Threshold Structure-Preserving Signatures: Strong and Adaptive Security under Standard Assumptions

Aikaterini Mitrokotsa, <u>Sayantan Mukherjee</u>, Mahdi Sedaghat, Daniel <u>Slamanig</u>, Jenit Tomy

University of St Gallen; Indian Institute of Technology Jammu; COSIC KU Leuven;
Research Institute CODE Universität der Bundeswehr München

Outline

- 1. Introduction
- 2. Notations
- 3. Definition
- 4. Construction Overview
- 5. Construction
- 6. Proof Overview
- 7. Conclusion

- In a structure-preserving signature scheme,
 - message consists of base group elements.
 - signature consists of base group elements.
 - verification uses group-membership check and pairing-product equation.

- In a structure-preserving signature scheme,
 - message consists of base group elements.
 - signature consists of base group elements.
 - verification uses group-membership check and pairing-product equation only.

- In a structure-preserving signature scheme,
 - message consists of base group elements.
 - signature consists of base group elements.
 - verification uses group-membership check and pairing-product equation only.

- In a non-interactive threshold signature scheme,
 - \blacksquare *n* parties in a system with threshold *t*.
 - lacksquare honest parties generate partial signatures $\{\Sigma_{i_j}\}_{j\in [\ell]}$ on a message m.
 - a public algorithm combines $\{\Sigma_{i_i}\}_{j\in[\ell]}$ into a signature Σ .
 - Σ is a valid signature of m if $\ell \geq t$.

- In a structure-preserving signature scheme,
 - message consists of base group elements.
 - signature consists of base group elements.
 - verification uses group-membership check and pairing-product equation only.

- In a non-interactive threshold signature scheme,
 - \blacksquare *n* parties in a system with threshold *t*.
 - ℓ honest parties generate partial signatures $\{\Sigma_{i_j}\}_{j\in[\ell]}$ on a message m.
 - a public algorithm combines $\{\Sigma_{i_i}\}_{j\in[\ell]}$ into a signature Σ .
 - Σ is a valid signature of m if $\ell \geq t$.
 - Currently receiving a lot of attention due to decentralized web.

Goal. To construct a threshold structure-preserving signature

1. preferably in the standard model under standard assumption,

- 1. preferably in the standard model under standard assumption,
- 2. in the adaptive corruption model.

Goal. To construct a threshold structure-preserving signature

- 1. preferably in the standard model under standard assumption,
- 2. in the adaptive corruption model.

Currently, there is only one work.

- 1. preferably in the standard model under standard assumption,
- 2. in the adaptive corruption model.

- Currently, there is only one work.
 - In Asiacrypt'2023, Crites et al. [CKPSS23] proposed the first

- 1. preferably in the standard model under standard assumption,
- 2. in the adaptive corruption model.

- Currently, there is only one work.
 - In Asiacrypt'2023, Crites et al. [CKPSS23] proposed the first
 - for limited message space (iDH)

- 1. preferably in the standard model under standard assumption,
- 2. in the adaptive corruption model.

- Currently, there is only one work.
 - In Asiacrypt'2023, Crites et al. [CKPSS23] proposed the first
 - for limited message space (*iDH*)
 - in algebraic group model under random oracle assumption (AGM-ROM)

- 1. preferably in the standard model under standard assumption,
- 2. in the adaptive corruption model.

- Currently, there is only one work.
 - In Asiacrypt'2023, Crites et al. [CKPSS23] proposed the first
 - for limited message space (*iDH*)
 - in algebraic group model under random oracle assumption (AGM-ROM)
 - and interactive assumptions (GPS₃)

- 1. preferably in the standard model under standard assumption,
- 2. in the adaptive corruption model.

- Currently, there is only one work.
 - In Asiacrypt'2023, Crites et al. [CKPSS23] proposed the first
 - for limited message space (*iDH*)
 - in algebraic group model under random oracle assumption (AGM-ROM)
 - \blacksquare and interactive assumptions (*GPS*₃)
 - in the weakest security model (TS-UF-0)

Notations and Hardness Assumptions

• $\mathcal{G}=(p,\mathbb{G}_1,\mathbb{G}_2,\mathbb{G}_\mathsf{T},g_1,g_2,e)$ is type-III bilinear pairing group description where

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$
.

- We denote g_s^a by $[a]_s$ for any $a \in \mathbb{Z}_p$ and $s \in \{1, 2, T\}$.
- We denote $(g_s^{u_{i,j}})_{(i,j)\in I\times J}$ by $[\![\mathbf{U}]\!]_s$ for any $\mathbf{U}=(u_{i,j})_{(i,j)\in I\times J}$, $s\in\{1,2,\mathrm{T}\}$.
- $\bullet \ \, \mathcal{D}_{\ell,k}\text{-matDH}_{\mathbb{G}}\colon \, \mathcal{A}(\llbracket \mathbf{A} \rrbracket, \llbracket \mathbf{A}\mathbf{s} + \mathbf{z} \rrbracket : \mathbf{A} \in \mathbb{Z}_{p}^{\ell \times k}, \, \mathbf{s} \hookleftarrow \mathbb{Z}_{p}^{k}, \, \mathbf{z} \hookleftarrow \mathbb{Z}_{p}^{\ell}) \to \mathbf{z} \stackrel{?}{=} \mathbf{0}.$
- $\bullet \ \mathcal{D}_{\ell,k}\text{-kerDH}_{\mathbb{G}}\colon \ \mathcal{A}(\llbracket \mathbf{A} \rrbracket : \mathbf{A} \in \mathbb{Z}_p^{\ell \times k}) \to \mathbf{s} \in \mathbb{Z}_p^k \setminus \{\mathbf{0}\} \ \text{s.t.} \ \ \mathbf{A}\mathbf{s} = \mathbf{0}.$

Threshold Structure-Preserving Signatures (TSPS)

- Setup $(1^{\kappa}) \to pp$.
- KGen(pp, n, t) \rightarrow ({sk_i, pk_i}_{i \in [1,n]}, pk).
- ParSign(pp, sk_i, $[m] \in \mathcal{M}$) $\rightarrow \Sigma_i$.
- ParVerify(pp, pk_i, [m] $\in \mathcal{M}, \Sigma_i$) $\rightarrow 0/1$.
- CombineSign(pp, $T \subseteq [1, n], \{\Sigma_i\}_{i \in T}) \to \Sigma$.
- Verify(pp, pk, $[m] \in \mathcal{M}, \Sigma$) $\rightarrow 0/1$.

Correctness

```
For all pp \hookleftarrow Setup(1^{\kappa}),
for all (\{\mathsf{sk}_i, \mathsf{pk}_i\}_{i \in [1, n]}, \mathsf{pk}) \hookleftarrow KGen(pp, n, t),
for all [m] \in \mathcal{M},
for all T \subseteq [1, n] s.t. |T| \ge t,
```

$$\mathsf{Verify}(\mathsf{pp},\mathsf{pk},[\mathit{m}],\mathsf{CombineSign}(\mathsf{pp},\mathit{T},\{\mathsf{ParSign}(\mathsf{pp},\mathsf{sk}_\mathit{i},[\mathit{m}])\}_{\mathit{i}\in\mathit{T}}))=1$$

Non-Adaptive Security

• Requirement: A signature cannot be forged by any ppt adversary A.

- Requirement: A signature cannot be forged by any ppt adversary A.
- \mathcal{A} does not make any signature oracle queries on m^* .

- Requirement: A signature cannot be forged by any ppt adversary A.
- \mathcal{A} does not make any signature oracle queries on m^* .
- TS-UF-0:
 - lacktriangle The adversary ${\mathcal A}$ has access to ${\mathcal O}_{\mathsf{ParSign}}$ oracle.
 - To show $\Pr[\mathsf{Exp}_{\mathsf{TSPS}}^{\mathsf{TS-UF-0}}(1^{\lambda},\mathcal{A}) \to 1] = \mathsf{neg}(\lambda)$ in the following game:

- ullet Requirement: A signature cannot be forged by any ppt adversary ${\cal A}.$
- \mathcal{A} does not make any signature oracle queries on m^* .
- TS-UF-0:
 - The adversary A has access to O_{ParSign} oracle.
 - To show $\Pr[\mathsf{Exp}_{\mathsf{TSPS}}^{\mathsf{TS-UF-0}}(1^{\lambda},\mathcal{A}) \to 1] = \mathsf{neg}(\lambda)$ in the following game:

$$\begin{split} &\frac{\mathsf{Exp}_{\mathsf{TSPS}}^{\mathsf{TS-UF-0}}(1^{\lambda},\mathcal{A})}{\mathsf{pp} \leftarrow \mathsf{Setup}(1^{\lambda})} \\ &(n,t,\mathsf{CS}) \hookleftarrow \mathcal{A}(\mathsf{pp}) \text{ s.t. } |\mathsf{CS}| < t \\ &\mathsf{HS} := [1,n] \setminus \mathsf{CS} \\ &(\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in [1,n]}, \{\mathsf{vk}_i\}_{i \in [1,n]}) \hookleftarrow \mathsf{KGen}(\mathsf{pp},n,t) \\ &([m^*], \Sigma^*) \hookleftarrow \mathcal{A}^{O_{\mathsf{ParSign}}(\cdot)}(\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in \mathsf{CS}}, \{\mathsf{vk}_i\}_{i \in [1,n]}) \\ &\mathsf{Return Verify}(\mathsf{pp}, \mathsf{pk}, [m^*], \Sigma^*) \land ([m^*], \cdot) \notin \mathcal{Q}_{\mathsf{ParSign}} \end{split}$$

 O_{ParSign} maintains list of $([m_i], j)$ in Q_{ParSign} .

Non-Adaptive Security

ullet Requirement: A signature cannot be forged by any ppt adversary ${\cal A}.$

- Requirement: A signature cannot be forged by any ppt adversary A.
- A makes limited number of signature oracle queries on m^* .

- Requirement: A signature cannot be forged by any ppt adversary A.
- A makes limited number of signature oracle queries on m^* .
- TS-UF-1:
 - The adversary \mathcal{A} has access to O_{ParSign} oracle.
 - To show $\Pr[\mathsf{Exp}_{\mathsf{TSPS}}^{\mathsf{TS-UF-1}}(1^{\lambda},\mathcal{A}) \to 1] = \mathsf{neg}(\lambda)$ in the following game:

- ullet Requirement: A signature cannot be forged by any ppt adversary ${\cal A}.$
- A makes limited number of signature oracle queries on m^* .
- TS-UF-1:
 - lacksquare The adversary ${\mathcal A}$ has access to ${\mathcal O}_{\mathsf{ParSign}}$ oracle.
 - To show $\Pr[\mathsf{Exp}_{\mathsf{TSPS}}^{\mathsf{TS-UF-1}}(1^{\lambda},\mathcal{A}) \to 1] = \mathsf{neg}(\lambda)$ in the following game:

```
\begin{split} &\frac{\mathsf{Exp}_{\mathsf{TSPS}}^{\mathsf{TS-UF-1}}(1^{\lambda},\mathcal{A})}{\mathsf{pp} \leftarrow \mathsf{Setup}(1^{\lambda})} \\ &(n,t,\mathsf{CS}) \hookleftarrow \mathcal{A}(\mathsf{pp}) \text{ s.t. } |\mathsf{CS}| < t \\ &\mathsf{HS} := [1,n] \setminus \mathsf{CS} \\ &(\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in [1,n]}, \{\mathsf{vk}_i\}_{i \in [1,n]}) \hookleftarrow \mathsf{KGen}(\mathsf{pp},n,t) \\ &([m^*], \Sigma^*) \hookleftarrow \mathcal{A}^{O_{\mathsf{ParSign}}(\cdot)}(\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in \mathsf{CS}}, \{\mathsf{vk}_i\}_{i \in [1,n]}) \\ &\mathsf{Return Verify}(\mathsf{pp}, \mathsf{pk}, [m^*], \Sigma^*) \land |([m^*], \cdot) \cap \mathcal{Q}_{\mathsf{ParSign}}| < t - |\mathsf{CS}| \end{split}
```

 O_{ParSign} maintains list of $([m_i], j)$ in Q_{ParSign} .

- Requirement: A signature cannot be forged by any ppt adversary A.
- A makes limited number of signature oracle queries on m^*

- Requirement: A signature cannot be forged by any ppt adversary A.
- A makes limited number of signature oracle queries on m^*
- ullet and ${\cal A}$ can corrupt limited number of parties.

- Requirement: A signature cannot be forged by any ppt adversary A.
- A makes limited number of signature oracle queries on m^*
- ullet and ${\cal A}$ can corrupt limited number of parties.
- adp-TS-UF-1:
 - The adversary A has access to $O_{ParSign}$, $O_{Corrupt}$ oracle.
 - To show $\Pr[\mathsf{Exp}_{\mathsf{TSPS}}^{\mathsf{adp-TS-UF-1}}(1^{\lambda},\mathcal{A}) \to 1] = \mathsf{neg}(\lambda)$ in the following game:

- ullet Requirement: A signature cannot be forged by any ppt adversary ${\cal A}.$
- ullet ${\cal A}$ makes limited number of signature oracle queries on ${\it m}^*$
- ullet and ${\cal A}$ can corrupt limited number of parties.
- adp-TS-UF-1:
 - The adversary A has access to $O_{ParSign}$, $O_{Corrupt}$ oracle.
 - To show $\Pr[\mathsf{Exp}_{\mathsf{TSPS}}^{\mathsf{adp-TS-UF-1}}(1^{\lambda},\mathcal{A}) \to 1] = \mathsf{neg}(\lambda)$ in the following game:

```
\begin{split} & \frac{\mathsf{Exp}_{\mathsf{TSPS}}^{\mathsf{adp-TS-UF-1}}(1^{\lambda}, \mathcal{A})}{\mathsf{pp} \leftarrow \mathsf{Setup}(1^{\lambda})} \\ & (n, t, \mathsf{CS}) \hookleftarrow \mathcal{A}(\mathsf{pp}) \text{ s.t. } |\mathsf{CS}| < t \\ & \mathsf{HS} := [1, n] \setminus \mathsf{CS} \\ & (\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in [1, n]}, \{\mathsf{vk}_i\}_{i \in [1, n]}) \hookleftarrow \mathsf{KGen}(\mathsf{pp}, n, t) \\ & ([m^*], \Sigma^*) \hookleftarrow \mathcal{A}^{O_{\mathsf{ParSign}}(\cdot), O_{\mathsf{Corrupt}}(\cdot)}(\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in \mathsf{CS}}, \{\mathsf{vk}_i\}_{i \in [1, n]}) \\ & \mathsf{Return Verify}(\mathsf{pp}, \mathsf{pk}, [m^*], \Sigma^*) \land |\{i : ([m^*], i) \in Q_{\mathsf{ParSign}}\} \cup \mathsf{CS}| < t \end{split}
```

 $O_{\mathsf{ParSign}}, O_{\mathsf{Corrupt}}$ maintain lists of $([m_i], j)$ and sk_j in Q_{ParSign} and CS respectively.

Suppose. n = 8, t = 5.

	1	2	3	4	5	6	7	8
m_1	$\Sigma_1^{(1)}$	$\Sigma_2^{(1)}$	$\Sigma_3^{(1)}$	$\Sigma_4^{(1)}$	$\Sigma_5^{(1)}$	$\Sigma_6^{(1)}$	$\Sigma_7^{(1)}$	$\Sigma_8^{(1)}$
m_2	$\Sigma_1^{(2)}$ $\Sigma_1^{(2)}$	$\Sigma_2^{(1)}$ $\Sigma_2^{(2)}$	$\Sigma_3^{(2)}$	$\Sigma_4^{(2)}$	$\begin{array}{c} \Sigma_5^{(1)} \\ \Sigma_5^{(2)} \end{array}$	$\Sigma_6^{(1)}$ $\Sigma_6^{(2)}$	$\Sigma_7^{(1)}$ $\Sigma_7^{(2)}$	$\Sigma_8^{(2)}$
:	:	:	:	:	:	÷	:	:
mi	$\Sigma_1^{(i)}$	$\Sigma_2^{(i)}$	$\Sigma_3^{(i)}$	$\Sigma_4^{(i)}$	$\Sigma_5^{(i)}$	$\Sigma_6^{(i)}$	$\Sigma_7^{(i)}$	$\Sigma_8^{(i)}$
:	:	:	:	:	:	:	:	:
m_q	$\Sigma_1^{(q)}$	$\Sigma_2^{(q)}$	$\Sigma_3^{(q)}$	$\Sigma_4^{(q)}$	$\Sigma_5^{(q)}$	$\Sigma_6^{(q)}$	$\Sigma_7^{(q)}$	$\Sigma_8^{(q)}$

Intuition

Suppose. n = 8, t = 5.

 \bullet Let the adversary ${\cal A}$ corrupts user 7 and 8.

	1	2	3	4	5	6	7	8
m_1	$\Sigma_1^{(1)}$	$\Sigma_2^{(1)}$	$\Sigma_3^{(1)}$	$\Sigma_4^{(1)}$	$\Sigma_5^{(1)}$	$\Sigma_6^{(1)}$		
m_2	$\begin{bmatrix} \Sigma_1^{(1)} \\ \Sigma_1^{(2)} \end{bmatrix}$	$\begin{array}{c} \Sigma_2^{(1)} \\ \Sigma_2^{(2)} \end{array}$	$\Sigma_3^{(2)}$	$\Sigma_4^{(2)}$	$\Sigma_5^{(1)}$ $\Sigma_5^{(2)}$	$\begin{array}{c} \Sigma_6^{(1)} \\ \Sigma_6^{(2)} \end{array}$		
:	:	:	:	÷	:	:	sk ₇	sk ₈
m _i	$\Sigma_1^{(i)}$	$\Sigma_2^{(i)}$	$\Sigma_3^{(i)}$	$\Sigma_4^{(i)}$	$\Sigma_5^{(i)}$	$\Sigma_6^{(i)}$		
:	:	:	:	:	:	:		
m_q	$\Sigma_1^{(q)}$	$\Sigma_2^{(q)}$	$\Sigma_3^{(q)}$	$\Sigma_4^{(q)}$	$\Sigma_5^{(q)}$	$\Sigma_6^{(q)}$		

Intuition

Suppose. n = 8, t = 5.

- ullet Let the adversary ${\cal A}$ corrupts user 7 and 8.
- If it gets partial signatures $\Sigma_4^{(1)}$, $\Sigma_5^{(1)}$ and $\Sigma_6^{(1)}$, $\mathcal A$ can forge $\Sigma^{(1)}$.

	1	2	3	4	5	6	7	8
m_1	$\Sigma_1^{(1)}$	$\Sigma_2^{(1)}$	$\Sigma_3^{(1)}$	$\Sigma_4^{(1)}$	$\Sigma_5^{(1)}$	$\Sigma_6^{(1)}$		
m_2	$\Sigma_1^{(2)}$	$\begin{array}{c} \Sigma_2^{(1)} \\ \Sigma_2^{(2)} \end{array}$	$\Sigma_3^{(1)}$ $\Sigma_3^{(2)}$	$\Sigma_4^{(2)}$	$\Sigma_5^{(2)}$	$\Sigma_6^{(2)}$		
:	:	:	÷	:	÷	:	sk ₇	sk ₈
mi	$\Sigma_1^{(i)}$	$\Sigma_2^{(i)}$	$\Sigma_3^{(i)}$	$\Sigma_4^{(i)}$	$\Sigma_5^{(i)}$	$\Sigma_6^{(i)}$		
		:	•	:	:	:		
m_q	$\Sigma_1^{(q)}$	$\Sigma_2^{(q)}$	$\Sigma_3^{(q)}$	$\Sigma_4^{(q)}$	$\Sigma_5^{(q)}$	$\Sigma_6^{(q)}$		

Intuition

Suppose.
$$n = 8, t = 5$$
.

- Let the adversary A corrupts user 7 and 8.
- If it gets partial signatures $\Sigma_4^{(1)}$, $\Sigma_5^{(1)}$ and $\Sigma_6^{(1)}$, \mathcal{A} can forge $\Sigma^{(1)}$.
- Non-trivial goals:
 - 1. $m^* \notin \{m_2, \ldots, m_q\}$.
 - 2. $m^* \in \{m_2, \ldots, m_q\}$. Let $m^* = m_i$.
 - 2.1 \mathcal{A} can't corrupt any more users.
 - 2.2 \mathcal{A} can corrupt more users.

	1	2	3	4	5	6	7	8
m_1	$\Sigma_1^{(1)}$	$\Sigma_2^{(1)}$	$\Sigma_3^{(1)}$	$\Sigma_4^{(1)}$	$\Sigma_5^{(1)}$	$\Sigma_6^{(1)}$		
m_2	$\Sigma_1^{(2)}$	$\begin{array}{c} \Sigma_2^{(1)} \\ \Sigma_2^{(2)} \end{array}$	$\Sigma_3^{(2)}$	$\Sigma_4^{(2)}$	$\Sigma_{5}^{(2)}$	$\Sigma_6^{(2)}$		
:	:	:	÷	:	÷	÷	sk ₇	sk ₈
mi	$\Sigma_1^{(i)}$	$\Sigma_2^{(i)}$	$\Sigma_3^{(i)}$	$\Sigma_4^{(i)}$	$\Sigma_5^{(i)}$	$\Sigma_6^{(i)}$		
;	:	:	:	:	:	:		
m_q	$\Sigma_1^{(q)}$	$\Sigma_2^{(q)}$	$\Sigma_3^{(q)}$	$\Sigma_4^{(q)}$	$\Sigma_5^{(q)}$	$\Sigma_6^{(q)}$		

Intuition (Cont.)

ullet Consider an Uf-CMA-secure signature Σ .

	1	2	3	4	5	6	7	8
m_1	$\Sigma_1^{(1)}$	$\Sigma_2^{(1)}$	$\Sigma_3^{(1)}$	$\Sigma_4^{(1)}$	$\Sigma_5^{(1)}$	$\Sigma_6^{(1)}$		
<i>m</i> ₂	$\begin{array}{c c} \Sigma_1^{(1)} \\ \Sigma_1^{(2)} \end{array}$	$\begin{array}{c} \Sigma_2^{(1)} \\ \Sigma_2^{(2)} \end{array}$	$\Sigma_3^{(2)}$	$\Sigma_4^{(2)}$	$\Sigma_5^{(2)}$	$\Sigma_6^{(2)}$		
:	:	÷	:	:	÷	:	sk ₇	sk ₈
m_i	$\Sigma_1^{(i)}$	$\Sigma_2^{(i)}$	$\Sigma_3^{(i)}$	$\Sigma_4^{(i)}$	$\Sigma_5^{(i)}$	$\Sigma_6^{(i)}$		
:	:	:	:	:	:	:		
m_q	$\Sigma_1^{(q)}$	$\Sigma_2^{(q)}$	$\Sigma_3^{(q)}$	$\Sigma_4^{(q)}$	$\Sigma_5^{(q)}$	$\Sigma_6^{(q)}$		

Intuition (Cont.)

- ullet Consider an Uf-CMA-secure signature Σ .
- Forging $\Sigma_6^{(i)}$ is hard for $\mathcal A$ even when $\left\{\Sigma_6^{(i)}\right\}_{i\in[q]\setminus\{i\}}$ are given.

	1	2	3	4	5	6	7	8
m_1	$\Sigma_1^{(1)}$	$\Sigma_2^{(1)}$	$\Sigma_3^{(1)}$	$\Sigma_4^{(1)}$	$\Sigma_5^{(1)}$	$\Sigma_6^{(1)}$		
m_2	$\begin{bmatrix} \Sigma_1^{(1)} \\ \Sigma_1^{(2)} \end{bmatrix}$	$\begin{array}{c} \Sigma_2^{(1)} \\ \Sigma_2^{(2)} \end{array}$	$\Sigma_3^{(2)}$	$\Sigma_4^{(2)}$	$\Sigma_{5}^{(2)}$	$\Sigma_6^{(2)}$		
:	•	:	:	:	:	:	sk ₇	sk ₈
mi	$\Sigma_1^{(i)}$	$\Sigma_2^{(i)}$	$\Sigma_3^{(i)}$	$\Sigma_4^{(i)}$	$\Sigma_5^{(i)}$	$\Sigma_6^{(i)}$		
:		:	:	:	÷	÷		
m_q	$\Sigma_1^{(q)}$	$\Sigma_2^{(q)}$	$\Sigma_3^{(q)}$	$\Sigma_4^{(q)}$	$\Sigma_5^{(q)}$	$\Sigma_6^{(q)}$		

Intuition (Cont.)

- ullet Consider an Uf-CMA-secure signature Σ .
- Forging $\Sigma_6^{(i)}$ is hard for $\mathcal A$ even when $\left\{\Sigma_6^{(i)}\right\}_{i\in[q]\setminus\{i\}}$ are given.
- Let $\mathcal A$ gets $\Sigma_4^{(i)}$ and $\Sigma_5^{(i)}$.

	1	2	3	4	5	6	7	8
m_1	$\Sigma_1^{(1)}$	$\Sigma_2^{(1)}$	$\Sigma_3^{(1)}$	$\Sigma_4^{(1)}$	$\Sigma_5^{(1)}$	$\Sigma_6^{(1)}$		
m_2	$\Sigma_1^{(2)}$	$\begin{array}{c} \Sigma_2^{(1)} \\ \Sigma_2^{(2)} \end{array}$	$\Sigma_3^{(1)}$ $\Sigma_3^{(2)}$	$\Sigma_4^{(2)}$	$\Sigma_5^{(2)}$	$\Sigma_6^{(2)}$		
:	:	:	:	:	:	÷	sk ₇	sk ₈
m _i	$\Sigma_1^{(i)}$	$\Sigma_2^{(i)}$	$\Sigma_3^{(i)}$	$\Sigma_4^{(i)}$	$\Sigma_5^{(i)}$	$\Sigma_6^{(i)}$		
:	:	:	:	:	:	:		
m_q	$\Sigma_1^{(q)}$	$\Sigma_2^{(q)}$	$\Sigma_3^{(q)}$	$\Sigma_4^{(q)}$	$\Sigma_5^{(q)}$	$\Sigma_6^{(q)}$		

Intuition (Cont.)

- ullet Consider an Uf-CMA-secure signature Σ .
- Forging $\Sigma_6^{(i)}$ is hard for $\mathcal A$ even when $\left\{\Sigma_6^{(i)}\right\}_{i\in[q]\setminus\{i\}}$ are given.
- Let \mathcal{A} gets $\Sigma_4^{(i)}$ and $\Sigma_5^{(i)}$.
- To prove: forging $\Sigma_6^{(i)}$ is still hard.

	1	2	3	4	5	6	7	8
m_1	$\Sigma_1^{(1)}$	$\Sigma_2^{(1)}$	$\Sigma_3^{(1)}$	$\Sigma_4^{(1)}$	$\Sigma_5^{(1)}$	$\Sigma_6^{(1)}$		
m_2	$\Sigma_1^{(2)}$	$\Sigma_2^{(1)}$ $\Sigma_2^{(2)}$	$\Sigma_3^{(1)}$ $\Sigma_3^{(2)}$	$\Sigma_4^{(2)}$	$\Sigma_5^{(2)}$	$\Sigma_6^{(2)}$		
:	:	:	:	:	:	:	sk ₇	sk ₈
mi	$\Sigma_1^{(i)}$	$\Sigma_2^{(i)}$	$\Sigma_3^{(i)}$	$\Sigma_4^{(i)}$	$\Sigma_5^{(i)}$	$\Sigma_6^{(i)}$		
:	:	:	:	:	:	:		
m_q	$\Sigma_1^{(q)}$	$\Sigma_2^{(q)}$	$\Sigma_3^{(q)}$	$\Sigma_4^{(q)}$	$\Sigma_5^{(q)}$	$\Sigma_6^{(q)}$		

Construction Overview

$$[\mathsf{KPW15}]: \ (\sigma_1, \sigma_2) := \underbrace{\left(\underbrace{ \llbracket \left(1 \quad m^\top \right) \rrbracket_1 \mathsf{K}}_{\mathsf{SP-OTS}} + \mathbf{r}^\top \llbracket \mathsf{B}^\top (\mathsf{U} + \tau \cdot \mathsf{V}) \rrbracket_1, \llbracket \mathsf{r}^\top \mathsf{B}^\top \rrbracket_1 \right)}_{\mathsf{SP-OTS}}$$

Construction Overview

$$[\mathsf{KPW15}]: \ (\sigma_1, \sigma_2) := \big(\underbrace{\mathbb{I}\big(1 \quad m^\top\big)\mathbb{I}_1 \mathsf{K}}_{\mathsf{SP,OTS}} + \overbrace{\mathsf{r}^\top \llbracket \mathsf{B}^\top (\mathsf{U} + \tau \cdot \mathsf{V}) \rrbracket_1, \llbracket \mathsf{r}^\top \mathsf{B}^\top \rrbracket_1}_{\mathsf{randomized PRF}} \big)$$

• [KPW15] rejects same τ for different messages.

Construction Overview

$$[\mathsf{KPW15}]: \ (\sigma_1, \sigma_2) := \big(\underbrace{\mathbb{[}(1 \quad m^\top)]_1 \mathsf{K}}_{\mathsf{SP,OTS}} + \mathbf{r}^\top [\![\mathsf{B}^\top (\mathsf{U} + \tau \cdot \mathsf{V})]\!]_1, [\![\mathsf{r}^\top \mathsf{B}^\top]\!]_1 \big)$$

- [KPW15] rejects same τ for different messages.
- [KPW15] is not strong uf-cma secure.
 - i.e. does not allow signature queries on $[m^*]_1$.

$$[\mathsf{KPW15}]: \ (\sigma_1,\sigma_2) := \underbrace{\left(\underbrace{ \llbracket \left(1 \quad m^\top \right) \rrbracket_1 \mathsf{K}}_{\mathsf{SP-OTS}} + \mathbf{r}^\top \llbracket \mathsf{B}^\top (\mathsf{U} + \tau \cdot \mathsf{V}) \rrbracket_1, \llbracket \mathsf{r}^\top \mathsf{B}^\top \rrbracket_1 \right) }_{\mathsf{SP-OTS}}$$

$$[\mathsf{KPW15}]: \ (\sigma_1,\sigma_2) := \underbrace{\left(\underbrace{\mathbb{[} \left(1 \quad m^\top\right)}_{\mathsf{SP-OTS}} \right)_1 \mathsf{K}}_{\mathsf{F}^\top \mathsf{F}^\top \mathsf$$

- We secret share **K** to n parties via (t, n)-Shamir Secret Sharing.
 - Each party has secret key $\mathbf{K}_j \in \mathbb{Z}_p^{(\ell+1) \times (k+1)}$.

$$[\mathsf{KPW15}]: \ (\sigma_1,\sigma_2) := \big(\underbrace{ [\![\big(1 \quad m^\top \big)]\!]_1 \mathsf{K}}_{\mathsf{SP-OTS}} + \overbrace{\mathsf{r}^\top [\![\mathsf{B}^\top (\mathsf{U} + \tau \cdot \mathsf{V})]\!]_1, [\![\mathsf{r}^\top \mathsf{B}^\top]\!]_1}^{\mathsf{randomized PRF}} \big)$$

- We secret share **K** to n parties via (t, n)-Shamir Secret Sharing.
 - Each party has secret key $\mathbf{K}_i \in \mathbb{Z}_p^{(\ell+1)\times(k+1)}$.
- ullet For each partial signature, each party can choose it's own ${f r}_i \leftarrow {\Bbb Z}_n^k$.

$$[\mathsf{KPW15}]: \ (\sigma_1,\sigma_2) := \big(\underbrace{ [\![\big(1 \quad m^\top \big)]\!]_1 \mathsf{K}}_{\mathsf{SP-OTS}} + \overbrace{\mathsf{r}^\top [\![\mathsf{B}^\top (\mathsf{U} + \tau \cdot \mathsf{V})]\!]_1, [\![\mathsf{r}^\top \mathsf{B}^\top]\!]_1}^{\mathsf{randomized PRF}} \big)$$

- We secret share **K** to n parties via (t, n)-Shamir Secret Sharing.
 - Each party has secret key $\mathbf{K}_i \in \mathbb{Z}_p^{(\ell+1)\times(k+1)}$.
- ullet For each partial signature, each party can choose it's own ${f r}_j \leftarrow \mathbb{Z}_p^k$.

$$\boldsymbol{\Sigma}_j^{(i)}:\;(\boldsymbol{\sigma}_1,\boldsymbol{\sigma}_2):=\begin{pmatrix}[\![\begin{pmatrix} 1 & \boldsymbol{m}_i^\top \end{pmatrix} \!]\!]_1 \mathbf{K}_j + \mathbf{r}_j^\top [\![\mathbf{B}^\top (\mathbf{U} + \boldsymbol{\tau}_i \cdot \mathbf{V})]\!]_1, [\![\mathbf{r}_j^\top \mathbf{B}^\top]\!]_1\end{pmatrix}$$

$$[\mathsf{KPW15}]: \ (\sigma_1,\sigma_2) := \big(\underbrace{\mathbb{[}\big(1 \quad m^\top\big)\mathbb{]}_1\mathsf{K}}_{\mathsf{SP-OTS}} + \overbrace{\mathsf{r}^\top [\![\mathsf{B}^\top(\mathsf{U} + \tau \cdot \mathsf{V})]\!]_1,[\![\mathsf{r}^\top\mathsf{B}^\top]\!]_1}_{\mathsf{randomized PRF}}\big)$$

- We secret share **K** to n parties via (t, n)-Shamir Secret Sharing.
 - Each party has secret key $\mathbf{K}_i \in \mathbb{Z}_p^{(\ell+1)\times(k+1)}$.
- ullet For each partial signature, each party can choose it's own ${f r}_j \leftarrow \mathbb{Z}^k_{m p}.$

$$\boldsymbol{\Sigma}_j^{(i)}:\; (\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2) := \begin{pmatrix} [\![\begin{pmatrix} 1 & \boldsymbol{m}_i^\top \end{pmatrix}]\!]_1 \mathbf{K}_j + \mathbf{r}_j^\top [\![\mathbf{B}^\top (\mathbf{U} + \boldsymbol{\tau}_i \cdot \mathbf{V})]\!]_1, [\![\mathbf{r}_j^\top \mathbf{B}^\top]\!]_1 \end{pmatrix}$$

• Let $S \subseteq [1, n]$ s.t. $|S| \ge t$.

$$[\mathsf{KPW15}]: \ (\sigma_1,\sigma_2) := \big(\underbrace{\mathbb{[}\big(1 \quad m^\top\big)]\!]_1 \mathsf{K}}_{\mathsf{SP-OTS}} + \overbrace{\mathsf{r}^\top [\![\mathsf{B}^\top(\mathsf{U} + \tau \cdot \mathsf{V})]\!]_1,[\![\mathsf{r}^\top\mathsf{B}^\top]\!]_1}^{\mathsf{randomized PRF}}\big)$$

- We secret share **K** to n parties via (t, n)-Shamir Secret Sharing.
 - Each party has secret key $\mathbf{K}_i \in \mathbb{Z}_p^{(\ell+1)\times(k+1)}$.
- ullet For each partial signature, each party can choose it's own ${f r}_j \leftarrow \mathbb{Z}^k_{m p}.$

$$\boldsymbol{\Sigma}_j^{(i)}:\; (\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2) := \begin{pmatrix} [\![\begin{pmatrix} 1 & \boldsymbol{m}_i^\top \end{pmatrix}]\!]_1 \mathbf{K}_j + \mathbf{r}_j^\top [\![\mathbf{B}^\top (\mathbf{U} + \boldsymbol{\tau}_i \cdot \mathbf{V})]\!]_1, [\![\mathbf{r}_j^\top \mathbf{B}^\top]\!]_1 \end{pmatrix}$$

- Let $S \subseteq [1, n]$ s.t. $|S| \ge t$.
- Let $\{\lambda_j\}_{j\in S}$ are Lagrange polynomials wrt S.

$$[\mathsf{KPW15}]: \ (\sigma_1,\sigma_2) := \underbrace{\left(\underbrace{\mathbb{I} \left(1 \quad m^\top \right)}_{\mathsf{SP-OTS}} \right]_1 \mathsf{K}}_{\mathsf{F}^\top [\![\mathsf{B}^\top (\mathsf{U} + \tau \cdot \mathsf{V})]\!]_1, [\![\mathsf{r}^\top \mathsf{B}^\top]\!]_1}_{\mathsf{r}} \right)$$

- We secret share **K** to n parties via (t, n)-Shamir Secret Sharing.
 - Each party has secret key $\mathbf{K}_i \in \mathbb{Z}_p^{(\ell+1)\times(k+1)}$.
- ullet For each partial signature, each party can choose it's own ${f r}_j \leftarrow \mathbb{Z}_p^k$.

$$\boldsymbol{\Sigma}_j^{(i)}:\;(\boldsymbol{\sigma}_1,\boldsymbol{\sigma}_2):=\begin{pmatrix}[\![\begin{pmatrix} 1 & \boldsymbol{m}_i^\top \end{pmatrix} \!]\!]_1\boldsymbol{\mathsf{K}}_j + \boldsymbol{\mathsf{r}}_j^\top [\![\boldsymbol{\mathsf{B}}^\top (\boldsymbol{\mathsf{U}}+\boldsymbol{\tau}_i\cdot\boldsymbol{\mathsf{V}})]\!]_1,[\![\boldsymbol{\mathsf{r}}_j^\top \boldsymbol{\mathsf{B}}^\top]\!]_1\end{pmatrix}$$

- Let $S \subseteq [1, n]$ s.t. $|S| \ge t$.
- Let $\{\lambda_i\}_{i \in S}$ are Lagrange polynomials wrt S.
- Lin combination of $\{\Sigma_j^{(i)}\}_j$ computes $\Sigma^{(i)}$ for $\mathbf{K} = \sum_{j \in S} \lambda_j \mathbf{K}_j$, $\mathbf{r} = \sum_{j \in S} \lambda_j \mathbf{r}_j^{\mathsf{T}}$

$$[\mathsf{KPW15}]: \ (\sigma_1,\sigma_2) := \underbrace{\left(\underbrace{\mathbb{I} \big(\mathbf{1} \quad m^\top \big) \mathbb{I}_1 \mathsf{K}}_{\mathsf{SP-OTS}} + \mathbf{r}^\top \mathbb{I} \mathbf{B}^\top (\mathbf{U} + \tau \cdot \mathbf{V}) \mathbb{I}_1, \llbracket \mathbf{r}^\top \mathbf{B}^\top \rrbracket_1}_{\mathsf{randomized PRF}} \right)}$$

- We secret share **K** to n parties via (t, n)-Shamir Secret Sharing.
 - Each party has secret key $\mathbf{K}_i \in \mathbb{Z}_p^{(\ell+1)\times(k+1)}$.
- ullet For each partial signature, each party can choose it's own ${f r}_j \leftarrow \mathbb{Z}^k_{m p}.$

$$\boldsymbol{\Sigma}_j^{(i)}:\; (\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2) := \begin{pmatrix} [\![\begin{pmatrix} 1 & \boldsymbol{m}_i^\top \end{pmatrix}]\!]_1 \mathbf{K}_j + \mathbf{r}_j^\top [\![\mathbf{B}^\top (\mathbf{U} + \boldsymbol{\tau}_i \cdot \mathbf{V})]\!]_1, [\![\mathbf{r}_j^\top \mathbf{B}^\top]\!]_1 \end{pmatrix}$$

- Let $S \subseteq [1, n]$ s.t. $|S| \ge t$.
- Let $\{\lambda_j\}_{j \in S}$ are Lagrange polynomials wrt S.
- Lin combination of $\{\Sigma_j^{(i)}\}_j$ computes $\Sigma^{(i)}$ for $\mathbf{K} = \sum_{j \in S} \lambda_j \mathbf{K}_j$, $\mathbf{r} = \sum_{j \in S} \lambda_j \mathbf{r}_j^{\top}$
 - provided partial signatures on (j, m_i) use same τ_i ,

$$[\mathsf{KPW15}]: \ (\sigma_1,\sigma_2) := \underbrace{\left(\underbrace{\mathbb{I} \big(\mathbf{1} \quad m^\top \big) \mathbb{I}_1 \mathsf{K}}_{\mathsf{SP-OTS}} + \mathbf{r}^\top \mathbb{I} \mathbf{B}^\top (\mathbf{U} + \tau \cdot \mathbf{V}) \mathbb{I}_1, \llbracket \mathbf{r}^\top \mathbf{B}^\top \rrbracket_1}_{\mathsf{randomized PRF}} \right)}$$

- We secret share **K** to n parties via (t, n)-Shamir Secret Sharing.
 - Each party has secret key $\mathbf{K}_i \in \mathbb{Z}_p^{(\ell+1)\times(k+1)}$.
- ullet For each partial signature, each party can choose it's own ${f r}_j \leftarrow \mathbb{Z}^k_{m p}.$

$$\boldsymbol{\Sigma}_j^{(i)}:\; (\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2) := \begin{pmatrix} [\![\begin{pmatrix} 1 & \boldsymbol{m}_i^\top \end{pmatrix}]\!]_1 \mathbf{K}_j + \mathbf{r}_j^\top [\![\mathbf{B}^\top (\mathbf{U} + \boldsymbol{\tau}_i \cdot \mathbf{V})]\!]_1, [\![\mathbf{r}_j^\top \mathbf{B}^\top]\!]_1 \end{pmatrix}$$

- Let $S \subseteq [1, n]$ s.t. $|S| \ge t$.
- Let $\{\lambda_j\}_{j \in S}$ are Lagrange polynomials wrt S.
- Lin combination of $\{\Sigma_j^{(i)}\}_j$ computes $\Sigma^{(i)}$ for $\mathbf{K} = \sum_{j \in S} \lambda_j \mathbf{K}_j$, $\mathbf{r} = \sum_{j \in S} \lambda_j \mathbf{r}_j^{\top}$
 - provided partial signatures on (j, m_i) use same τ_i ,
 - proof works if $\tau_t \neq \tau_i$ for all $m_t \neq m_i$.

```
\mathsf{Setup}(1^{\lambda})
                                                                                                                \mathsf{KGen}(\mathsf{pp}, n, t)
                                                                                                                 1: \mathbf{K} \hookleftarrow \mathbb{Z}_{p}^{(\ell+1)\times(k+1)}
  1: \mathbf{A}, \mathbf{B} \leftarrow \mathbb{Z}_{p}^{(k+1) \times k}
                                                                                                                 2: \mathbf{K}_1, \dots, \mathbf{K}_n \leftarrow \mathsf{Shr}(\mathbf{K}, \mathbb{Z}_p^{(\ell+1)\times(k+1)}, n, t).
 2: \mathbf{U}, \mathbf{V} \leftarrow \mathbb{Z}_{p}^{(k+1)\times(k+1)}.
                                                                                                                  3: Set pk := [KA]_2.
  3: pp := ([\![A]\!]_2, [\![UA]\!]_2, [\![VA]\!]_2,
                                                                                                                 4: Set (\mathsf{sk}_i, \mathsf{pk}_i) := (\mathsf{K}_i, [\![\mathsf{K}_i \mathsf{A}]\!]_2), \forall i \in [n].
                                [\![B]\!]_1, [\![B^\top U]\!]_1, [\![B^\top V]\!]_1)
                                                                                                                CombineSign(pp, S, \{\Sigma_i\}_{i \in S})
                                                                                                                 1: Parse \Sigma_i = (\sigma_{i,1}, \sigma_{i,2}, \sigma_{i,3}, \sigma_4) for all i \in S.
                                                                                                                  2: Let Lagrange polynomials \lambda_i for i \in S.
ParSign(pp, sk_i, [m]_1)
                                                                                                                  3: Output \Sigma := (\widehat{\sigma}_1, \widehat{\sigma}_2, \widehat{\sigma}_3, \widehat{\sigma}_4) s.t.
  1: \mathbf{r}_i \leftarrow \mathbb{Z}_p^k
                                                                                                                  4: \widehat{\sigma}_1 := \prod_{i \in S} \sigma_{i,1}^{\lambda_i}
 2: \tau := \mathcal{H}([\![m]\!]_1)
  3: Output \Sigma_i := (\sigma_1, \sigma_2, \sigma_3, \sigma_4) s.t.
                                                                                                                                   = [ (1 \quad m^{\top}) \, \mathsf{K} ]_1 + \mathsf{r}^{\top} [ \mathsf{B}^{\top} (\mathsf{U} + \tau \mathsf{V}) ]_1 ]
         \sigma_1 := \llbracket (1 \quad m^\top) \rrbracket_1 \mathsf{K}_i + \mathsf{r}_i^\top \llbracket \mathsf{B}^\top (\mathsf{U} + \tau \mathsf{V}) \rrbracket_1
                                                                                                                         \widehat{\sigma}_2 := \prod_{i \in S} \sigma_{i,2}^{\lambda_i} = \llbracket \mathbf{r}^{\top} \mathbf{B}^{\top} \rrbracket_1
         \sigma_2 := [\mathbf{r}_i^\top \mathbf{B}^\top]_1
         \sigma_3 := \llbracket \tau \mathbf{r}_i^\top \mathbf{B}^\top \rrbracket_1
                                                                                                                         \widehat{\sigma}_3 := \prod_{i \in S} \sigma_{i,3}^{\lambda_i} = \llbracket 	au \mathbf{r}^{	op} \mathbf{B}^{	op} 
rbracket_1
         \sigma_4 := [\![\tau]\!]_2
                                                                                                                          \widehat{\sigma}_{4} := \sigma_{4}
ParVerify(pp, pk<sub>i</sub>, [m]_1, \Sigma_i)
                                                                                                               Verify(pp, pk, [m]_1, \Sigma)
  1: Let R = e(\sigma_1, ||A||_2)
                                                                                                                  1: Let R = e(\widehat{\sigma}_1, \llbracket \mathbf{A} \rrbracket_2)
  2: Let S_1 = e([(1 \ m^\top)]_1, pk_i)
                                                                                                                  2: Let S_1 = e([(1 \ m^\top)]_1, pk)
  3: Let S_2 = e(\sigma_2, [UA]_2) \cdot e(\sigma_3, [VA]_2)
                                                                                                                  3: Let S_2 = e(\widehat{\sigma}_2, \llbracket \mathbf{U} \mathbf{A} \rrbracket_2) \cdot e(\widehat{\sigma}_3, \llbracket \mathbf{V} \mathbf{A} \rrbracket_2)
  4: Check R = S_1 \cdot S_2
                                                                                                                  4: Check R = S_1 \cdot S_2
  5: Check e(\sigma_2, \sigma_4) = e(\sigma_3, [1]_2)
                                                                                                                  5: Check e(\widehat{\sigma}_2, \widehat{\sigma}_4) = e(\widehat{\sigma}_3, [1]_2)
```

Figure: Our Construction: TSPS for $k \ge 1$

- Each party has a secret key $\mathbf{K}_j \in \mathbb{Z}_p^{(\ell+1) \times (k+1)}$.
 - [KPW15] ensures \mathbf{K}_j has residual entropy $\mathbf{k}_j \in \mathbb{Z}_p^{(\ell+1)}$.

- Each party has a secret key $\mathbf{K}_j \in \mathbb{Z}_p^{(\ell+1) \times (k+1)}$.
 - [KPW15] ensures \mathbf{K}_i has residual entropy $\mathbf{k}_i \in \mathbb{Z}_p^{(\ell+1)}$.
 - Even after partial signatures on $\llbracket m_t \rrbracket_1 \neq \llbracket m^* \rrbracket_1$.

- Each party has a secret key $\mathbf{K}_j \in \mathbb{Z}_p^{(\ell+1) \times (k+1)}$.
 - [KPW15] ensures \mathbf{K}_i has residual entropy $\mathbf{k}_i \in \mathbb{Z}_p^{(\ell+1)}$.
 - Even after partial signatures on $\llbracket m_t \rrbracket_1 \neq \llbracket m^* \rrbracket_1$.
- Shamir Secret Sharing is information-theoretically secure.
 - We focus on the effect of SSS on residual entropies.

- Each party has a secret key $\mathbf{K}_j \in \mathbb{Z}_p^{(\ell+1) imes (k+1)}$.
 - [KPW15] ensures \mathbf{K}_i has residual entropy $\mathbf{k}_i \in \mathbb{Z}_p^{(\ell+1)}$.
 - Even after partial signatures on $\llbracket m_t \rrbracket_1 \neq \llbracket m^* \rrbracket_1$.
- Shamir Secret Sharing is information-theoretically secure.
 - We focus on the effect of SSS on residual entropies.
 - $\{\mathbf{k}_j\}_{j\in T}$ for $T = \{4, 5, 7, 8\}$, hides \mathbf{k}_6 .

- Each party has a secret key $\mathbf{K}_j \in \mathbb{Z}_p^{(\ell+1) \times (k+1)}$.
 - [KPW15] ensures \mathbf{K}_i has residual entropy $\mathbf{k}_i \in \mathbb{Z}_p^{(\ell+1)}$.
 - Even after partial signatures on $\llbracket m_t \rrbracket_1 \neq \llbracket m^* \rrbracket_1$.
- Shamir Secret Sharing is information-theoretically secure.
 - We focus on the effect of SSS on residual entropies.
 - $\{\mathbf{k}_j\}_{j\in T}$ for $T = \{4, 5, 7, 8\}$, hides \mathbf{k}_6 .
 - Even when $\{\mathbf{K}_j\}_{j\in T}$ are leaked adaptively.

- Each party has a secret key $\mathbf{K}_j \in \mathbb{Z}_p^{(\ell+1) imes (k+1)}$.
 - [KPW15] ensures \mathbf{K}_i has residual entropy $\mathbf{k}_i \in \mathbb{Z}_p^{(\ell+1)}$.
 - Even after partial signatures on $\llbracket m_t \rrbracket_1 \neq \llbracket m^* \rrbracket_1$.
- Shamir Secret Sharing is information-theoretically secure.
 - We focus on the effect of SSS on residual entropies.
 - $\{\mathbf{k}_j\}_{j\in T}$ for $T = \{4, 5, 7, 8\}$, hides \mathbf{k}_6 .
 - Even when $\{\mathbf{K}_j\}_{i \in T}$ are leaked adaptively.
- [KPW15] allows the reduction to know K.
 - \blacksquare We could allow the reduction to know $\left\{\mathbf{K}_{j}\right\}_{j\in\left[n\right]}$

- Each party has a secret key $\mathbf{K}_j \in \mathbb{Z}_p^{(\ell+1) imes (k+1)}$.
 - [KPW15] ensures \mathbf{K}_j has residual entropy $\mathbf{k}_j \in \mathbb{Z}_p^{(\ell+1)}$.
 - Even after partial signatures on $[m_t]_1 \neq [m^*]_1$.
- Shamir Secret Sharing is information-theoretically secure.
 - We focus on the effect of SSS on residual entropies.
 - $\{\mathbf{k}_j\}_{j\in T}$ for $T = \{4, 5, 7, 8\}$, hides \mathbf{k}_6 .
 - Even when $\{\mathbf{K}_j\}_{i \in T}$ are leaked adaptively.
- [KPW15] allows the reduction to know K.
 - We could allow the reduction to know $\left\{\mathbf{K}_{j}\right\}_{j\in[n]}$.
 - This allowed us to handle adaptive corruptions.

• Game₀. Real.

- Game₀. Real.
- Game₁. We change Verify to Verify* where,

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
$\overline{Verify(pp,pk,[\![m]\!]_1,\Sigma^*)}$	Verify*(pp, vk, $\llbracket m^* \rrbracket_1, \Sigma^*$):
1: Parse Σ^* as $(\widehat{\sigma}_1, \widehat{\sigma}_2, \widehat{\sigma}_3, \widehat{\sigma}_4)$.	1: Parse Σ^* as $(\widehat{\sigma}_1, \widehat{\sigma}_2, \widehat{\sigma}_3, \widehat{\sigma}_4)$.
2: Let $R = e(\widehat{\sigma}_1, \llbracket \mathbf{A} \rrbracket_2)$	2: Let $R = e(\widehat{\sigma}_1, \llbracket 1 \rrbracket_2)$
3: Let $S_1 = e([(1 \ m^\top)]_1, pk)$	3: Let $S_1 = e([[(1 m^\top)]_1, [[K]]_2)$
4: Let $S_2 = e(\widehat{\sigma}_2, \llbracket \mathbf{U} \mathbf{A} \rrbracket_2) \cdot e(\widehat{\sigma}_3, \llbracket \mathbf{V} \mathbf{A} \rrbracket_2)$	4: Let $S_2 = e(\widehat{\sigma}_2, \llbracket \mathbf{U} \rrbracket_2) \cdot e(\widehat{\sigma}_3, \llbracket \mathbf{V} \rrbracket_2)$
5: Check $R = S_1 \cdot S_2$	5: Check $R = S_1 \cdot S_2$
6: Check $e(\widehat{\sigma}_2, \widehat{\sigma}_4) = e(\widehat{\sigma}_3, [1]_2)$	6: Check $e(\widehat{\sigma}_2, \widehat{\sigma}_4) = e(\widehat{\sigma}_3, [1]_2)$

- Game₀. Real.
- Game₁. We change Verify to Verify* where,

• Game₂. If two m_i , m_j queried have same hash value, we abort.

- Game₀. Real.
- Game₁. We change Verify to Verify* where,

- Game₂. If two m_i , m_i queried have same hash value, we abort.
- Game₃. If our guess $\llbracket m^* \rrbracket_1$ among $\llbracket m_1 \rrbracket_1, \ldots, \llbracket m_Q \rrbracket_1$ is incorrect, we abort.

• Game₄. We change ParSign to ParSign* where,

```
ParSign(pp, sk_i, [m]_1)
                                                                                                                                ParSign^*(pp, sk_i, \llbracket m \rrbracket_1)
 1: \mathbf{r}_i \leftarrow \mathbb{Z}_p^k
                                                                                                                                 1: \mathbf{r}_i \leftarrow \mathbb{Z}_p^k
 2: \tau := \mathcal{H}(\llbracket m \rrbracket_1)
                                                                                                                                 2: \tau := \mathcal{H}([\![m]\!]_1)
 3: Output \Sigma_i := (\sigma_1, \sigma_2, \sigma_3, \sigma_4) s.t.
                                                                                                                                 \sigma_1 := \llbracket (1 \quad m^\top) \rrbracket_1 \mathsf{K}_i + \mathsf{r}_i^\top \llbracket \mathsf{B}^\top (\mathsf{U} + \tau \mathsf{V}) \rrbracket_1
                                                                                                                                 4: Output \Sigma_i := (\sigma_1, \sigma_2, \sigma_3, \sigma_4) s.t.
          \sigma_2 := [\![ \mathbf{r}_i^\top \mathbf{B}^\top ]\!]_1
                                                                                                                                          \sigma_1 := \llbracket (1 \quad m^\top) \rrbracket_1 \mathbf{K}_i + \llbracket \mu \mathbf{a}^\perp \rrbracket_1 + \mathbf{r}_i^\top \llbracket \mathbf{B}^\top (\mathbf{U} + \tau \mathbf{V}) \rrbracket_1
          \sigma_3 := \llbracket \tau \mathbf{r}_i^\top \mathbf{B}^\top \rrbracket_1
                                                                                                                                          \sigma_2 := [\![ \mathbf{r}_i^\top \mathbf{B}^\top ]\!]_1
          \sigma_4 := [\![\tau]\!]_2
                                                                                                                                          \sigma_3\!:=\![\![\boldsymbol{\tau}\mathbf{r}_i^\top\mathbf{B}^\top]\!]_1
                                                                                                                                          \sigma_4 := [\![\tau]\!]_2
```

Game₄. We change ParSign to ParSign* where,

```
ParSign(pp, sk_i, [m]_1)
                                                                                                                                         ParSign^*(pp, sk_i, \llbracket m \rrbracket_1)
 1: \mathbf{r}_i \leftarrow \mathbb{Z}_p^k
                                                                                                                                          1: \mathbf{r}_i \leftarrow \mathbb{Z}_n^k
 2: \tau := \mathcal{H}(\llbracket m \rrbracket_1)
                                                                                                                                          2: \tau := \mathcal{H}([\![m]\!]_1)
 3: Output \Sigma_i := (\sigma_1, \sigma_2, \sigma_3, \sigma_4) s.t.
                                                                                                                                           3: \|\mathbf{f}\|_{\mathbf{m}}\|_{1} = \|\mathbf{m}^{*}\|_{1}, set \mu = 0.
           \sigma_1 := \llbracket (1 \quad m^\top) \rrbracket_1 \mathsf{K}_i + \mathsf{r}_i^\top \llbracket \mathsf{B}^\top (\mathsf{U} + \tau \mathsf{V}) \rrbracket_1
                                                                                                                                           4: Output \Sigma_i := (\sigma_1, \sigma_2, \sigma_3, \sigma_4) s.t.
           \sigma_2 := [\![ \mathbf{r}_i^\top \mathbf{B}^\top ]\!]_1
                                                                                                                                                    \sigma_1 := \llbracket (1 \quad m^\top) \rrbracket_1 \mathbf{K}_i + \llbracket \mu \mathbf{a}^\perp \rrbracket_1 + \mathbf{r}_i^\top \llbracket \mathbf{B}^\top (\mathbf{U} + \tau \mathbf{V}) \rrbracket_1
          \sigma_3 := \llbracket \tau \mathbf{r}_i^\top \mathbf{B}^\top \rrbracket_1
                                                                                                                                                    \sigma_2 := [\![ \mathbf{r}_i^\top \mathbf{B}^\top ]\!]_1
          \sigma_4 := [\![\tau]\!]_2
                                                                                                                                                    \sigma_3\!:=\![\![\boldsymbol{\tau}\mathbf{r}_i^\top\mathbf{B}^\top]\!]_1
                                                                                                                                                    \sigma_4 := [\![\tau]\!]_2
```

- Game₅. Here, we sample $\widetilde{\mathbf{K}}_j \longleftrightarrow \mathbb{Z}_p^{(\ell+1)\times(k+1)}, \mathbf{k}_j \longleftrightarrow \mathbb{Z}_p^{\ell+1}$ for $i \in [1, n]$.
 - We set $\mathbf{K}_j = \widetilde{\mathbf{K}}_j + \mathbf{k}_j \mathbf{a}^{\perp}$ for $i \in [1, n]$.

Game₄. We change ParSign to ParSign* where,

```
ParSign(pp, sk_i, [m]_1)
                                                                                                                                    ParSign^*(pp, sk_i, \llbracket m \rrbracket_1)
 1: \mathbf{r}_i \leftarrow \mathbb{Z}_p^k
                                                                                                                                     1: \mathbf{r}_i \leftarrow \mathbb{Z}_p^k
 2: \tau := \mathcal{H}(\llbracket m \rrbracket_1)
                                                                                                                                     2: \tau := \mathcal{H}([\![m]\!]_1)
 3: Output \Sigma_i := (\sigma_1, \sigma_2, \sigma_3, \sigma_4) s.t.
                                                                                                                                      3: If [m]_1 = [m^*]_1, set \mu = 0.
          \sigma_1 := \llbracket (1 \quad m^\top) \rrbracket_1 \mathsf{K}_i + \mathsf{r}_i^\top \llbracket \mathsf{B}^\top (\mathsf{U} + \tau \mathsf{V}) \rrbracket_1
                                                                                                                                      4: Output \Sigma_i := (\sigma_1, \sigma_2, \sigma_3, \sigma_4) s.t.
          \sigma_2 := [\![ \mathbf{r}_i^\top \mathbf{B}^\top ]\!]_1
                                                                                                                                              \sigma_1 := \llbracket (1 \quad m^\top) \rrbracket_1 \mathbf{K}_i + \llbracket \mu \mathbf{a}^\perp \rrbracket_1 + \mathbf{r}_i^\top \llbracket \mathbf{B}^\top (\mathbf{U} + \tau \mathbf{V}) \rrbracket_1
          \sigma_3 := \llbracket \tau \mathbf{r}_i^\top \mathbf{B}^\top \rrbracket_1
                                                                                                                                              \sigma_2 := [\![ \mathbf{r}_i^\top \mathbf{B}^\top ]\!]_1
          \sigma_4 := [\![\tau]\!]_2
                                                                                                                                              \sigma_3\!:=\![\![\boldsymbol{\tau}\mathbf{r}_i^\top\mathbf{B}^\top]\!]_1
                                                                                                                                               \sigma_4 := [\![\tau]\!]_2
```

- Game₅. Here, we sample $\widetilde{\mathbf{K}}_j \leftarrow \mathbb{Z}_p^{(\ell+1)\times(k+1)}, \mathbf{k}_j \leftarrow \mathbb{Z}_p^{\ell+1}$ for $i \in [1, n]$.
 - We set $\mathbf{K}_j = \widetilde{\mathbf{K}}_j + \mathbf{k}_j \mathbf{a}^{\perp}$ for $i \in [1, n]$.
- Finally, we show that Game₅ hides $\{\mathbf{k}_j\}_{j\notin\mathcal{T}}$ information-theoretically.

Summary

- First adaptively secure TSPS construction.
- Competitive efficiency.
- First standard model construction.
- Proved it secure under standard \mathcal{D}_k -matDH, \mathcal{D}_k -kerDH assumptions.

Thanks for your attention! Any questions?

Thanks for your attention! Any questions?

Please take a look: https://ia.cr/2024/445

Thanks for your attention! Any questions?

Please take a look: https://ia.cr/2024/445 Contact: csayantan.mukherjee@gmail.com