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zkSNARKSs

Proof Systems that are:

1. Non-Interactive single message from P to V
2. Argument of Knowledge VPPTP: d& — w
3. Succinct. |7| << |w|
4. Zero-Knowledge.
(1),(2),(3) without (4) is already cool, but with (4) is

awesome.



Vector Commitment and Lookup Argument
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- Binding
- Sgc;icntness o Prove that col D (comm. as C f)
- Hiding (or Not-Hiding), subvector of col A (committed as C_T)



State-of-Art:




State-of-Art:

Some Facts:




Our Contributions

e Improve over CQ along three directions:

o Efficiency
e Zero-Knowledge and Fully Zero-Knowledge.
e Flexibility

e Extend the notion of Lookup Argument from vectors to matrices.

e Application to Privacy-Preserving Machine Learning: Zero-Knowledge
Decision-Tree Statistics



Improve over CQ
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e 2 Sum-Checks Protocols to prove > A(wh) = > B(wh).
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{CQ",zkCQ*}: From two sum-checks to one

o If the (interpolation) subgroups (w,) C (wpn) then there exists Z(X):

B B(X) - Z(X)

D

Y Blwi) = ) Bwi) Z(wh)
i€[n] i€[N]
e Now, we can batch Sum-Checks together!
e Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].
Fully ZK: privacy for both (big) table and (sub) vector.
Shorter proofs: {CQ™™,zkCQ™ "} using tricks from [LSZ22] (Lipmaa, Siim, Zajac) 6



Matrix Lookup Arguments



Matrix Commitment and Matrix Lookup

7
2
3
4
5
6
7
8
)




Matrix Commitment and Matrix Lookup

7
2
3
4
5
6
7
8
)

e A sub-matrix as rows PROJECTION [We also cover row + column]
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Our Matrix Lookup
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Matrix Commit F = Vectorize F — f?—i— Vector commit.

Generic compiler from any homomorphic Vector Commitment (read it as KZG)

Matrix Lookup for table with few columns is easy.

—

Prove that 3r, ¢ : such that: (1) (7, C, f) sub-vector of (i,/, t;;)i;
and (2) tensor structures, F=F ®1, E¢=1® (A B,...,E).



Zero-Knowledge Decision Tree



The Model (Simplified)

Model Provider "Phase 1
A comiT Commit
T- IS T
X : Phase 2
Client
Server 4/ "Prove”
y=T(x),m
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The Model: ZK Decision Tree ” Statistics”

Model Provider "Phase 1
A comniT Commit
- IS T
(i)iem) : Phase 2
Client
Server 4l "Proyve"”

Efficiency: O(|f| + nd)

"Universal"




Our Technique: Box Encoding

Box Econding
Standard Encoding

Y
x<3 + - 1 | (0,0),(3,B) |.
SN 2(3,0),(B,5) | ®
. /‘/s\ 31(3,5).(B,B) |@
2 T x
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Our Technique: Basic Scheme

Commit Phase

Standard Encoding

Box Econding Matrix
><3 Commit
11(0,0),(3,B) |®
L VRN 31(3,5),(B,B) |@
[ ] [}
2
Prove Phase ’
T((4,2) )=0
1 0),(3,B) |®
ZGoenm—> Cy
31(3,5).(B,B) |®@
|/_ Ctcommitto T (4,2) lies inside the box defined by M
| = cm commits to M || and the last column of M is [ ]
13

and M submatrix of T



A Simple Attack and Our Fix

Box Econding Matrix
11(0,0),(3,8) |@ Commit

—>> 2(3,0),(B5) |®@ —> CT

3|

2|

(3,5).(B,B) |®@

—>2](3,0),(B)5) @

- The attacker can claim T((3,2)) =e and T((3,2)) = e
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A Simple Attack and Our Fix

¥
Box Econding Matrix
1 | (0,0),(3,B) |. Commit
—> 2|(30,B5 |0 => Cr
31(3,5),(B,B) | @
—>2](3,0),(B)5) | @

- The attacker can claim T((3,2)) =e and T((3,2)) = e
- Fix: Prove that Cy+ commits to a valid box encoding
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A Simple Attack and Our Fix

¥
Box Econding Matrix

| (0,0),(3,B) |. Commit
13,065 |0 —> Cp
| (3,5).(B,B) |@

| (3,0),(B,5) | @

1
—> 2
3
—> 2

- The attacker can claim T((3,2)) =e and T((3,2)) = e
- Fix: Prove that Cy+ commits to a valid box encoding
- We give algebraic constraints (read it linear/hadamard constraints) for validity
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A Simple Attack and Our Fix

¥
Box Econding Matrix
1 | (0'0)'(3'3) |. Commit
—> 2|(30,B5 |0 => Cr
31(3,5),(B,B) | @
—>2](3,0),(B)5) | @

The attacker can claim T((3,2)) =e and T((3,2)) = e
- Fix: Prove that Cy+ commits to a valid box encoding

We give algebraic constraints (read it linear/hadamard constraints) for validity
Using technique from [ZGKMR22] we get ©(N) proving time.
(Zapico et al)
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