\mathbb{G}} \to \mathbb{G}_T$ and a CRS of size $O(\lambda \cdot d)$, where $d = \max(\deg(f))$:

$$srs = \left(g, \{g^{(\alpha^i)}\}_{i \in [d]}, (\hat{g}, \hat{g}^{\alpha}) \right)$$

• Commitment to polynomial f[X] consists of $C = g^{f(\alpha)}$

Key idea (Kate-Zaverucha-Goldberg; Asiacrypt'10):

 $y = f(z) \Leftrightarrow \exists q[X] \text{ s.t.}$

$$f[X] - y = q[X] \cdot (X - z)$$

• Proof that y = f(z) is $\pi = g^{q(\alpha)} \in \mathbb{G}$ and satisfies

$$e(C\cdot g^{-y},\hat{g})=e(\pi,\hat{g}^{\alpha}\cdot\hat{g}^{-z})$$

- Evaluation-binding under the d-SDH assumption; Knowledge-sound in the AGM
- Malleable since homomorphic, but still satisfies a form of (policy-based) SIM-EXT (Faonio et al.; TCC'23)

Multivariate KZG/PST Commitments

• μ -variate polynomials of variable-degree d require a CRS of size $O(\lambda \cdot d^{\mu})$:

$$srs = \left(\left. \left\{ g^{\alpha_1^{i_1} \cdots \alpha_\mu^{i_\mu}} \right\}_{(i_1, \dots, i_\mu) \in [0, d]^\mu} , \left(\hat{g}, \left\{ \hat{g}^{\alpha_i} \right\}_{i=1}^\mu \right) \right) \right.$$

• Commitment to polynomial $f[X_1, ..., X_{\mu}]$ consists of $C = g^{f(\alpha_1, ..., \alpha_{\mu})}$

Key idea (Papamanthou-Shi-Tamassia; TCC'13):

• $y = f(z_1, ..., z_{\mu}) \Leftrightarrow \exists q_i[X_1, ..., X_{\mu}] \text{ for } i \in [\mu] \text{ s.t.}$

$$f[X_1,\ldots,X_{\mu}]-y=\sum_{i=1}^{\mu}q_i[X_1,\ldots,X_{\mu}]\cdot(X_i-z_i)$$

• Proof that $y = f(z_1, ..., z_\mu)$ is $\{\pi_i = g^{q_i(\alpha_1, ..., \alpha_\mu)}\}_{i=1}^\mu$ satisfying

$$e(C \cdot g^{-y}, \hat{g}) = \prod_{i=1}^{\mu} e(\pi_i, \hat{g}^{\alpha_i} \cdot \hat{g}^{-z_i})$$

Randomized PST Commitments

Zhang et al.'s randomized PST commitments (ePrint 2017/1146):

• μ -variate polynomials of variable-degree d require a CRS of size $O(\lambda \cdot d^{\mu})$:

$$srs = \left(\left. \left\{ g^{\alpha_1^{i_1} \dots \alpha_{\mu}^{i_{\mu}}} \right\}_{(i_1, \dots, i_{\mu}) \in [0, d]^{\mu}} , g^{\alpha_r}, \left(\hat{g}, \left\{ \hat{g}^{\alpha_i} \right\}_{i=1}^{\mu}, \, \hat{g}^{\alpha_r} \right) \right) \right.$$

- Commitment to $f[X_1, ..., X_{\mu}]$ consists of $C = g^{f(\alpha_1, ..., \alpha_{\mu}) + \alpha_r \cdot r}$ with $r \stackrel{R}{\leftarrow} \mathbb{Z}_p$
- Evaluation proof is $(\pi_1, \dots, \pi_\mu, \pi_r)$ with $\pi_i = g^{q_i(\alpha_1, \dots, \alpha_\mu) + \alpha_r \cdot s_i}$ for $s_i \stackrel{R}{\leftarrow} \mathbb{Z}_p$
- Verification equation is

$$e(C \cdot g^{-y}, \hat{g}) = \prod_{i=1}^{\mu} e(\pi_i, \hat{g}^{\alpha_i} \cdot \hat{g}^{-z_i}) \cdot e(\pi_r, \hat{g}^{\alpha_r})$$

ullet Knowledge-sound in the AGM under the $(d \cdot \mu, d \cdot \mu)$ -DLOG assumption, but malleable

• μ -variate polynomials of variable-degree d require a CRS of size $O(\lambda \cdot d^{\mu})$:

$$srs = \left(\left. \left\{ g^{\alpha_1^{i_1} \dots \alpha_{\mu}^{i_{\mu}}} \right\}_{(i_1, \dots, i_{\mu}) \in [0, d]^{\mu}} , g^{\alpha_r}, \left(\hat{g}, \left\{ \hat{g}^{\alpha_i} \right\}_{i=1}^{\mu}, \, \hat{g}^{\alpha_r} \right) \right. \right)$$

• Commitment to $f[X_1, ..., X_{\mu}]$ consists of $C = g^{f(\alpha_1, ..., \alpha_{\mu}) + \alpha_r \cdot r}$ with $r \stackrel{R}{\leftarrow} \mathbb{Z}_p$

Our non-malleable evaluation proofs

• **P** proves $y = f(\mathbf{z})$ by revealing $(\pi_1, \dots, \pi_\mu) \in \mathbb{G}^\mu$ and proving knowledge of π_r s.t.

$$e(C \cdot g^{-y}, \hat{g}) / \prod_{i=1}^{\mu} e(\pi_i, \hat{g}^{\alpha_i} \cdot \hat{g}^{-z_i}) = e(\boxed{\pi_r}, \hat{g}^{\alpha_r})$$

• Σ -protocol proof is $((\pi_1, \dots, \pi_\mu), (c, S_\pi))$ with $c = H(\mathbf{z}, y, C, (\pi_i)_{i=1}^\mu, R_\pi, \text{label})$

• Given $((\pi_1, \ldots, \pi_\mu), (c, S_\pi))$, verifier **V** accepts if $c = H(\mathbf{z}, y, C, (\pi_i)_{i=1}^\mu, R_\pi, \text{label})$ where

$$R_{\pi} = e\left(S_{\pi}, \hat{g}^{\alpha_r}\right) \cdot \left(\frac{e(C \cdot g^{-y}, \hat{g})}{\prod_{i=1}^{\mu} e(\pi_i, \hat{g}^{\alpha_i} \cdot \hat{g}^{-z_i})}\right)^{-c}$$
(1)

Theorem

The scheme is **SIM-EXT** in the AGM+ROM under the $(d \cdot \mu, d \cdot \mu)$ -**DLOG** assumption:

i.e., computing $\alpha \in \mathbb{Z}_p$ is hard given $(g, \{g^{(\alpha^i)}\}_{i \in [d \cdot \mu]}, \{\hat{g}^{(\alpha^i)}\}_{i \in [d \cdot \mu]})$

- In A's forgery, element R_{π} of (1) must have been queried to H and A must have supplied an AGM representation defining $R[X_1, \ldots, X_{\mu}, X_r]$ s.t. $R_{\pi} = e(g, \hat{g})^{R(\alpha_1, \ldots, \alpha_{\mu}, \alpha_r)}$
- AGM representations of $(C, S_{\pi}, \{\pi_i\}_{i=1}^{\mu})$ define $T[X_1, \dots, X_{\mu}, X_r]$ s.t. $T(\alpha_1, \dots, \alpha_{\mu}, \alpha_r) = 0$
- Statistical argument shows that $T[X_1, ..., X_\mu, X_r] \not\equiv 0$ w.h.p. unless AGM representation of C provide a witness $f[X_1, ..., X_\mu]$ s.t. $y = f(\mathbf{z})$

• Given $(\pi_1, \ldots, \pi_\mu), (c, S_\pi)$, verifier **V** accepts if $c = H(\mathbf{z}, y, C, (\pi_i)_{i=1}^\mu, R_\pi, \text{label})$ where

$$R_{\pi} = e\left(S_{\pi}, \hat{g}^{\alpha_r}\right) \cdot \left(\frac{e(C \cdot g^{-y}, \hat{g})}{\prod_{i=1}^{\mu} e(\pi_i, \hat{g}^{\alpha_i} \cdot \hat{g}^{-z_i})}\right)^{-c} \tag{1}$$

Theorem

The scheme is **SIM-EXT** in the AGM+ROM under the $(d \cdot \mu, d \cdot \mu)$ -**DLOG** assumption:

i.e., computing $\alpha \in \mathbb{Z}_p$ is hard given $(g, \{g^{(\alpha^i)}\}_{i \in [d \cdot \mu]}, \{\hat{g}^{(\alpha^i)}\}_{i \in [d \cdot \mu]})$

- In \mathcal{A} 's forgery, element R_{π} of (1) must have been queried to H and \mathcal{A} must have supplied an AGM representation defining $R[X_1,\ldots,X_{\mu},X_r]$ s.t. $R_{\pi}=e(g,\hat{g})^{R(\alpha_1,\ldots,\alpha_{\mu},\alpha_r)}$
- AGM representations of $(C, S_{\pi}, \{\pi_i\}_{i=1}^{\mu})$ define $T[X_1, \dots, X_{\mu}, X_r]$ s.t. $T(\alpha_1, \dots, \alpha_{\mu}, \alpha_r) = 0$
- Statistical argument shows that $T[X_1, ..., X_\mu, X_r] \not\equiv 0$ w.h.p. unless AGM representation of C provide a witness $f[X_1, ..., X_\mu]$ s.t. $y = f(\mathbf{z})$

• Given $(\pi_1, \ldots, \pi_\mu), (c, S_\pi)$, verifier **V** accepts if $c = H(\mathbf{z}, y, C, (\pi_i)_{i=1}^\mu, R_\pi, \text{label})$ where

$$R_{\pi} = e\left(S_{\pi}, \hat{g}^{\alpha_r}\right) \cdot \left(\frac{e(C \cdot g^{-y}, \hat{g})}{\prod_{i=1}^{\mu} e(\pi_i, \hat{g}^{\alpha_i} \cdot \hat{g}^{-z_i})}\right)^{-c} \tag{1}$$

Theorem

The scheme is **SIM-EXT** in the AGM+ROM under the $(d \cdot \mu, d \cdot \mu)$ -**DLOG** assumption:

i.e., computing $\alpha \in \mathbb{Z}_p$ is hard given $(g, \{g^{(\alpha^i)}\}_{i \in [d \cdot \mu]}, \{\hat{g}^{(\alpha^i)}\}_{i \in [d \cdot \mu]})$

- In \mathcal{A} 's forgery, element R_{π} of (1) must have been queried to H and \mathcal{A} must have supplied an AGM representation defining $R[X_1, \ldots, X_{\mu}, X_r]$ s.t. $R_{\pi} = e(g, \hat{g})^{R(\alpha_1, \ldots, \alpha_{\mu}, \alpha_r)}$
- AGM representations of $(C, \frac{S_{\pi}}{n}, \{\pi_i\}_{i=1}^{\mu})$ define $T[X_1, \dots, X_{\mu}, X_r]$ s.t. $T(\alpha_1, \dots, \alpha_{\mu}, \alpha_r) = 0$
- Statistical argument shows that $T[X_1, \dots, X_{\mu}, X_r] \not\equiv 0$ w.h.p. unless AGM representation of C provide a witness $f[X_1, \dots, X_{\mu}]$ s.t. $y = f(\mathbf{z})$

• Given $(\pi_1, \ldots, \pi_\mu), (c, S_\pi)$, verifier **V** accepts if $c = H(\mathbf{z}, y, C, (\pi_i)_{i=1}^\mu, R_\pi, \text{label})$ where

$$R_{\pi} = e\left(S_{\pi}, \hat{g}^{\alpha_r}\right) \cdot \left(\frac{e(C \cdot g^{-y}, \hat{g})}{\prod_{i=1}^{\mu} e(\pi_i, \hat{g}^{\alpha_i} \cdot \hat{g}^{-z_i})}\right)^{-c} \tag{1}$$

Theorem

The scheme is **SIM-EXT** in the AGM+ROM under the $(d \cdot \mu, d \cdot \mu)$ -**DLOG** assumption:

i.e., computing $\alpha \in \mathbb{Z}_p$ is hard given $(g, \{g^{(\alpha^i)}\}_{i \in [d \cdot \mu]}, \{\hat{g}^{(\alpha^i)}\}_{i \in [d \cdot \mu]})$

- In \mathcal{A} 's forgery, element R_{π} of (1) must have been queried to H and \mathcal{A} must have supplied an AGM representation defining $R[X_1,\ldots,X_{\mu},X_r]$ s.t. $R_{\pi}=e(g,\hat{g})^{R(\alpha_1,\ldots,\alpha_{\mu},\alpha_r)}$
- AGM representations of $(C, \frac{S_{\pi}}{n}, \{\pi_i\}_{i=1}^{\mu})$ define $T[X_1, \dots, X_{\mu}, X_r]$ s.t. $T(\alpha_1, \dots, \alpha_{\mu}, \alpha_r) = 0$
- Statistical argument shows that $T[X_1, \ldots, X_\mu, X_r] \not\equiv 0$ w.h.p. unless AGM representation of C provide a witness $f[X_1, \ldots, X_\mu]$ s.t. $y = f(\mathbf{z})$

Agenda

SNARKS

Simulation-Extractable SNARKs: Motivation and prior work

Simulation-Extractable PCS in the AGM+ROM

Reminder on KZG and PST Polynomial Commitments A Simulation-Extractable Variant of Multivariate KZG/PST Commitments Proof Intuition

Application: Simulation-Extractable instantiation of HyperPlonk

Application to HyperPlonk

HyperPlonk at a high level:

- Prover encodes computation trace in matrix $\mathbf{M} = \{(L_i, R_i, O_i)\}_{i=1}^N$ where $N = 2^{\mu}$
- Commits to multilinear $\{M[X_1,\ldots,X_\mu, \mathsf{bin}(i)]\}_{i=0}^2$ evaluating to **M**'s columns over $\{0,1\}^\mu$
- Prove that $\{M[X_1,\ldots,X_\mu, bin(i)]\}_{i=0}^2$ satisfies a **gate identity** by showing that

$$\forall \mathbf{x} \in \{0, 1\}^{\mu} : f(\mathbf{x}) = 0$$

for some $f[X_1, \ldots, X_{\mu}]$ depending on $\{M[X_1, \ldots, X_{\mu}, \text{bin}(i)]\}_{i=0}^2$, input-encoding polynomial $I[X_1, \ldots, X_{\mu}]$, and selector polynomials $\{S_j[X_1, \ldots, X_{\mu}]\}_{j=1,2,3}$

• Prove that $\{M[X, bin(i)]\}_{i=0,1,2}$ satisfies a wiring identity

$$M[\mathbf{x}, bin(i)] = M[\sigma(\mathbf{x}, bin(i))] \quad \forall \mathbf{x} \in \{0, 1\}^{\mu}, i \in \{0, 1, 2\}$$

for a public permutation σ

Application to HyperPlonk

HyperPlonk at a high level:

- Prover encodes computation trace in matrix $\mathbf{M} = \{(L_i, R_i, O_i)\}_{i=1}^N$ where $N = 2^{\mu}$
- Commits to multilinear $\{M[X_1,\ldots,X_\mu, bin(i)]\}_{i=0}^2$ evaluating to **M**'s columns over $\{0,1\}^\mu$
- Prove that $\{M[X_1,\ldots,X_{\mu}, \mathsf{bin}(i)]\}_{i=0}^2$ satisfies a gate identity by showing that

$$\forall \mathbf{x} \in \{0, 1\}^{\mu} : f(\mathbf{x}) = 0$$

for some $f[X_1,\ldots,X_{\mu}]$ depending on $\{M[X_1,\ldots,X_{\mu}, \text{bin}(i)]\}_{i=0}^2$, input-encoding polynomial $I[X_1,\ldots,X_{\mu}]$, and selector polynomials $\{S_j[X_1,\ldots,X_{\mu}]\}_{j=1,2,3}$

• Prove that $\{M[X, bin(i)]\}_{i=0,1,2}$ satisfies a wiring identity

$$M[\mathbf{x}, bin(i)] = M[\sigma(\mathbf{x}, bin(i))] \quad \forall \mathbf{x} \in \{0, 1\}^{\mu}, i \in \{0, 1, 2\}$$

for a public permutation σ

Application to HyperPlonk

HyperPlonk at a high level:

- Prover encodes computation trace in matrix $\mathbf{M} = \{(L_i, R_i, O_i)\}_{i=1}^N$ where $N = 2^{\mu}$
- Commits to multilinear $\{M[X_1,\ldots,X_\mu, bin(i)]\}_{i=0}^2$ evaluating to **M**'s columns over $\{0,1\}^\mu$
- Prove that $\{M[X_1,\ldots,X_{\mu}, \mathsf{bin}(i)]\}_{i=0}^2$ satisfies a gate identity by showing that

$$\forall \mathbf{x} \in \{0, 1\}^{\mu} : f(\mathbf{x}) = 0$$

for some $f[X_1,\ldots,X_{\mu}]$ depending on $\{M[X_1,\ldots,X_{\mu}, \text{bin}(i)]\}_{i=0}^2$, input-encoding polynomial $I[X_1,\ldots,X_{\mu}]$, and selector polynomials $\{S_j[X_1,\ldots,X_{\mu}]\}_{j=1,2,3}$

• Prove that $\{M[X, bin(i)]\}_{i=0,1,2}$ satisfies a wiring identity

$$M[\mathbf{x}, bin(i)] = M[\sigma(\mathbf{x}, bin(i))] \quad \forall \mathbf{x} \in \{0, 1\}^{\mu}, i \in \{0, 1, 2\}$$

for a public permutation σ

SIM-EXT Instantiation of HyperPlonk

Our trapdoor-less simulator:

Computes fake witnesses $\{\hat{M}[X_1,\ldots,X_{\mu},\text{bin}(i)]\}_{i=0}^2$ satisfying the gate identity

$$\forall \mathbf{x} \in \{0,1\}^{\mu} : f(\mathbf{x}) = 0$$

... but not the wiring identity

$$\hat{M}[\mathbf{x}, bin(i)] = \hat{M}[\sigma(\mathbf{x}, bin(i))] \quad \forall \mathbf{x} \in \{0, 1\}^{\mu}, i \in \{0, 1, 2\}$$
 (2)

(easy by computing $\hat{M}[X_1, \dots, X_{\mu}, X_{\mu+1}, X_{\mu+2}]$ as a multilinear extension)

- Simulates proof for (2) via a simulated PCS proof that some polynomial $\tilde{v}[X_1, \dots, X_{\mu+1}]$ satisfies $\tilde{v}(1, 1, \dots, 1, 0) = 1$
- Earlier prover messages are embedded in label of each PCS evaluation proof (for non-malleability)

SIM-EXT Instantiation of HyperPlonk

- Our trapdoor-less simulator:
 - Computes fake witnesses $\{\hat{M}[X_1,\ldots,X_{\mu},\text{bin}(i)]\}_{i=0}^2$ satisfying the gate identity

$$\forall \mathbf{x} \in \{0, 1\}^{\mu} : f(\mathbf{x}) = 0$$

... but not the wiring identity

$$\hat{M}[\mathbf{x}, bin(i)] = \hat{M}[\sigma(\mathbf{x}, bin(i))] \quad \forall \mathbf{x} \in \{0, 1\}^{\mu}, i \in \{0, 1, 2\}$$
 (2)

(easy by computing $\hat{M}[X_1, \dots, X_{\mu}, X_{\mu+1}, X_{\mu+2}]$ as a multilinear extension)

- Simulates proof for (2) via a simulated PCS proof that some polynomial $\tilde{v}[X_1, \dots, X_{\mu+1}]$ satisfies $\tilde{v}(1, 1, \dots, 1, 0) = 1$
- Earlier prover messages are embedded in label of each PCS evaluation proof (for non-malleability)

Summary

- Constructions of SIM-EXT PCS (with straight-line extractability) in the AGM+ROM;
 almost as efficient as the underlying malleable schemes
 - μ + 2 pairings to verify in μ -variate PCS
 - 2 pairings for a variant of rKZG
 - Randomness of only one field element in both cases (no need for a large masking polynomial)
 - Simple trapdoor-less simulator via Fiat-Shamir and Σ-protocols
- Provide a SIM-EXT variant of HyperPlonk in the AGM+ROM
- Possible optimization using Zeromorph (Kohrita-Towa; ePrint 2023/917) to get O(1) pairings V at the cost of a 2.5x overhead at P

Questions?