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(x, w)

o Succinctness: || < |C|, [w|
o Knowledge-soundness: a convincing P must “know” a witness w such that R(x, w) =1

o Zero-knowledge: m leaks nothing about w
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L% SNARKs

o PIOP: multi-round protocol where P sends oracles to polynomials at each round

o PCS: P commits to polynomial f[ X] € F and succinctly proves y = f(z) for any z € F;

Evaluation proofs of size || < deg(f); verification cost < deg(f)
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o Knowledge-soundness: given oracle access to P* that outputs a verifying pair (x*, m*),
an efficient extractor € can reconstruct w* such that R(x*, w*) =1

o Adversary observing legitimate proofs may be able to maul them and fake a proof

without knowing a witness
XXL m)

w1 g
W2 g (x2, m2)
w3 g ﬁXL m3)

{(x*, 1)
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Definition (sahai, F0CS’99; De Santis etal., Crypto’01):

No PPT attacker can defeat knowledge-extraction after having seen simulated proofs:
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Definition (sahai, F0CS’99; De Santis etal., Crypto’01):
No PPT attacker can defeat knowledge-extraction after having seen simulated proofs:

(crs, tk) — CRS-Gen(A, pp)
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(x*, m*
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Adversary wins if:

o Verify,..(x*, ™) =1and (x*, m*) # (x;, m;) for all queries x; to Sim(tk, -)
o R(x*, w*) = 0 where w* « &(tk, x*, m*)
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o Scheme-specific results

(Variants of) Groth16 in the AGM (Baghery etal., CANS’'20; FC'01)

Plonk, Sonic, Marlin in the AGM+ROM using trapdoor-less simulators
(Ganesh etal., SCN’22)

BulletProofs and Spartan in the ROM
(Dao-Grubbs, Eurocrypt’23; Ganesh etal., ePrint 2023/147)
o General compilers with black-box straight-line extractors
Without witnesss succinctness (Abdolmaleki etal.; ACM-CCS’20, CSF’24)
UC security with witness succinctness (Ganesh etal., Eurocrypt’23)

o Compilers applying to existing univariate PIOPs (Marlin, Lunar, Plonk, ...)

Based on arguments with trapdoor-less simulators and weak unique responses
(Kohlweiss etal., TCC'23)

From PCS with trapdoor-based simulators and satisfying a relaxed notion of SIM-EXT
(Faonio etal., TCC’23)
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Use strongly SIM-EXT PCS in the AGM+ROM with a simple trapdoor-less simulator

©

o Non-generic, but can be applied to multilinear PIOPs

o Two constructions of KZG-based PCS with straight-line SIM-EXT in the AGM+ROM:
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Multivariate PST commitments
(based on Papamanthou-Shi-Tamassia, TCC’'13; Zhang etal.,ePrint 2017/1146):

O(1)-size commitments to u-variate polynomials, proofs live in GH+1 x Z,

Univariate (i.e., u = 1) randomized KZG: proof in G x ZS

©

Application to HyperPlonk (Chen etal., Eurocrypt’23):

Instantiation with straight-line SIM-EXT in the AGM+ROM
(retains linear-time prover and large-degree custom gates)
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Reminder on KZG and PST Polynomial Commitments
A Simulation-Extractable Variant of Multivariate KZG/PST Commitments
Proof Intuition
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o Use pairings e : G x G — Gr and a CRS of size O() - d), where d = max(deg(f)):
srs=(9, 19 }ierar, (9.67))

o Commitment to polynomial f[ X] consists of C = gf(®

0 y=f(2) & 3q[X]s.t.
fIX]I-y=qlX]-(X-2)

o Proofthaty =f(z) is m = g9(® € G and satisfies

e(C-g7. g =e(mg§*-g7%)

o Evaluation-binding under the d-SDH assumption; Knowledge-sound in the AGM

o Malleable since homomorphic, but still satisfies a form of (policy-based) SIM-EXT
(Faonio etal.; TCC'23)
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u-variate polynomials of variable-degree d require a CRS of size O(A - a*):

i
srs= o "N} , (8, {g"}* )
( {g (i1,....ix)€L0,d]H (g {9 ‘=1)

Commitment to polynomial f[ X1, ..., X,] consists of C = ¢g/(a1.-ou)

(]

o y=f(z1,...,zy) & 3qilX1,...,Xy] forie[u]s.t.

M
fIXL - Xl =y =X Qi Xy, Xl - (X = 20)

©

Proof thaty = f(z1, ..., zy) is {m = g9i@1 O‘M)}le satisfying

%
e(C-g7, ) =] |elm, 6% §7%)
=1
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Zhang et al.’s randomized PST commitments (ePrint 2017/1146):

o u-variate polynomials of variable-degree d require a CRS of size O(A - d#):
ail---ai“ a A [AQiLH A
srs=| {g% "% . 9%, (6, {6%}L,, 6°)
(i1,.-,iu)€[0,d]H
o Commitment to f[X1,..., X,] consists of C = gflar.antarr with r & Zp

o Evaluation proofis (m,..., My, ) with m; = ggitar,...an)+arsi fop g; & Zp

o Verification equation is

=

e(C-g7,9)=| |e(m, §%-§7*)-e(n, §°)

4

]
fa}

o Knowledge-sound in the AGM under the (d- u, d - u)-DLOG assumption, but malleable
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o u-variate polynomials of variable-degree d require a CRS of size O(X - d#):
s ar (A fA%LH A0
srs:({gl } , . g ,(g,{g‘},-zl,g ))
(i1,...,iy)€[0,d]H

o Commitment to f[X1, ..., X,] consists of C = gf@1-a+arr with r & 7,

o Pprovesy = f(z) by revealing (m1, ..., m,) € GH and proving knowledge of 7, s.t.

I
e(C-97,8) [ [ ]etm, §% -7y =e([n], §°)
(=il

o Z-protocol proofis ((nl, e, T, ) with c =H(z,y, C, (m)_,, R+, label)
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o Given ((nl ..... ), ), verifier V accepts if c = H(z, y, C, (m)!_,, R, label) where

~e(50.67):

e(C-g7,§) )_C
[T, e(mi, §oi-g=2)

The scheme is SIM-EXT in the AGM+ROM under the (d- u, d - u)-DLOG assumption:
i.e., computing o € Z, is hard given (g, £99 Y it g, {g(ai)}[e[d-p])

Proof idea:

1)
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o Given ((nl ..... ), ), verifier V accepts if c = H(z, y, C, (m)!_,, R, label) where

— e ,a“r)-( ®

e(C-g7,§) )_C
[T, e(mi, §oi-g=2)

The scheme is SIM-EXT in the AGM+ROM under the (d- u, d - u)-DLOG assumption:
i.e., computing o € Z, is hard given (g, £99 Y it g, {g(ai)}[e[d-p])

Proof idea:

o In A’s forgery, element R, of (1) must have been queried to H and A must have supplied
an AGM representation defining R[ X1, ..., Xy, Xr] s.t.
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o Given ((nl ..... ), ), verifier V accepts if c = H(z, y, C, (m)!_,, R, label) where

— e ,a“r)-( ®

e(C-g7,§) )_C
[T, e(mi, §oi-g=2)

The scheme is SIM-EXT in the AGM+ROM under the (d- u, d - u)-DLOG assumption:
i.e., computing a € Zj, is hard given (g, {g(“i)}ie[d.y], {Q(“i)}ie[d.pl)
Proof idea:

o In A’s forgery, element R, of (1) must have been queried to H and A must have supplied
an AGM representation defining R[ X1, ..., Xy, Xr] s.t.

o AGM representations of (C, S, {n,v}‘f:l) define T[X1,..., Xy, Xrls.t. T(a,...,ay,0r) =0
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o Given ((nl ..... ), ), verifier V accepts if c = H(z, y, C, (m)!_,, R, label) where

— e ,a“r)-( ®

e(C-g7,§) )_C
[T, e(mi, §oi-g=2)

The scheme is SIM-EXT in the AGM+ROM under the (d- u, d - u)-DLOG assumption:
i.e., computing a € Zj, is hard given (g, {g(“i)}ie[d.y], {Q(“i)}ie[d.pl)
Proof idea:

o In A’s forgery, element R, of (1) must have been queried to H and A must have supplied
an AGM representation defining R[ X1, ..., Xy, Xr] s.t.

o AGM representations of (C, S, {n,v}‘f:l) define T[X1,..., Xy, Xrls.t. T(a,...,ay,0r) =0

o Statistical argument shows that T[X1,..., X, Xr] # 0 w.h.p. unless AGM representation
of C provide a witness f[ X1, ..., Xyl s.t. y =f(2)
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HyperPlonk at a high level:

o Prover encodes computation trace in matrix M = {(L;, R;, Ol-)}f"=1 where N = 2H

o Commits to multilinear evaluating to M’s columns over {0, 1}#
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HyperPlonk at a high level:

o Prover encodes computation trace in matrix M = {(L;, R;, Ol-)}f"=1 where N = 2H

o Commits to multilinear evaluating to M’s columns over {0, 1}#

o Prove that satisfies a gate identity by showing that
Vxe {0, 1} :f(x)=0

for some f[ X1, ..., X,] depending on , input-encoding
polynomial I[ X1, ..., X, ], and selector polynomials {S;[ X1, ..., Xy]1}j=1,2,3




NI

HyperPlonk at a high level:

o Prover encodes computation trace in matrix M = {(L;, R;, Ol-)}f"=1 where N = 2H

o Commits to multilinear evaluating to M’s columns over {0, 1}#
‘§“ o Prove that satisfies a gate identity by showing that
o
z Vxe {0, 1} :f(x)=0
for some f[ X1, ..., X,] depending on , input-encoding
polynomial I[ X1, ..., X, ], and selector polynomials {S;[ X1, ..., Xy]1}j=1,2,3
o Prove that satisfies a wiring identity

M[x, bin()] = M[o(x, bin(i))] vxe {0,1}, i€ {0,1,2}

for a public permutation o
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o Our trapdoor-less simulator:

Computes fake witnesses

satisfying the gate identity

vxe {0, 1} :f(x)=0

...but not the wiring identity
M[x, bin(i)] = M[o(x, bin(i))]

(easy by computing

vxe {0,1}¥ ie{0,1,2}

as a multilinear extension)
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o Our trapdoor-less simulator:

Computes fake witnesses satisfying the gate identity
vxe {0, 1} :f(x)=0
...but not the wiring identity

M[x, bin(i)] = M[o(x, bin(i))] Vxe{0,1}* i€ {0,1,2}
(easy by computing as a multilinear extension)

o Simulates proof for (2) via a simulated PCS proof that some polynomial V[ X3, ..
satisfies v(1,1,...,1,0)=1

o Earlier prover messages are embedded in label of each PCS evaluation proof
(for non-malleability)

-:X;H—l]
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Constructions of SIM-EXT PCS (with straight-line extractability) in the AGM+ROM,;
almost as efficient as the underlying malleable schemes

o [+ 2 pairings to verify in u-variate PCS
o 2 pairings for a variant of rKZG

o Randomness of only one field element in both cases
(no need for a large masking polynomial)
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o Simple trapdoor-less simulator via Fiat-Shamir and Z-protocols

o Provide a SIM-EXT variant of HyperPlonk in the AGM+ROM

o Possible optimization using Zeromorph (Kohrita-Towa; ePrint 2023/917)
to get O(1) pairings V at the cost of a 2.5x overhead at P
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Questions?
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