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@ In a structure-preserving signature scheme,
m message consists of base group elements.
m signature consists of base group elements.
m verification uses group-membership check and pairing-product equation only.

@ In a non-interactive threshold signature scheme,
m n parties in a system with threshold t.

m ( honest parties generate partial signatures {¥; };c[q on a message m.
® a public algorithm combines {X; }jc[q into a signature X
m Y is a valid signature of mif £ > t.

m Currently receiving a lot of attention due to decentralized web.
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Scenario (Simplified)

Goal. To construct a threshold structure-preserving signature

1. preferably in the standard model under standard assumption,

2. in the adaptive corruption model.

o Currently, there is only one work.

In Asiacrypt'2023, Crites et al. [CKPSS23] proposed the first

for limited message space (iDH)

in algebraic group model under random oracle assumption (AGM-ROM)
and interactive assumptions (GPS3)

in the weakest security model (TS-UF-0)



Notations and Hardness Assumptions

o G=(p,G1,G2,Gr,g1,8,e) is type-lll bilinear pairing group description
where
e: Gl X G2 — GT.
o We denote g2 by [a]s for any a € Z, and s € {1,2, T}.
e We denote (g:i’j)(i,j)elxj by [U]s for any U = (”fJ)(i,j)eli' s€{1,2,T}.
o Dyi-matDHg: A([A],[As+2] : A € ZK, s = 7K, 2~ ZL) > 2 2 0.
® Dy -kerDHg: A([A] : A € ZEK) - s € ZK\ {0} s.t. As=0.



Threshold Structure-Preserving Signatures (TSPS)

Setup(1*) — pp.

KGen(pp, n, t) — ({ski, pki}ie[l,n]v pk).
ParSign(pp, sk;, [m] € M) — ¥;.
ParVerify(pp, pk;, [m] € M,¥X;) — 0/1.
CombineSign(pp, T C [1,n],{Xi}icT) = Z.
Verify(pp, pk, [m] € M, %) — 0/1.



Correctness

For all pp <= Setup(1%),

for all ({ski, pk;}ic[1,n]> Pk) <= KGen(pp, n, t),
for all [m] € M,

forall T C[1,n]st. |T|>t,

Verify(pp, pk, [m], CombineSign(pp, T, {ParSign(pp, sk;, [m])}ic7)) = 1
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o A make any signature oracle queries on m*.
e TS-UF-0:
m The adversary A has access to Opasign oracle.

m To show Pr[Expleps (1%, A) — 1] = neg()) in the following game:

ST

pp + Setup(1*)

(n, t,CS) <= A(pp) s.t. |CS| < t

HS :=[1,n] \ CS

(vk, {ski}ie(1,n)> {vki}ie(1,n) <> KGen(pp, n, t)
([m*], =) = AOpasienl) (vk, {sk;}iccs, {vki}ici,n)
Return Verify(pp, pk, [m*], Z*) A ([m*],-) ¢ Qparsign

Oparsign maintains list of ([m;], /) in Qparsign-
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Security Definitions
Non-Adaptive Security

@ Requirement: A signature cannot be forged by any ppt adversary A.

o A makes of signature oracle queries on m*.
e TS-UF-1:
m The adversary A has access to Opasign oracle.

m To show Pr[Expleps (1%, A) — 1] = neg()) in the following game:

EpTsl (1, A)

pp + Setup(1*)

(n,t,CS) <= A(pp) s.t. |CS| < t

HS :=[1,n] \ CS

(vk, {ski}ie(1,n)> {vki}ie1,n) <> KGen(pp, n, t)

([m*], £*) = Apasienl) (vk, {sk;}iccs, {vki}ic(i,n)

Return Verify(pp, pk, [m™], £*) A [([m*], ) N Qparsign| < t — |CS|

Oparsign maintains list of ([m;], /) in Qparsign-
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Security Definitions
Adaptive Security

Requirement: A signature cannot be forged by any ppt adversary A.

A makes of signature oracle queries on m*
and A can corrupt of parties.
adp-TS-UF-1:

m The adversary A has access to Oparsign, Ocorrupt Oracle.

m To show Pr[Exp3at>UF1(12 A) — 1] = neg()\) in the following game:

dp-TS-UF-1
ExpTeps (1M A)

pp « Setup(1*)

(n, t,CS) <= A(pp) s.t. |CS| <t

HS :=[1,n] \ CS

(vk, {ski}iefn,n)s {vki}ief,n) <> KGen(pp, n, t)

(Im*], %) PAopars;gn(<),OcOrmpt<»)(Vk’{sk,}iecs,{\,k,.}l.elm])

Return Verify(pp, pk, [m*], X*) A [{i : ([m*],7) € Qparsign} UCS| < t

Oparsign, OcCorrupt Maintain lists of ([m;], ) and sk; in Qparsign and CS respectively.
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Scenario

Suppose. n=8,t =5.

1 2 3 4

m [ =P =M s s

mi | £ =0 50 50
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Intuition

Suppose. n=8,t = 5.

@ Let the adversary A corrupts user 7 and 8.
o If it gets partial signatures Zgl), Zgl) and Zél), A can forge (1),
@ Non-trivial goals:
1. m* ¢ {m,...,mg}.
2. m*e{m,...,mg}. Let m* = m;.
2.1 A can't corrupt any more users.
2.2 A can corrupt more users.

1 2 3 4 5 6 1 38
m | £V £ W
m | TP £ 50 50 B 5

mi | =0 =0 0 w0 i 50

my Z(lq) ng) qu) qu) qu) Zéq)




Intuition (Cont.)

@ Consider an Uf-CMA-secure signature ¥.

1 2 3 4 5 6 7 38
m | =P £ sl
m | =P £ @ 5@ 5& 50

: : : : : : sky skg
PRI LD w QRS w LD % D QR % &
mq z(.lq) qu) ZQQ) qu) qu) qu)
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Intuition (Cont.)

@ Consider an Uf-CMA-secure signature ¥.

(1)

@ Forging .’ is hard for A even when Z(i) are given.
sne Fo B g 8
o Let Agets ¥\) and =1
1 2 3 4 5 6 7 8
i 1 i
m | =P £ sl
m | =P £ 5@ 5@ 5O
: : : : : sky skg
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mq Z(lq) qu) qu) qu) qu)

12




Intuition (Cont.)

Consider an Uf-CMA-secure signature ¥.

(1)

Forging U is hard for A even when { =) are given.
sne e B g 8
Let A gets Zg') and Zg').
To prove: forging Zéi) is still hard.
1 2 3 4 5 6 7 8
m | =P £ sl
m | =P £ 5@ 5@ 5O
: : : : : : sk7 skg
mi | =0 £ 5 U
mq z(lq) qu) y(a) qu) Zz(sq)

12
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Construction Overview

randomized PRF

[KPW15] @ (o1,02) == ([(1 mT)[iK+r"[BT(U+7-V)]1,[r'BT]1)
N e

SP-OTS

o [KPW15] rejects same 7 for different messages.
e [KPW15] is not strong uf-cma secure.
m i.e. does not allow signature queries on [m*];.
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Construction Overview (contd)

randomized PRF

[KPW15] @ (o1,02) == ([(1 mT)[iK+r"[BT(U +7-V)]1,[r"BT]1)
————

SP-OTS

@ We secret share K to n parties via (t, n)-Shamir Secret Sharing.

m Each party has secret key K; € Z{ 1>,

@ For each partial signature, each party can choose it's own r; <= Z;j.

:J(."’: (01,02) := ([(1  m)]1K; + v [BT(U + 7 - V)]1,[r] BT 1)
o Let SC[1,n]st. |S|>t.
o Let {)‘J}jes are Lagrange polynomials wrt S.
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randomized PRF
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We secret share K to n parties via (t, n)-Shamir Secret Sharing.

m Each party has secret key K; € Z{ 1>,

For each partial signature, each party can choose it's own r; <= Z;j.
=D (o1,00) = ([0 m)iK;+ ¢ [BT(U + 7 - V)]1, [r] BTTh)

Let S C[1,n]s.t. |S| >t

Let {)\-}.es are Lagrange polynomials wrt S.

Lin combination of {Z( )}J computes T() for K = S \Kj, r= 3 )\
JES JES

14



©

®

[

(]

Construction Overview (contd)

randomized PRF

[KPW15] @ (o1,02) == ([(1 mT)[iK+r"[BT(U +7-V)]1,[r"BT]1)
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SP-OTS
We secret share K to n parties via (t, n)-Shamir Secret Sharing.
m Each party has secret key K; € Z{ 1>,
For each partial signature, each party can choose it's own r; <= Z;j.

:J(."): (01,02) := ([(1  m)]1K; + v [BT(U + 7 - V)]1,[r] BT 1)
Let S C[1,n]s.t. |S| >t
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Construction Overview (contd)

randomized PRF

[KPW15] @ (o1,02) == ([(1 mT)[iK+r"[BT(U +7-V)]1,[r"BT]1)
| ——
SP-OTS
We secret share K to n parties via (t, n)-Shamir Secret Sharing.
m Each party has secret key K; € Z{ 1>,
For each partial signature, each party can choose it's own r; <= Z;j.

:J(."): (01,02) := ([(1  m)]1K; + v [BT(U + 7 - V)]1,[r] BT 1)
Let S C[1,n]s.t. |S| >t
Let {)\-}.es are Lagrange polynomials wrt S.

Lin combination of {Z( )}J computes T() for K = S \Kj, r= 3 )\
Jjes Jjes

m provided partial signatures on (j, m;) use same 7;,

m proof works if 7, # 7; for all m; # m;.
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Setup(1*)

1: A,B = Z{ Tk
2: U,V o g Dx k),
3: pp:=([A]2, [UA]2, [VA]2,
[Bl1, [BT U1, [BTV]1)

ParSign(pp, ski, [m]1)

1: ri > Zk

20 7 :=H([m]1)

3: Output X; := (0'1,0'2,0'3,0'4) s.t.
o1:=[(1 mT)Ki+rBTU+V)]:
(o) ::IIF;FBT]]l
o3:==[rr]BT]x
o4 :=[7]2

ParVerify(pp, pk;, [m]1, Z;)

Let R = e(Ul, [[Aﬂg)

Let St =e([(1 mT)]1,pk;)

Let S, = 6(0'2, [[UA]]Q) . 6(037 [[VA]]Q)
Check R=51-5,

KGen(pp, n, t)

1 K o Z{EDX (D)

2: Ky,..., Ky« Shr(K, z§ XD 1y
3: Set pk := [KA]a.

4: Set (sk;, pk;) := (K;, [KiA]2), Vi € [n].
CombineSign(pp, S, {Zi}ies)

1: Parse X; = (0j,1,0i2,0i3,04) foralli € S.
Let Lagrange polynomials \; for i € S.
Output X := (31,32,3’3,&4) s.t.

o1:= 11 Ui‘i
i€S
=[1 m")Kl+rT[BT(U+7V)]1
G2:=[[os =[BTl
i€S
33 = H g'l>\’3 = HTrTBTﬂl
ies
T4 = 04
Verify(pp, pk, [m]1, X)

2.
3:
4:

AR e

Check e(o2,04) = e(o3, [1]2)

Check R=51-5
Check 6(6'\2,6'\4) = 6(6'\3, |I1]]2)

1: Let R = e(31, [A]2)

2: Let Sy =e([(1 mT")]1,pk)

22 Let S, = e(&z, HUA]]Q) . e(Z‘)'\37 HVA]]z)
5:

Figure: Our Construction: TSPS for k > 1
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e Each party has a secret key K; € foﬂ)x(kﬂ),

m [KPWI15] ensures K; has residual entropy k; € ZE,ZH),

m Even after partial signatures on [m,]; # [m*]1.

@ Shamir Secret Sharing is information-theoretically secure.
m We focus on the effect of SSS on residual entropies.
n {kj}jeT for T = {4,5,7,8}, hides k.
m Even when {K;} _, are leaked adaptively.

e [KPW15] allows the reduction to know K.
m We could allow the reduction to know {Kf}je[n]'
m This allowed us to handle adaptive corruptions.
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@ Gamey. Real.
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@ Gameg. Real.

@ Gamej. We change Verify to Verify* where,

Verify(pp, pk, [m]1, X*) Verify* (pp, vk, [m*]1, X*):

: Parse ©* as (01,02,03,04).

: Let R= e(El, Hl]]z)

: Let S = e([[(l mT)]]l, [[Kﬂg)

: Let S5 = 6(6'\2, |IU]]2) . 6(6'\3, [[V]]Q)
: Check R=51-5

: Check 6(32,&\4) = 6(33, Hlﬂg)
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@ Gameg. Real.

@ Gamej. We change Verify to Verify* where,

Verify(pp, pk, [m]1, X*) Verify* (pp, vk, [m*]1, X*):

: Parse ©* as (01,02,03,04).

: Let R= e(El, Hl]]z)

cLet §; = e([[(l mT)]]l, [KI2)

: Let S5 = 6(6'\2, |IU]]2) . 6(6'\3, [[V]]Q)
: Check R=51-5

: Check 6(32,&\4) = 6(33, Hlﬂz)

: Parse ©* as (01,02,03,04).
. Let R = e(51, [A]2)
: Let 51 = e([(1 mT)]]lka)
Let S; = e(G2, [UA]2) - (53, [VA]2)
Check R=51-5,
. Check e(d2,74) = e(3, [1]2)

SO hWN R
SR WN R

e Gamey. If two mj, m; queried have same hash value, we abort.
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adp-TS-UF-1 Security via a Hybrid Argument

@ Gameg. Real.

@ Gamej. We change Verify to Verify* where,

Verify(pp, pk, [m]1, X*) Verify* (pp, vk, [m*]1, X*):

: Parse ©* as (01,02,03,04).

: Let R= e(El, Hl]]z)

cLet §; = e([[(l mT)]]l, [KI2)

: Let S5 = 6(6'\2, [[U]]z) . 6(6'\3, [[V]]Q)
: Check R=51-5

: Check 6(32,&\4) = 6(33, [[1]]2)

: Parse ©* as (01,02,03,04).
. Let R = e(51, [A]2)
: Let 51 = e([(1 mT)]]lka)
Let S; = e(G2, [UA]2) - (53, [VA]2)
Check R=51-5,
. Check e(d2,74) = e(3, [1]2)

DO WN

e Gamey. If two mj, m; queried have same hash value, we abort.

e Games. If our guess [m*]; among [m1]1, ..., [mg]1 is incorrect, we abort.
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adp-TS-UF-1 Security via a Hybrid Argument

e Gamey. We change ParSign to ParSign™ where,

ParSign(pp, skj, [m]1)

1: rj < Z,’;

20 7 :=H([m]1)

3: Output X¥; := (01, 02,03,04) s.t.

o1:=[(1 mT)]]lKjJrroﬂBT(U +™MV)1

o2 .= [[I’jTBT]]l
03:= [[TrJT B[
o4:=[7]2

ParSign*(pp, skj, [m]1)

1:

2:
3:
4

r < Z

H([ml1)
‘ If [[m]]l [[m*]]l set u = 0.
Output X := (01, 02,03,04) s.t.

o1:=[(1 mT)]]lKjJF [rat ]+ B U+V)]1
o .= [[I’J-TBT]]l

03:= [[Tr;r B[

o4:=[7]2
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adp-TS-UF-1 Security via a Hybrid Argument

e Gamey. We change ParSign to ParSign™ where,

ParSign(pp, skj, [m]1) ParSign* (pp, sk;, [m]1)
1: rj > ZK 1or e ZK
2: 7 :=H([m]1) 2: 7:=H([m]1)
3: Output X¥; := (01, 02,03,04) s.t. 3 ‘ If [m]y = [m* _
o T T : 1 = [m*]1, set p=0.
o1 :[[(1T m IR+ BTUAMI | o T = (oroa 05 00) st
o2:=['B In or:=[1 mT K+ [uat]s -+ BTU+V)
03:= [[Trj B'x o2 =[rTBT]1
— j
o4:=[r]2 o3i=[rrBT],
o4:=[7]2

@ Games. Here, we sample RJ- — Zgﬂ)x(kﬂ), kj < Zf;*l for i € [1, n].

= We set K; = K; + kja' for i € [1, n].
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adp-TS-UF-1 Security via a Hybrid Argument

e Gamey. We change ParSign to ParSign™ where,

ParSign(pp, skj, [m]1) ParSign* (pp, sk;, [m]1)
1: rj > ZK 1or e ZK
2: 7 :=H([m]1) 2: 7:=H([m]1)
3: Output X¥; := (01, 02,03,04) s.t. 3 ‘ If [m]y = [m* _
o T T : 1 = [m*]1, set p=0.
o1 :[[(1T m IR+ BTUAMI | o T = (oroa 05 00) st
o2:=['B In or:=[1 mT K+ [uat]s -+ BTU+V)
03:= [[Trj B'x o2 =[rTBT]1
— j
o4:=[r]2 o3i=[rrBT],
o4:=[7]2

@ Games. Here, we sample RJ- — Zgﬂ)x(kﬂ), kj < Zf;*l for i € [1, n].

= We set K; = K; + kja' for i € [1, n].
o Finally, we show that Games hides {k;} ;¢ information-theoretically.
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Summary

First adaptively secure TSPS construction.
Competitive efficiency.
First standard model construction.

Proved it secure under standard Dy-matDH, Dj-kerDH assumptions.
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Thanks for your attention! Any questions?
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Thanks for your attention! Any questions?

Please take a look: https://ia.cr/2024/445
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Thanks for your attention! Any questions?

Please take a look: https://ia.cr/2024/445
Contact: csayantan.mukherjee@gmail.com
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