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Some Surprising Results

Laconic Oblivious Transfer from DDH [CDG+17]

Identity Based Encryption (IBE) from DDH [DG17a, DG17b]

2-round MPC from 2-round OT [BL17, GS17]

Key Ingredient in all the above: Garbled Circuit Chaining

But no common abstraction or framework!

Motivation Behind This Work: Abstract the powerful ingredient
driving these results (and beyond) as Obfuscation!
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What is Obfuscation?

Program Obfuscation:

- keeping secrets in a program

- even against an adversary that captures the entire computer on
which it is run

- without any trusted hardware

Subtle to formalize
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Obfuscation Results

Different notions of Obfuscation

Virtual Black-Box Obfuscation [BGI+01]
Indistinguishability Obfuscation (iO) [BGI+01, JLS20]
Average Case Obfuscation [HRsV07]
Virtual Grey Box Obfuscation [BCTKP14]
Differing Inputs Obfuscation [ABG+13] and public-coin DiO [IPS14]

Require strong assumptions in general (if not impossible)

• Obfuscation achievable from standard assumptions, when programs
are sampled in a customized fashion:

- Obfuscation for Re-Encryption [HRsV07] - from DDH
- Obfuscation for Evasive Functions [BBC+13] - from DDH variant
- Obfuscation for Compute-and-Compare functions [WZ17] - from LWE

- In this work: For programs sampled interactively, enforcing a
restriction on what information the adversary has about its contents.
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A Motivating Example

A program that contains a message and an encryption public-key PK.

If a valid decryption key SK is given as input, it outputs the message.

Näıve idea: Encrypting the message using PK will be an obfus-
cation of this program!

Can be turned into a valid notion of obfuscation:

Interactive sampling of the program: (PK,SK) pairs are generated
secretly. Each SK can be published fully, or not revealed at all, as
requested by the adversary.

Simulation of Obfuscated Program: If SK published, an adversary
is allowed to learn the message — from which a valid ciphertext can
be constructed. If SK not published, a random ciphertext is a valid
simulation of the real ciphertext.

Conversely, such an obfuscation yields PKE.
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Our Goal

A definition that formalizes similar seemingly näıve ideas of obfuscation

Example: IBE as Obfuscation
Ciphertext is the obfuscation of the following program:

Hardwired: message m, identity id , a signature verification key VK

On input σ: if σ is a valid signature on id w.r.t. VK , output m.

Issue a decryption key for id by simply signing id
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Reactive Program

Let Σ, M be the space of states and messages respectively.

Reactive Program P = (πα, µβ):

Transition function πα : Σ×X → Σ
Message function µβ : Σ→ M
(for some hardwired secrets α, β)

Evaluating a Reactive Program:

P(st, in):

st′ = πα(st, in)
out = µβ(st

′)
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Reach-Restricted Reactive Program

We require a partition of the state space,
Σ = Σ1 ∪ · · · ∪ Σn

A typical example will have:

- O(κ) parts
- 2O(κ) states in each part.

where κ is the security parameter.

The parts should form a tree.

Reach-Restriction:

Adversary can find inputs that take
the program to at most one state in
each part of the partition

When the program is “sampled properly”
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Interactive Sampling

Rules for sampling a program formalized as a class of
Reactive Program Generators

- A generator G interacts with an adversary Q
- Outputs a reactive program (πα, µβ).
Also auxiliary information aG , aQ produced
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Formalizing Reach Restriction

To which all states can an adversary Q take a reactive program generated
by a generator G (even given (πα, µβ, aG ; aQ))?

- An extractor E can output all such states.
- Encoded as an (idealized) reactive program Π and input sequences X
for it, s.t. reachable states in πα are reached in Π using X .

- Can have at most one state in each part in the state-space partition.
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Defining R3PO Security
A Strong Simulation-Based Definition

The Real World:
- G interacts with Q
- output of interaction: (πα, µβ, aG ; aQ)
- Obfuscator O outputs O(πα, µβ)
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Defining R3PO Security
A Strong Simulation-Based Definition

The Ideal World:
- G interacts with Q
- output of interaction: (πα, µβ, aG ; aQ), E outputs Π,X

- Sim
(
Π,X , {µβ(st) | st ∈ Π(X )}

)
outputs Õ
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Defining R3PO Security
A Strong Simulation-Based Definition

O is an R3PO scheme for G w.r.t. a class of adversaries Q if, ∀G ∈ G
and Q ∈ Q, there exists a simulator Sim s.t. Real World is
indistinguishable from Ideal World

{
O(πα, µβ), aG , aQ

}
≈

{
Sim

(
Π,X , {µβ(st) | st ∈ Π(X )}

)
, aG , aQ

}
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Example 1: Commitment Opening R3PO

Commitment Scheme
- gen(1κ)→ crs

- commit(crs,m)→ (c , d)

- open(crs, c , d)→ m

Properties Required:

1 Computational Hiding: commitment c does not reveal message m.

2 Computational Binding: commitment c can be opened to at most a single
message m. Further, there exists an extractor E that can extract this m.
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Example 1: Commitment Opening R3PO

Interaction:

- QT gets crs from T and sends crs, c to G .
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Example 1: Commitment Opening R3PO

Reactive Program:

π(st1c , d) =

{
st2m, if open(crs, c , d) = m

⊥, else

⋆ Interested in adversaries of the form QT that sample crs honestly.
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Reactive Program:

π(st1c , d) =

{
st2m, if open(crs, c , d) = m

⊥, else

⋆ Interested in adversaries of the form QT that sample crs honestly.

Theorem 1 (Informally)

If the DDH assumption holds, there exists a Commitment scheme and a R3PO
for Commitment-Opening.
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Example 2: Signature-Checking

Signature Scheme
- gen(1κ)→ (vk, sk)

- sign(sk,m)→ τ

- verify(vk,m, τ)→ {0, 1}

Properties Required:

1 Correctness.

2 Unforgeability: without sk, hard to forge signature on a new message.
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Example 2: Signature-Checking R3PO

Interaction:

- Q sends vk ,m to G .
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Example 2: Signature-Checking R3PO

Reactive Program:

π(st1vk,m, τ) =

{
st2m, if verify(vk,m, τ) = 1

⊥, else
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Example 2: Signature-Checking R3PO

Reactive Program:

π(st1vk,m, τ) =

{
st2m, if verify(vk,m, τ) = 1

⊥, else

Theorem 2 (Informally)

If the DDH assumption holds, there exists a Signature scheme and a R3PO for
Signature-Checking.
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Towards R3PO of Larger Reactive Programs

Can we combine R3PO for Commitment Opening and Signature Checking?

Reactive Program:

π(st1c , d) =

{
st2m, if open(crs, c , d) = m

⊥, else

π(st2m, τ) =

{
st3m, if verify(vk,m, τ) = 1

⊥, else
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Towards R3PO of Larger Reactive Programs

Can we combine R3PO for Commitment Opening and Signature Checking?

Need to be careful in handling the interaction!
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Decomposition Property

We say that a generator class G decomposes to a generator class Gi (at
partition i) if the following bi-simulations are indistinguishable.

- In the interaction between G ∈ G and Q ∈ Q, for all (i − 1)-partial
reach extractors Ei−1, there exists Ji , W s.t. Ji outputs (π

′
α, µ

′
β, a

′
G ).
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Decomposition Property

We say that a generator class G decomposes to a generator class Gi (at
partition i) if the following bi-simulations are indistinguishable.

- In the interaction between Gi ∈ Gi and Q|Ei−1|W ∈ Q, there exists J
that outputs (πα, µβ, aG ).
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Composition Theorem

Theorem 3 (Informally)

Let G1, . . . ,Gn be generator classes with R3PO schemes O1, . . . ,On. If a
generator class G decomposes to Gi at each partition i ∈ [n], then there
exists a R3PO scheme for G.

The proof uses garbled-circuit chaining.
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Composition Theorem

Theorem 3 (Informally)

Let G1, . . . ,Gn be generator classes with R3PO schemes O1, . . . ,On. If a
generator class G decomposes to Gi at each partition i ∈ [n], then there
exists a R3PO scheme for G.

Corollary:
If there exists a R3PO for commitment-opening, then:

- there exists a R3PO for sequence of commitment-openings

- there exists a 2-round MPC protocol secure against semi-honest dis-
honest majority corruption [BL17, GS17]
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Composition Theorem

Theorem 3 (Informally)

Let G1, . . . ,Gn be generator classes with R3PO schemes O1, . . . ,On. If a
generator class G decomposes to Gi at each partition i ∈ [n], then there
exists a R3PO scheme for G.

Corollary:
If there exists a R3PO for signature-checking, then:

- there exists a R3PO for sequence of signature-checkings

- there exists an adaptive-secure IBE scheme [DG17a, DG17b]
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Composition Theorem

Theorem 3 (Informally)

Let G1, . . . ,Gn be generator classes with R3PO schemes O1, . . . ,On. If a
generator class G decomposes to Gi at each partition i ∈ [n], then there
exists a R3PO scheme for G.

Corollary:
If there exists a R3PO for commitment-opening and a R3PO for signature-
checking, then:

- there exists a R3PO for commitment-opening followed by signature
checking.

- if there exists an ABE scheme, there exists a “private” MA-ABE scheme
(our work).
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Prior Works for MA-ABE

Global ID Model [Cha07, LW10]:

- Each client has a global id
- Only interaction: servers send credentials for id to a client
- Current results rely on the Random Oracle Model: E.g., [DKW20] for
DNF formulae under the LWE assumption.

Private MA-ABE: A client can privately decide on the attributes it wants
to acquire, as long as it conforms to the servers’ policy. Client can send a
message to each server first.
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Attribute Verification

2-round protocol for Attribute Verification:

- Decentralized setup of Servers: publish global public keys.

- Round 1: C sends a request to S1 and S2.

- Round 2: Servers S1 and S2 send response to C .
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Attribute Verification

Completeness:

if Φ1(id, x) = 1 and Φ2(id, x) = 1, then C gets f1(id, x), f2(id, x).

Hiding: Server Sb learns nothing about (id, x) and Φ1−b.
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Attribute Verification

Solution using R3PO:
Use commitment to hide (id, x).

Use signatures to give proof of verification.
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Attribute Verification

Round 1:

- Client C computes (c , d)← commit(crs, id) and sends c to servers S1,S2.
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Attribute Verification

Round 2:

- Server S1 sends O1 to Client C .
- Server S2 sends O2 to Client C .
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Attribute Verification

Round 2:

- Server S1 sends O1 to Client C .
- Server S2 sends O2 to Client C .

where, each Oi is R3PO of program with:

transition function π:

π(st1c , d) = st2m, if open(crs, c , d) = m

π(st2m, τ) = st3m, if verify(vk1−b,m, τ1−b) = 1

message function µ:

µskb,fb,Φ2(st
3
m) = sign(skb,m)

µskb,fb,Φb
(st3m) = fb(m), if Φb(m) = 1
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Attribute Verification

Theorem 4

If there exists an R3PO for commitment-opening and signature-checking,
then there exists a 2-round Protocol for Attribute Verification.
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Attribute Verification

Theorem 4

If there exists an R3PO for commitment-opening and signature-checking,
then there exists a 2-round Protocol for Attribute Verification.

Corollary: Given the following primitives:

- a CP-ABE scheme for general policies

- R3PO for commitment-opening and signature-checking

there exists a Private MA-ABE scheme for general policies.
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In Conclusion

• R3PO: Obfuscation of interactively sampled programs

• A library of R3PO instantiations from standard assumptions:

- Commitment-Opening
- Signature-Checking

- Can optionally restrict to a message prefix.

- Hash-Checking

• A composition theorem to build R3PO for larger program classes.

- Encapsulates Garbled Circuit Chaining technique

• As an application, we construct Private MA-ABE

• Open Directions: More applications, capturing more constructions
(e.g., Garbled RAM), adding more features (e.g., blindness)
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Thank You
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