
An algorithm for efficient detection of (N ,N)-splittings
and its application to the isogeny problem in

dimension 2

Maria Corte-Real Santos, Craig Costello, Sam Frengley

University College London, Microsoft Research, University of Cambridge

PKC 2024

Corte-Real Santos, Frengley SplitSearcher PKC 2024 1 / 12



Motivation: isogeny-based cryptography

Isogeny-based cryptography is a type of post-quantum cryptography that
has been considered in NIST’s standardisation process.

The general isogeny problem (in dimension 1) underlies the security of
many isogeny-based schemes (e.g., SQIsign). Similarly, we consider the
dimension 2 isogeny problem an upper bound for the security of dimension
2 isogeny-based protocols.

The SIDH attacks also showed that understanding higher dimensional
isogenies is needed to navigate the isogeny graph in dimension 1.

Much is conjectured, but little is known about the isogeny problem in
dimension 2.

In this work we look at the problem in dimension 2 and decrease the
concrete complexity of the best attack due to Costello–Smith.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 2 / 12



Motivation: isogeny-based cryptography

Isogeny-based cryptography is a type of post-quantum cryptography that
has been considered in NIST’s standardisation process.

The general isogeny problem (in dimension 1) underlies the security of
many isogeny-based schemes (e.g., SQIsign).

Similarly, we consider the
dimension 2 isogeny problem an upper bound for the security of dimension
2 isogeny-based protocols.

The SIDH attacks also showed that understanding higher dimensional
isogenies is needed to navigate the isogeny graph in dimension 1.

Much is conjectured, but little is known about the isogeny problem in
dimension 2.

In this work we look at the problem in dimension 2 and decrease the
concrete complexity of the best attack due to Costello–Smith.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 2 / 12



Motivation: isogeny-based cryptography

Isogeny-based cryptography is a type of post-quantum cryptography that
has been considered in NIST’s standardisation process.

The general isogeny problem (in dimension 1) underlies the security of
many isogeny-based schemes (e.g., SQIsign). Similarly, we consider the
dimension 2 isogeny problem an upper bound for the security of dimension
2 isogeny-based protocols.

The SIDH attacks also showed that understanding higher dimensional
isogenies is needed to navigate the isogeny graph in dimension 1.

Much is conjectured, but little is known about the isogeny problem in
dimension 2.

In this work we look at the problem in dimension 2 and decrease the
concrete complexity of the best attack due to Costello–Smith.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 2 / 12



Motivation: isogeny-based cryptography

Isogeny-based cryptography is a type of post-quantum cryptography that
has been considered in NIST’s standardisation process.

The general isogeny problem (in dimension 1) underlies the security of
many isogeny-based schemes (e.g., SQIsign). Similarly, we consider the
dimension 2 isogeny problem an upper bound for the security of dimension
2 isogeny-based protocols.

The SIDH attacks also showed that understanding higher dimensional
isogenies is needed to navigate the isogeny graph in dimension 1.

Much is conjectured, but little is known about the isogeny problem in
dimension 2.

In this work we look at the problem in dimension 2 and decrease the
concrete complexity of the best attack due to Costello–Smith.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 2 / 12



Motivation: isogeny-based cryptography

Isogeny-based cryptography is a type of post-quantum cryptography that
has been considered in NIST’s standardisation process.

The general isogeny problem (in dimension 1) underlies the security of
many isogeny-based schemes (e.g., SQIsign). Similarly, we consider the
dimension 2 isogeny problem an upper bound for the security of dimension
2 isogeny-based protocols.

The SIDH attacks also showed that understanding higher dimensional
isogenies is needed to navigate the isogeny graph in dimension 1.

Much is conjectured, but little is known about the isogeny problem in
dimension 2.

In this work we look at the problem in dimension 2 and decrease the
concrete complexity of the best attack due to Costello–Smith.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 2 / 12



Motivation: isogeny-based cryptography

Isogeny-based cryptography is a type of post-quantum cryptography that
has been considered in NIST’s standardisation process.

The general isogeny problem (in dimension 1) underlies the security of
many isogeny-based schemes (e.g., SQIsign). Similarly, we consider the
dimension 2 isogeny problem an upper bound for the security of dimension
2 isogeny-based protocols.

The SIDH attacks also showed that understanding higher dimensional
isogenies is needed to navigate the isogeny graph in dimension 1.

Much is conjectured, but little is known about the isogeny problem in
dimension 2.

In this work we look at the problem in dimension 2 and decrease the
concrete complexity of the best attack due to Costello–Smith.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 2 / 12



Moving to dimension 2

To generalise supersingular elliptic curves over Fp2 to genus 2, we consider
superspecial (principally polarised) abelian surfaces over Fp2 .

There are two types:

1 Products of supersingular elliptic curves E × E ′

2 Jacobians Jac(C ) of genus 2 curves C

We study (N,N)-isogenies, which generalise N-isogenies to dimension 2
(kernel now generated by two points).

For the purposes of this talk, we only need to keep in mind that there are
two types of surfaces: “reducible” and “non-reducible”.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 3 / 12



Moving to dimension 2

To generalise supersingular elliptic curves over Fp2 to genus 2, we consider
superspecial (principally polarised) abelian surfaces over Fp2 .

There are two types:

1 Products of supersingular elliptic curves E × E ′

2 Jacobians Jac(C ) of genus 2 curves C

We study (N,N)-isogenies, which generalise N-isogenies to dimension 2
(kernel now generated by two points).

For the purposes of this talk, we only need to keep in mind that there are
two types of surfaces: “reducible” and “non-reducible”.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 3 / 12



Moving to dimension 2

To generalise supersingular elliptic curves over Fp2 to genus 2, we consider
superspecial (principally polarised) abelian surfaces over Fp2 .

There are two types:

1 Products of supersingular elliptic curves E × E ′

2 Jacobians Jac(C ) of genus 2 curves C

We study (N,N)-isogenies, which generalise N-isogenies to dimension 2
(kernel now generated by two points).

For the purposes of this talk, we only need to keep in mind that there are
two types of surfaces: “reducible” and “non-reducible”.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 3 / 12



Moving to dimension 2

To generalise supersingular elliptic curves over Fp2 to genus 2, we consider
superspecial (principally polarised) abelian surfaces over Fp2 .

There are two types:

1 Products of supersingular elliptic curves E × E ′

2 Jacobians Jac(C ) of genus 2 curves C

We study (N,N)-isogenies, which generalise N-isogenies to dimension 2
(kernel now generated by two points).

For the purposes of this talk, we only need to keep in mind that there are
two types of surfaces: “reducible” and “non-reducible”.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 3 / 12



Moving to dimension 2

To generalise supersingular elliptic curves over Fp2 to genus 2, we consider
superspecial (principally polarised) abelian surfaces over Fp2 .

There are two types:

1 Products of supersingular elliptic curves E × E ′

2 Jacobians Jac(C ) of genus 2 curves C

We study (N,N)-isogenies, which generalise N-isogenies to dimension 2
(kernel now generated by two points).

For the purposes of this talk, we only need to keep in mind that there are
two types of surfaces: “reducible” and “non-reducible”.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 3 / 12



Moving to dimension 2

To generalise supersingular elliptic curves over Fp2 to genus 2, we consider
superspecial (principally polarised) abelian surfaces over Fp2 .

There are two types:

1 Products of supersingular elliptic curves E × E ′

2 Jacobians Jac(C ) of genus 2 curves C

We study (N,N)-isogenies, which generalise N-isogenies to dimension 2
(kernel now generated by two points).

For the purposes of this talk, we only need to keep in mind that there are
two types of surfaces: “reducible” and “non-reducible”.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 3 / 12



General Isogeny Problem in Two Dimensions

In its most general form, the superspecial isogeny problem in two
dimensions asks to find an isogeny

ϕ : A −→ A′,

between two superspecial (p.p.) abelian surfaces A/Fp2 and A′/Fp2 .

The general isogeny problem can be viewed as finding a path between two
nodes in the superspecial isogeny graph.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 4 / 12



General Isogeny Problem in Two Dimensions

In its most general form, the superspecial isogeny problem in two
dimensions asks to find an isogeny

ϕ : A −→ A′,

between two superspecial (p.p.) abelian surfaces A/Fp2 and A′/Fp2 .

The general isogeny problem can be viewed as finding a path between two
nodes in the superspecial isogeny graph.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 4 / 12



The Superspecial Isogeny Graph Γ(N ; p)

Let p > N be a large prime.

Γ(N; p) is the graph with vertex set

S(p) =
{
Superspecial p.p. abelian surfaces over Fp2 (up to isomorphism)

}
,

and whose edges are (N,N)-isogenies (defined over Fp).

S(p) is equal to the disjoint union of:

E(p) := {A ∈ S(p) : A ∼= E × E ′ with E , E ′ supersingular ECs}.
J (p) := S(p) \ E(p)

= {A ∈ S(p) : A ∼= Jac(C )}

Corte-Real Santos, Frengley SplitSearcher PKC 2024 5 / 12



The Superspecial Isogeny Graph Γ(N ; p)

Let p > N be a large prime. Γ(N; p) is the graph with vertex set

S(p) =
{
Superspecial p.p. abelian surfaces over Fp2 (up to isomorphism)

}
,

and whose edges are (N,N)-isogenies (defined over Fp).

S(p) is equal to the disjoint union of:

E(p) := {A ∈ S(p) : A ∼= E × E ′ with E , E ′ supersingular ECs}.
J (p) := S(p) \ E(p)

= {A ∈ S(p) : A ∼= Jac(C )}

Corte-Real Santos, Frengley SplitSearcher PKC 2024 5 / 12



The Superspecial Isogeny Graph Γ(N ; p)

Let p > N be a large prime. Γ(N; p) is the graph with vertex set

S(p) =
{
Superspecial p.p. abelian surfaces over Fp2 (up to isomorphism)

}
,

and whose edges are (N,N)-isogenies (defined over Fp).

S(p) is equal to the disjoint union of:

E(p) := {A ∈ S(p) : A ∼= E × E ′ with E , E ′ supersingular ECs}.
J (p) := S(p) \ E(p)

= {A ∈ S(p) : A ∼= Jac(C )}

Corte-Real Santos, Frengley SplitSearcher PKC 2024 5 / 12



The Superspecial Isogeny Graph Γ(N ; p)

Corte-Real Santos, Frengley SplitSearcher PKC 2024 6 / 12



Attacking the General Isogeny Problem: Costello–Smith

Corte-Real Santos, Frengley SplitSearcher PKC 2024 7 / 12



Attacking the General Isogeny Problem: Costello–Smith

Corte-Real Santos, Frengley SplitSearcher PKC 2024 7 / 12



Attacking the General Isogeny Problem: Costello–Smith

Corte-Real Santos, Frengley SplitSearcher PKC 2024 7 / 12



Attacking the General Isogeny Problem: First step

Summary: Using (2, 2)-isogenies, Costello–Smith take walks in Γ(2; p)
and detect whether nodes are (2, 2)-isogenous to a product.

First step in more detail:

1 We start on a node A0 ∈ J (p).

2 Take a step in Γ(2; p) via a (2, 2)-isogeny ϕ1 : A0 → A1.

3 We can determine whether A1 ∈ E(p). If not, take another step
ϕ2 : A1 → A2.

4 Repeat previous step until finding Ai ∈ E(p).

Question: Taking steps in Γ(2; p), can we detect whether the current
node Ai is in (N,N)-split (i.e., (N,N)-isogenous to a product) for N > 2?

Naive Answer: Compute all (N,N)-isogenies from Ai , but this is not
efficient. Can we make the detection efficient?

Corte-Real Santos, Frengley SplitSearcher PKC 2024 8 / 12



Attacking the General Isogeny Problem: First step

Summary: Using (2, 2)-isogenies, Costello–Smith take walks in Γ(2; p)
and detect whether nodes are (2, 2)-isogenous to a product.

First step in more detail:

1 We start on a node A0 ∈ J (p).

2 Take a step in Γ(2; p) via a (2, 2)-isogeny ϕ1 : A0 → A1.

3 We can determine whether A1 ∈ E(p). If not, take another step
ϕ2 : A1 → A2.

4 Repeat previous step until finding Ai ∈ E(p).

Question: Taking steps in Γ(2; p), can we detect whether the current
node Ai is in (N,N)-split (i.e., (N,N)-isogenous to a product) for N > 2?

Naive Answer: Compute all (N,N)-isogenies from Ai , but this is not
efficient. Can we make the detection efficient?

Corte-Real Santos, Frengley SplitSearcher PKC 2024 8 / 12



Attacking the General Isogeny Problem: First step

Summary: Using (2, 2)-isogenies, Costello–Smith take walks in Γ(2; p)
and detect whether nodes are (2, 2)-isogenous to a product.

First step in more detail:

1 We start on a node A0 ∈ J (p).

2 Take a step in Γ(2; p) via a (2, 2)-isogeny ϕ1 : A0 → A1.

3 We can determine whether A1 ∈ E(p). If not, take another step
ϕ2 : A1 → A2.

4 Repeat previous step until finding Ai ∈ E(p).

Question: Taking steps in Γ(2; p), can we detect whether the current
node Ai is in (N,N)-split (i.e., (N,N)-isogenous to a product) for N > 2?

Naive Answer: Compute all (N,N)-isogenies from Ai , but this is not
efficient. Can we make the detection efficient?

Corte-Real Santos, Frengley SplitSearcher PKC 2024 8 / 12



Attacking the General Isogeny Problem: First step

Summary: Using (2, 2)-isogenies, Costello–Smith take walks in Γ(2; p)
and detect whether nodes are (2, 2)-isogenous to a product.

First step in more detail:

1 We start on a node A0 ∈ J (p).

2 Take a step in Γ(2; p) via a (2, 2)-isogeny ϕ1 : A0 → A1.

3 We can determine whether A1 ∈ E(p). If not, take another step
ϕ2 : A1 → A2.

4 Repeat previous step until finding Ai ∈ E(p).

Question: Taking steps in Γ(2; p), can we detect whether the current
node Ai is in (N,N)-split (i.e., (N,N)-isogenous to a product) for N > 2?

Naive Answer: Compute all (N,N)-isogenies from Ai , but this is not
efficient. Can we make the detection efficient?

Corte-Real Santos, Frengley SplitSearcher PKC 2024 8 / 12



Attacking the General Isogeny Problem: First step

Summary: Using (2, 2)-isogenies, Costello–Smith take walks in Γ(2; p)
and detect whether nodes are (2, 2)-isogenous to a product.

First step in more detail:

1 We start on a node A0 ∈ J (p).

2 Take a step in Γ(2; p) via a (2, 2)-isogeny ϕ1 : A0 → A1.

3 We can determine whether A1 ∈ E(p). If not, take another step
ϕ2 : A1 → A2.

4 Repeat previous step until finding Ai ∈ E(p).

Question: Taking steps in Γ(2; p), can we detect whether the current
node Ai is in (N,N)-split (i.e., (N,N)-isogenous to a product) for N > 2?

Naive Answer: Compute all (N,N)-isogenies from Ai , but this is not
efficient. Can we make the detection efficient?

Corte-Real Santos, Frengley SplitSearcher PKC 2024 8 / 12



Attacking the General Isogeny Problem: First step

Summary: Using (2, 2)-isogenies, Costello–Smith take walks in Γ(2; p)
and detect whether nodes are (2, 2)-isogenous to a product.

First step in more detail:

1 We start on a node A0 ∈ J (p).

2 Take a step in Γ(2; p) via a (2, 2)-isogeny ϕ1 : A0 → A1.

3 We can determine whether A1 ∈ E(p). If not, take another step
ϕ2 : A1 → A2.

4 Repeat previous step until finding Ai ∈ E(p).

Question: Taking steps in Γ(2; p), can we detect whether the current
node Ai is in (N,N)-split (i.e., (N,N)-isogenous to a product) for N > 2?

Naive Answer: Compute all (N,N)-isogenies from Ai , but this is not
efficient. Can we make the detection efficient?

Corte-Real Santos, Frengley SplitSearcher PKC 2024 8 / 12



Attacking the General Isogeny Problem: First step

Summary: Using (2, 2)-isogenies, Costello–Smith take walks in Γ(2; p)
and detect whether nodes are (2, 2)-isogenous to a product.

First step in more detail:

1 We start on a node A0 ∈ J (p).

2 Take a step in Γ(2; p) via a (2, 2)-isogeny ϕ1 : A0 → A1.

3 We can determine whether A1 ∈ E(p). If not, take another step
ϕ2 : A1 → A2.

4 Repeat previous step until finding Ai ∈ E(p).

Question: Taking steps in Γ(2; p), can we detect whether the current
node Ai is in (N,N)-split (i.e., (N,N)-isogenous to a product) for N > 2?

Naive Answer: Compute all (N,N)-isogenies from Ai , but this is not
efficient. Can we make the detection efficient?

Corte-Real Santos, Frengley SplitSearcher PKC 2024 8 / 12



Detecting an (N ,N)-splitting

There exist (easily computable) functions α(A) = (α1(A), α2(A), α3(A))
which assigns to A a triple of elements of Fp2 which uniquely determine A†.

For N ≤ 11, Kumar [Kum15] provides rational functions i1(r , s), i2(r , s),
i3(r , s) ∈ Fp(r , s), such that if there exists a simultaneous solution
r0, s0 ∈ Fp of 

i1(r , s) = α1(A)

i2(r , s) = α2(A)

i3(r , s) = α3(A)

and the denominators do not vanish at (r0, s0), then A is (N,N)-split.

†Up to isomorphism. These are (normalised) Igusa invariants.
Corte-Real Santos, Frengley SplitSearcher PKC 2024 9 / 12



Detecting an (N ,N)-splitting

There exist (easily computable) functions α(A) = (α1(A), α2(A), α3(A))
which assigns to A a triple of elements of Fp2 which uniquely determine A†.

For N ≤ 11, Kumar [Kum15] provides rational functions i1(r , s), i2(r , s),
i3(r , s) ∈ Fp(r , s), such that if there exists a simultaneous solution
r0, s0 ∈ Fp of 

i1(r , s) = α1(A)

i2(r , s) = α2(A)

i3(r , s) = α3(A)

and the denominators do not vanish at (r0, s0), then A is (N,N)-split.

†Up to isomorphism. These are (normalised) Igusa invariants.
Corte-Real Santos, Frengley SplitSearcher PKC 2024 9 / 12



Detecting an (N ,N)-splitting

Let fk(r , s) = ik(r , s)− αk(A).

We determine if there exist r0, s0 by:

(1) Computing resultants of (the numerators of) f1(r , s), f2(r , s) and
f2(r , s), f3(r , s) (with respect to r) to get res1(s), res2(s).

(2) Compute gcd(res1(s), res2(s)).
▶ If degree is 0, then A is not (N,N)-split.
▶ Otherwise, A is (N,N)-split.

In fact, we obtain a more efficient method by precomputing the resultants
generically.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 10 / 12



Detecting an (N ,N)-splitting

Let fk(r , s) = ik(r , s)− αk(A). We determine if there exist r0, s0 by:

(1) Computing resultants of (the numerators of) f1(r , s), f2(r , s) and
f2(r , s), f3(r , s) (with respect to r) to get res1(s), res2(s).

(2) Compute gcd(res1(s), res2(s)).
▶ If degree is 0, then A is not (N,N)-split.
▶ Otherwise, A is (N,N)-split.

In fact, we obtain a more efficient method by precomputing the resultants
generically.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 10 / 12



Detecting an (N ,N)-splitting

Let fk(r , s) = ik(r , s)− αk(A). We determine if there exist r0, s0 by:

(1) Computing resultants of (the numerators of) f1(r , s), f2(r , s) and
f2(r , s), f3(r , s) (with respect to r) to get res1(s), res2(s).

(2) Compute gcd(res1(s), res2(s)).
▶ If degree is 0, then A is not (N,N)-split.
▶ Otherwise, A is (N,N)-split.

In fact, we obtain a more efficient method by precomputing the resultants
generically.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 10 / 12



Detecting an (N ,N)-splitting

Let fk(r , s) = ik(r , s)− αk(A). We determine if there exist r0, s0 by:

(1) Computing resultants of (the numerators of) f1(r , s), f2(r , s) and
f2(r , s), f3(r , s) (with respect to r) to get res1(s), res2(s).

(2) Compute gcd(res1(s), res2(s)).

▶ If degree is 0, then A is not (N,N)-split.
▶ Otherwise, A is (N,N)-split.

In fact, we obtain a more efficient method by precomputing the resultants
generically.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 10 / 12



Detecting an (N ,N)-splitting

Let fk(r , s) = ik(r , s)− αk(A). We determine if there exist r0, s0 by:

(1) Computing resultants of (the numerators of) f1(r , s), f2(r , s) and
f2(r , s), f3(r , s) (with respect to r) to get res1(s), res2(s).

(2) Compute gcd(res1(s), res2(s)).
▶ If degree is 0, then A is not (N,N)-split.

▶ Otherwise, A is (N,N)-split.

In fact, we obtain a more efficient method by precomputing the resultants
generically.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 10 / 12



Detecting an (N ,N)-splitting

Let fk(r , s) = ik(r , s)− αk(A). We determine if there exist r0, s0 by:

(1) Computing resultants of (the numerators of) f1(r , s), f2(r , s) and
f2(r , s), f3(r , s) (with respect to r) to get res1(s), res2(s).

(2) Compute gcd(res1(s), res2(s)).
▶ If degree is 0, then A is not (N,N)-split.
▶ Otherwise, A is (N,N)-split.

In fact, we obtain a more efficient method by precomputing the resultants
generically.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 10 / 12



Detecting an (N ,N)-splitting

Let fk(r , s) = ik(r , s)− αk(A). We determine if there exist r0, s0 by:

(1) Computing resultants of (the numerators of) f1(r , s), f2(r , s) and
f2(r , s), f3(r , s) (with respect to r) to get res1(s), res2(s).

(2) Compute gcd(res1(s), res2(s)).
▶ If degree is 0, then A is not (N,N)-split.
▶ Otherwise, A is (N,N)-split.

In fact, we obtain a more efficient method by precomputing the resultants
generically.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 10 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Attacking the General Isogeny Problem: Revisted

We now apply efficient splitting detection to the Costello–Smith algorithm
and decreasing its concrete complexity.

Corte-Real Santos, Frengley SplitSearcher PKC 2024 11 / 12



Results

We implemented and optimised the first step of Costello–Smith attack
with and without detection of (N,N)-splitting. We ran these (for primes p
of bitsizes 50− 1000) until reaching 108 Fp multiplications.

We counted
the number of nodes revealed and Fp multiplications per node revealed.

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching w. split searching in Γ2(N; p)

[CS20] This work

prime bits nodes per muls per set nodes per muls per imprv.

p p 108 muls node N ∈ {. . . } 108 muls node factor

211 · 324 − 1 50 172712 579 {2, 3} 2830951 35 16.5

227 · 377 − 1 150 63492 1575 {3, 4} 1858912 54 29.2

2181 · 343 − 1 250 34083 2934 {4, 6} 1771608 56 52.4

2113 · 3244 − 1 500 20239 4941 {4, 6} 1667360 60 82.4

2107 · 3437 − 1 800 13228 7560 {4, 6} 1548504 65 116.3

2721 · 3176 − 1 1000 8814 11346 {4, 6} 1403752 71 159.8

Any questions?
eprint.iacr.org/2022/1736

Corte-Real Santos, Frengley SplitSearcher PKC 2024 12 / 12

eprint.iacr.org/2022/1736


Results

We implemented and optimised the first step of Costello–Smith attack
with and without detection of (N,N)-splitting. We ran these (for primes p
of bitsizes 50− 1000) until reaching 108 Fp multiplications. We counted
the number of nodes revealed and Fp multiplications per node revealed.

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching w. split searching in Γ2(N; p)

[CS20] This work

prime bits nodes per muls per set nodes per muls per imprv.

p p 108 muls node N ∈ {. . . } 108 muls node factor

211 · 324 − 1 50 172712 579 {2, 3} 2830951 35 16.5

227 · 377 − 1 150 63492 1575 {3, 4} 1858912 54 29.2

2181 · 343 − 1 250 34083 2934 {4, 6} 1771608 56 52.4

2113 · 3244 − 1 500 20239 4941 {4, 6} 1667360 60 82.4

2107 · 3437 − 1 800 13228 7560 {4, 6} 1548504 65 116.3

2721 · 3176 − 1 1000 8814 11346 {4, 6} 1403752 71 159.8

Any questions?
eprint.iacr.org/2022/1736

Corte-Real Santos, Frengley SplitSearcher PKC 2024 12 / 12

eprint.iacr.org/2022/1736


Results

We implemented and optimised the first step of Costello–Smith attack
with and without detection of (N,N)-splitting. We ran these (for primes p
of bitsizes 50− 1000) until reaching 108 Fp multiplications. We counted
the number of nodes revealed and Fp multiplications per node revealed.

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching w. split searching in Γ2(N; p)

[CS20] This work

prime bits nodes per muls per set nodes per muls per imprv.

p p 108 muls node N ∈ {. . . } 108 muls node factor

211 · 324 − 1 50 172712 579 {2, 3} 2830951 35 16.5

227 · 377 − 1 150 63492 1575 {3, 4} 1858912 54 29.2

2181 · 343 − 1 250 34083 2934 {4, 6} 1771608 56 52.4

2113 · 3244 − 1 500 20239 4941 {4, 6} 1667360 60 82.4

2107 · 3437 − 1 800 13228 7560 {4, 6} 1548504 65 116.3

2721 · 3176 − 1 1000 8814 11346 {4, 6} 1403752 71 159.8

Any questions?
eprint.iacr.org/2022/1736

Corte-Real Santos, Frengley SplitSearcher PKC 2024 12 / 12

eprint.iacr.org/2022/1736


Results

We implemented and optimised the first step of Costello–Smith attack
with and without detection of (N,N)-splitting. We ran these (for primes p
of bitsizes 50− 1000) until reaching 108 Fp multiplications. We counted
the number of nodes revealed and Fp multiplications per node revealed.

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching w. split searching in Γ2(N; p)

[CS20] This work

prime bits nodes per muls per set nodes per muls per imprv.

p p 108 muls node N ∈ {. . . } 108 muls node factor

211 · 324 − 1 50 172712 579 {2, 3} 2830951 35 16.5

227 · 377 − 1 150 63492 1575 {3, 4} 1858912 54 29.2

2181 · 343 − 1 250 34083 2934 {4, 6} 1771608 56 52.4

2113 · 3244 − 1 500 20239 4941 {4, 6} 1667360 60 82.4

2107 · 3437 − 1 800 13228 7560 {4, 6} 1548504 65 116.3

2721 · 3176 − 1 1000 8814 11346 {4, 6} 1403752 71 159.8

Any questions?
eprint.iacr.org/2022/1736

Corte-Real Santos, Frengley SplitSearcher PKC 2024 12 / 12

eprint.iacr.org/2022/1736

	General Isogeny Problem in Two Dimensions
	Superspecial Isogeny Graph
	Attacking the General Isogeny Problem
	Attacking the General Isogeny Problem: Revisted

