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Outline
● Introduction:

– The problem: Encryption and circular security
– Motivation: Fully Homomorphic Encryption (FHE)
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– Circular LWE assumption(s)
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Security of Encryption
● Encryption scheme: (Gen,Enc,Dec)
● Semantic (IND-CPA) Security 

[Goldwasser,Micali’84]

– (pk,sk) ← Gen()

– (pk,Encpk(m₀)) ≈ (pk,Encpk(m₁))

– m₀,m₁ are adversarially chosen, but

– cannot depend on the secret key sk

● Circular security: what if m=f(sk)?
– [GM’84] already shows that some 

schemes may be broken
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Circular Security: Motivation
● Full disk encryption
● Symbolic security analysis [Abadi,Rogaway’07,...]

● Anonymous credential systems 
[Camenisch,Lysanskaya’01,...]

● This talk: Fully Homomorphic Encryption (FHE) 
[Gentry’09,...] 



  

Fully Homomorphic Encryption
● Encryption: used to protect data at rest or in transit

● Fully Homomorphic Encryption: supports arbitrary 
computations (F) on encrypted data

Enc( m )

Enc( m )
Enc( m )

Enc(  m  )

Enc(  F(m)  )



  

Leveled vs Full HE
● Leveled Homomorphic Encryption (LHE):

– (pk,sk) ← Gen(L)

– Can compute Evalpk(F,c) where F is a circuit of depth ≤ L

– Can be build from standard LWE [Brakerski,Vaikuntanathan’11]

● Fully Homomorphic Encryption (FHE): 

– (pk,sk) ← Gen()

– Evalpk(F,c) for arbitrary F

– Still not known how to build from LWE

● Bootstrapping [Gentry’09]: Transform LHE → FHE

– Requires LHE to be circular secure



  

FHE: state of the art
● Many FHE schemes based on LWE/RLWE 

[BV,BGV,BFV,GSW,DM,CGGI,…]
– All use bootstrapping → require circular security

● Circular security
– Has become a common “assumption” in FHE

– No known attacks ...

– … no cryptanalysis attempts

● Not considered here: schemes based on iO



  

The problem with circular security
● Circular security: “Encpk(f(sk)) does not help”

– Cannot even define before first defining Enc
– encoding f(sk) depends on FHE Eval algorithm
– Each scheme carries its own circular security 

assumption

● Hard to specify cryptanalysis challenges
● Similar “circular security” assumptions for iO were 

proposed and then broken



  

Our goal
● Formulate “LWE circular security” 

assumption(s)
● Advantages:

– Simple, concrete assumption(s)
– Allows to reduce multiple FHE 

schemes to the same (or small set of) 
assumptions

– Supports reductions between 
assumptions

– Basis to generate concrete challenges

Assumption

FHE1 FHE2 FHE3

Cryptanalysis

Connstructions and
Security Proofs



  

Contributions
● Assumptions: CircLWE, LinLWE, CliqueLWE
● Reductions: LinLWE ← CircLWE ↔ CliqueLWE
● FHE: BV,GSW, etc. are secure under CircLWE 
● Hardness: LinLWE holds under LWE
● Search-to-Decision reduction for CircLWE
● Robustness of CircLWE under sk encoding
● This is just a start: much work still to be done



  

Learning With Errors (LWE)
● LWE Problem [Regev’05]

– [A, As+e] ≈ [A, b] are indistinguishable
– A,b ← uniformly random mod q

– s: random secret vector

– e ← random “error” vector with small entries

● LWE with side information Pub:
– (Pub(s),[A, As+e]) ≈ (Pub(s),[A, b])

– For lossy Pub: leakage resilience of LWE 
[Goldwasser,Kalai,Peikert,Vaikuntanathan’10]
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Matrix LWE
● Also known as “amortized LWE” [Peikert,Waters’08]

– [A, AS+E] ≈ [A, B] where S,E,B are matrices
– Follows from standard (single column) LWE by standard 

hybrid argument

● LWE with side information Pub:
– (Pub(S),[A, AS+E]) ≈ (Pub(S),[A, B])
– Follows from single column version if Pub works 

independently on the columns of S



  

Circular LWE
● For some (fixed, publicly known) function φ: Zq

n → Zq
m

– [A, As+e+φ(s)] ≈ [A, b]

– Equivalent to LWE when φ(s)=Ps is linear

● Relating it to leakage (Pub) formulation:

– φ(s)=(φ’(s),0)

– [A, As+e+φ(s)] = ([A₁, A₁s+e₁+φ’(s)] , [A₂, A₂s+e₂]) 

                        = (         Pub(s)         , [A₂, A₂s+e₂]) 

– Pub(s) is an “LWE encryption” of φ(s) under s
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Strong CircLWE assumption
● For any function φ: Zq

n → Zq
m:      [A, As+e+φ(s)] ≈ [A, b]

– An even stronger assumption (for search LWE) was 
already proposed by [Canetti,Chen,Reyin,Rothblum’18]

● Is it equivalent to LWE for any φ?

● Can you find a φ for which it can be broken?

● Hard to give challenges! 

(cryptanalyst needs to choose φ first)

● What φ are relevant to FHE constructions?
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Lattice gadgets
● Gadget: (encG,decG,invG)
● Main example: powers-of-two gadget

– encG(x) = (x, 2x, 4x, 8x,…, 2ᵏx)   for k = log q

– invG(c) = binary decomposition of c

● Properties
– Scalar product ≪invG(c),encG(x)  = cx≫
– decG(encG(x)+e) = x   for |e|<q/4

● Many other gadgets (CRT, Δ, hybrid, ...)



  

“Gadget LWE” Encryption
● secret key: s  Z∈ q

n

● gLWE (ₛ m) = [A, As+e+encG(m)] = [A,b] mod q

● Dec (ₛ A,b) = decG(b – As)

                = decG(encG(m)+e) = m

● Corrects errors of size q<2, with message space M=Zq 

– much better than scaling gadget Δ=q/p for M=Zₚ
– Can directly encrypt the secret key, ciphertexts, etc.



  

CircLWE
● Pub(s) = [A, As+e+encG(φ(s))] = gLWE (φ(ₛ s)) 
● φ(s) = invG((1,s)) × invG((1,s))
● If s = s₀+2s₁+4s₂+ …. with sᵢ {0,1}ⁿ∈

– φ(s)=(1,s₀,…,s ,…,sᵢs ,…)ₙ ⱼ
● This is precisely the evaluation key of B12 FHE scheme

● “Theorem”: B12 is secure under CircLWE

– Proof: easy, by definition Pub(s)=evk of B12

– This will be useful in proving other results



  

Search to Decision reduction
● Search CircLWE: 

– given [A, As+e+encG(φ(s))], find s
● Theorem: Search CircLWE is hard, then (decision) 

CircLWE is hard (for e’ > 2λ e)
● Proof: 

– Show  how to “randomize” s
– “Guess and check” the value of s, similar to 

standard search-to-decision reduction for LWE



  

Randomizing s in CircLWE
● [A, As+e+G(φ(s))] = gLWE (φ(ₛ s)) = evk

– Want to map s → (s+r)

– hᵣ([A,b]) = [A,b+Ar] = [A, A(s+r) + e + G(φ(s))]

– This is gLWEr+s(φ(s)), not quite right

– Let fᵣ(φ(s))=φ(s+r), and use evk to compute

hᵣ(Evalevk(fᵣ,evk)) = hᵣ(gLWEₛ(φ(s+r)))

                           = gLWEs+r(φ(s+r))

– Add “smudging noise” to adjust the error distribution



  

Conclusion
● Strong LWE circular 

security:
– pick your f, if you can break 

it let me know
● CircLWE for specific f:

– relevant to FHE
– nice properties, in theory

● CliqueLWE:
– Pub = { Encpk[i](sk[j]) : i,j}
– equivalent to CircLWE

● Limitations:
– blow up in error size

– RLWE require additional 
information 
(automorphisms)

● This is just a start:
– Much work still to be done

– “CircLWE challenge page”?

● Practical FHE schemes?
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