Learning with Errors, Circular Security & Fully Homomorphic Encryption

Daniele Micciancio (UCSD) & Vinod Vaikuntanathan (MIT)

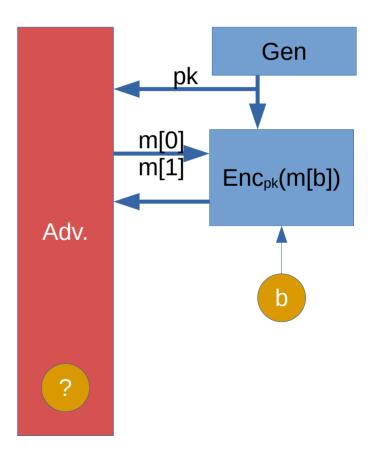
[PKC 2024]

Outline

- Introduction:
 - The problem: Encryption and circular security
 - Motivation: Fully Homomorphic Encryption (FHE)
- Contributions:
 - Circular LWE assumption(s)
 - **Example:** Search to decision reduction
- Conclusion and Open Problems

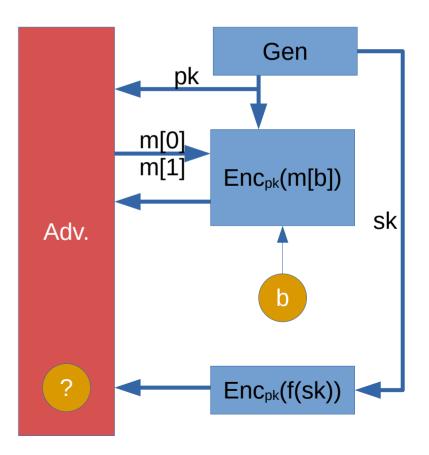
Security of Encryption

- Encryption scheme: (Gen, Enc, Dec)
- Semantic (IND-CPA) Security [Goldwasser,Micali'84]
 - (pk,sk) \leftarrow Gen()
 - $(pk,Enc_{pk}(m_0)) \approx (pk,Enc_{pk}(m_1))$
 - m_0, m_1 are adversarially chosen, but
 - cannot depend on the secret key sk
- Circular security: what if m=f(sk)?
 - [GM'84] already shows that some schemes may be broken



Security of Encryption

- Encryption scheme: (Gen, Enc, Dec)
- Semantic (IND-CPA) Security [Goldwasser,Micali'84]
 - (pk,sk) \leftarrow Gen()
 - $(pk,Enc_{pk}(m_0)) \approx (pk,Enc_{pk}(m_1))$
 - m_0, m_1 are adversarially chosen, but
 - cannot depend on the secret key sk
- Circular security: what if m=f(sk)?
 - [GM'84] already shows that some schemes may be broken



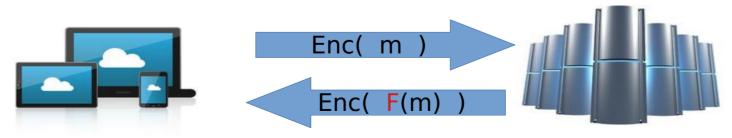
Circular Security: Motivation

- Full disk encryption
- Symbolic security analysis [Abadi,Rogaway'07,...]
- Anonymous credential systems [Camenisch,Lysanskaya'01,...]
- This talk: Fully Homomorphic Encryption (FHE) [Gentry'09,...]

Fully Homomorphic Encryption

• Encryption: used to protect data at rest or in transit

 Fully Homomorphic Encryption: supports arbitrary computations (F) on encrypted data



Leveled vs Full HE

- Leveled Homomorphic Encryption (LHE):
 - (pk,sk) \leftarrow Gen(L)
 - Can compute $Eval_{pk}(F,c)$ where F is a circuit of depth $\leq L$
 - Can be build from standard LWE [Brakerski, Vaikuntanathan'11]
- Fully Homomorphic Encryption (FHE):
 - (pk,sk) \leftarrow Gen()
 - $Eval_{pk}(F,c)$ for arbitrary F
 - Still not known how to build from LWE
- Bootstrapping [Gentry'09]: Transform LHE \rightarrow FHE
 - Requires LHE to be circular secure

FHE: state of the art

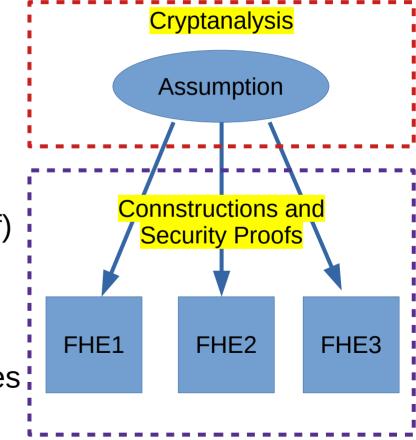
- Many FHE schemes based on LWE/RLWE [BV,BGV,BFV,GSW,DM,CGGI,...]
 - All use bootstrapping \rightarrow require circular security
- Circular security
 - Has become a common "assumption" in FHE
 - No known attacks ...
 - ... no cryptanalysis attempts
- Not considered here: schemes based on iO

The problem with circular security

- Circular security: "Enc_{pk}(f(sk)) does not help"
 - Cannot even define before first defining Enc
 - encoding f(sk) depends on FHE Eval algorithm
 - Each scheme carries its own circular security assumption
- Hard to specify cryptanalysis challenges
- Similar "circular security" assumptions for iO were proposed and then broken

Our goal

- Formulate "LWE circular security" assumption(s)
- Advantages:
 - Simple, concrete assumption(s)
 - Allows to reduce multiple FHE schemes to the same (or small set of) assumptions
 - Supports reductions between assumptions
 - Basis to generate concrete challenges!

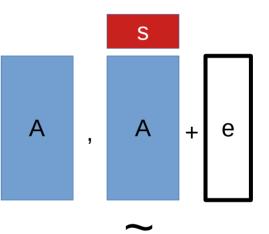


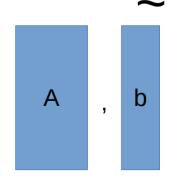
Contributions

- Assumptions: CircLWE, LinLWE, CliqueLWE
- **Reductions:** LinLWE ← CircLWE ↔ CliqueLWE
- FHE: BV,GSW, etc. are secure under CircLWE
- Hardness: LinLWE holds under LWE
- Search-to-Decision reduction for CircLWE
- **Robustness** of CircLWE under sk encoding
- This is just a start: much work still to be done

Learning With Errors (LWE)

- LWE Problem [Regev'05]
 - $[A, As+e] \approx [A, b]$ are indistinguishable
 - A,b \leftarrow uniformly random mod q
 - s: random secret vector
 - $e \leftarrow$ random "error" vector with small entries
- LWE with side information Pub:
 - $(Pub(s),[A, As+e]) \approx (Pub(s),[A, b])$
 - For lossy Pub: leakage resilience of LWE [Goldwasser,Kalai,Peikert,Vaikuntanathan'10]





Learning With Errors (LWE)

S

h

,

Α

Α

Pub(s)

Pub(s)

- LWE Problem [Regev'05]
 - $[A, As+e] \approx [A, b]$ are indistinguishable
 - A,b \leftarrow uniformly random mod q
 - s: random secret vector
 - $e \leftarrow$ random "error" vector with small entries
- LWE with side information Pub:
 - $(Pub(s),[A, As+e]) \approx (Pub(s),[A, b])$
 - For lossy Pub: leakage resilience of LWE [Goldwasser,Kalai,Peikert,Vaikuntanathan'10]

Matrix LWE

- Also known as "amortized LWE" [Peikert, Waters'08]
 - [A, AS+E] \approx [A, B] where S,E,B are matrices
 - Follows from standard (single column) LWE by standard hybrid argument
- LWE with side information Pub:
 - $(Pub(S), [A, AS+E]) \approx (Pub(S), [A, B])$
 - Follows from single column version if Pub works independently on the columns of S

Circular LWE

- For some (fixed, publicly known) function ϕ : $Z_q^n \rightarrow Z_q^m$
 - $[A, As+e+\phi(s)] \approx [A, b]$
 - Equivalent to LWE when $\varphi(s)$ =Ps is linear
- Relating it to leakage (Pub) formulation:
 - $\phi(s) = (\phi'(s), 0)$
 - $[A, As+e+\phi(s)] = ([A_1, A_1s+e_1+\phi'(s)], [A_2, A_2s+e_2])$ $= (Pub(s), [A_2, A_2s+e_2])$
 - Pub(s) is an "LWE encryption" of $\varphi(s)$ under s

Circular LWE

- For some (fixed, publicly known) function ϕ : $Z_q^n \rightarrow Z_q^m$
 - [A, As+e+ $\phi(s)$] \approx [A, b]
 - Equivalent to LWE when $\varphi(s)=Ps$ is linear
- Relating it to leakage (Pub) formulation:
 - $\phi(s) = (\phi'(s), 0)$
 - $[A, As+e+\phi(s)] = ([A_1, A_1s+e_1+\phi'(s)], [A_2, A_2s+e_2])$ $= (Pub(s), [A_2, A_2s+e_2])$
 - Pub(s) is an "LWE encryption" of $\varphi(s)$ under s

Circular LWE

- For some (fixed, publicly known) function ϕ : $Z_q^n \rightarrow Z_q^m$
 - [A, As+e+ $\phi(s)$] \approx [A, b]
 - Equivalent to LWE when $\varphi(s)=Ps$ is linear
- Relating it to leakage (Pub) formulation:
 - $\phi(s) = (\phi'(s), 0)$
 - $[A, As + e + \phi(s)] = ([A_1, A_1s + e_1 + \phi'(s)], [A_2, A_2s + e_2])$ $= (Pub(s), [A_2, A_2s + e_2])$
 - Pub(s) is an "LWE encryption" of $\varphi(s)$ under s

Strong CircLWE assumption

- For **any** function $\phi: Z_q^n \to Z_q^m$: [A, As+e+ $\phi(s)$] \approx [A, b]
 - An even stronger assumption (for search LWE) was already proposed by [Canetti,Chen,Reyin,Rothblum'18]
- Is it equivalent to LWE for any φ?
- Can you find a φ for which it can be broken?
- Hard to give challenges!

(cryptanalyst needs to choose φ first)

• What φ are relevant to FHE constructions?

Strong CircLWE assumption

- For **any** function $\phi: \mathbb{Z}_q^n \to \mathbb{Z}_q^m$: [A, As+e+ $\phi(s)$] \approx [A, b]
 - An even stronger assumption (for search LWE) was already proposed by [Canetti,Chen,Reyin,Rothblum'18]
- Is it equivalent to LWE for any ϕ ?
- Can you find a ϕ for which it can be broken?
- Hard to give challenges!

(cryptanalyst needs to choose ϕ first)

• What ϕ are relevant to FHE constructions?

Lattice gadgets

- Gadget: (encG,decG,invG)
- Main example: powers-of-two gadget
 - encG(x) = (x, 2x, 4x, 8x,..., 2^kx) for k = log q
 - invG(c) = binary decomposition of c
- Properties
 - Scalar product $\ll invG(c), encG(x) \gg = cx$
 - decG(encG(x)+e) = x for |e| < q/4
- Many other gadgets (CRT, Δ, hybrid, …)

"Gadget LWE" Encryption

- secret key: $s \in Z_q^n$
- gLWE_s(m) = [A, As+e+encG(m)] = [A,b] mod q
- $Dec_s(A,b) = decG(b As)$

= decG(encG(m)+e) = m

- Corrects errors of size q<2, with message space M=Z_q
 - much better than scaling gadget Δ =q/p for M=Z_p
 - Can directly encrypt the secret key, ciphertexts, etc.

CircLWE

- $Pub(s) = [A, As+e+encG(\phi(s))] = gLWE_s(\phi(s))$
- $\varphi(s) = invG((1,s)) \times invG((1,s))$
- If $s = s_0 + 2s_1 + 4s_2 + \dots$ with $s_i \in \{0, 1\}^n$

-
$$\phi(s) = (1, s_0, ..., s_n, ..., s_i s_j, ...)$$

- This is precisely the evaluation key of B12 FHE scheme
- **"Theorem":** B12 is secure under CircLWE
 - Proof: easy, by definition Pub(s)=evk of B12
 - This will be useful in proving other results

Search to Decision reduction

- Search CircLWE:
 - given [A, As+e+encG(φ (s))], find s
- Theorem: Search CircLWE is hard, then (decision) CircLWE is hard (for $e' > 2^{\lambda}e$)
- Proof:
 - Show how to "randomize" s
 - "Guess and check" the value of s, similar to standard search-to-decision reduction for LWE

Randomizing s in CircLWE

- [A, As+e+G($\phi(s)$)] = gLWE_s($\phi(s)$) = evk
 - Want to map $s \rightarrow (s+r)$
 - $h_{r}([A,b]) = [A,b+Ar] = [A, A(s+r) + e + G(\phi(s))]$
 - This is $gLWE_{r+s}(\phi(s))$, not quite right
 - Let $f_r(\phi(s))=\phi(s+r)$, and use evk to compute $h_r(Eval_{evk}(f_r,evk)) = h_r(gLWE_s(\phi(s+r)))$ $= gLWE_{s+r}(\phi(s+r))$
 - Add "smudging noise" to adjust the error distribution

Conclusion

- Strong LWE circular security:
 - pick your f, if you can break it let me know
- CircLWE for specific f:
 - relevant to FHE
 - nice properties, in theory
- CliqueLWE:
 - Pub = { $Enc_{pk[i]}(sk[j]) : i,j$ }
 - equivalent to CircLWE

- Limitations:
 - blow up in error size
 - RLWE require additional information (automorphisms)
- This is just a start:
 - Much work still to be done
 - "CircLWE challenge page"?
- Practical FHE schemes?