
Lookup Arguments: Improvements, Extensions and

Applications to Zero-Knowledge Decision Trees

Matteo Campanelli1 A. Faonio2 Dario Fiore3 Tianyu Li4 Helger Lipmaa5

Protocol Labs (now at Matter Labs)

IMDEA Software Institute

Delft University of Technology

University of Tartu

zkSNARKs

Proof Systems that are:

1. Non-Interactive single message from P to V
2. Argument of Knowledge ∀ PPT P : ∃ E → w

3. Succinct. |π| << |w |
4. Zero-Knowledge.

(1),(2),(3) without (4) is already cool, but with (4) is

awesome.

1

zkSNARKs

Proof Systems that are:

1. Non-Interactive single message from P to V
2. Argument of Knowledge ∀ PPT P : ∃ E → w

3. Succinct. |π| << |w |
4. Zero-Knowledge.

(1),(2),(3) without (4) is already cool, but with (4) is

awesome.
1

- Binding
- Succicntness
- Hiding (or Not-Hiding),

Prove that col D (comm. as C_f)
 subvector of col A (committed as C_T)

Vector Commitment and Lookup Argument

2

State-of-Art:

• CQ [EFG’22] based on Cached Quotients (NEWS: Tue, 2nd Session, Track 2) ⇐
(Eagen, Gabizon and Fiore)

• Lasso [STW’23] for “structured tables”.

(Setty, Thaler and Wahby)

Some Facts:

• Prove f⃗ commit’d as Cf is sub-vector of t⃗ commit’d as Ct .

• Proving Time independent of |t⃗| = N after pre-computation”

(we assume |t⃗| >> |f⃗ |)
• Since we need pre-computation, we assume t⃗ is fixed.

• Based on KZG where comt⃗ = gT (s) and T poly interpolating values.

3

State-of-Art:

• CQ [EFG’22] based on Cached Quotients (NEWS: Tue, 2nd Session, Track 2) ⇐
(Eagen, Gabizon and Fiore)

• Lasso [STW’23] for “structured tables”.

(Setty, Thaler and Wahby)

Some Facts:

• Prove f⃗ commit’d as Cf is sub-vector of t⃗ commit’d as Ct .

• Proving Time independent of |t⃗| = N after pre-computation”

(we assume |t⃗| >> |f⃗ |)
• Since we need pre-computation, we assume t⃗ is fixed.

• Based on KZG where comt⃗ = gT (s) and T poly interpolating values.

3

Our Contributions

• Improve over CQ along three directions:

• Efficiency

• Zero-Knowledge and Fully Zero-Knowledge.

• Flexibility

• Extend the notion of Lookup Argument from vectors to matrices.

• Application to Privacy-Preserving Machine Learning: Zero-Knowledge

Decision-Tree Statistics

4

Improve over CQ

4

Haböck’s Logaritmic Derivatives Lemma and CQ

f⃗ subvector of t⃗ iff ∃ sparse m⃗ ∈ NN

N∑
i=1

mi

ti + X
=

n∑
i=1

1

fi + X

• A(X) interpolates
mi
ti+β , B(X) interpolates

1
fi+β (random β)

• 2 Sum-Checks Protocols to prove
∑

A(ωi
N) =

∑
B(ωj

n).

5

Haböck’s Logaritmic Derivatives Lemma and CQ

f⃗ subvector of t⃗ iff ∃ sparse m⃗ ∈ NN

N∑
i=1

mi

ti + X
=

n∑
i=1

1

fi + X

• A(X) interpolates
mi
ti+β , B(X) interpolates

1
fi+β (random β)

A(X) B(X)

0

0

0

0

0

0

0

0
0

Cached Quotients
+

A(X) sparse

• 2 Sum-Checks Protocols to prove
∑

A(ωi
N) =

∑
B(ωj

n).

5

{CQ+, zkCQ+}: From two sum-checks to one

• If the (interpolation) subgroups ⟨ωn⟩ ⊂ ⟨ωN⟩ then there exists Z (X):

• Now, we can batch Sum-Checks together!

• Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].

• Fully ZK: privacy for both (big) table and (sub) vector.

• Shorter proofs: {CQ++, zkCQ++} using tricks from [LSZ22] (Lipmaa, Siim, Zajac)

6

{CQ+, zkCQ+}: From two sum-checks to one

• If the (interpolation) subgroups ⟨ωn⟩ ⊂ ⟨ωN⟩ then there exists Z (X):

• Now, we can batch Sum-Checks together!

• Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].

• Fully ZK: privacy for both (big) table and (sub) vector.

• Shorter proofs: {CQ++, zkCQ++} using tricks from [LSZ22] (Lipmaa, Siim, Zajac)

6

{CQ+, zkCQ+}: From two sum-checks to one

• If the (interpolation) subgroups ⟨ωn⟩ ⊂ ⟨ωN⟩ then there exists Z (X):

• Now, we can batch Sum-Checks together!

• Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].

• Fully ZK: privacy for both (big) table and (sub) vector.

• Shorter proofs: {CQ++, zkCQ++} using tricks from [LSZ22] (Lipmaa, Siim, Zajac)

6

{CQ+, zkCQ+}: From two sum-checks to one

• If the (interpolation) subgroups ⟨ωn⟩ ⊂ ⟨ωN⟩ then there exists Z (X):

• Now, we can batch Sum-Checks together!

• Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].

• Fully ZK: privacy for both (big) table and (sub) vector.

• Shorter proofs: {CQ++, zkCQ++} using tricks from [LSZ22] (Lipmaa, Siim, Zajac) 6

Matrix Lookup Arguments

6

Matrix Commitment and Matrix Lookup

• A sub-matrix as rows PROJECTION [We also cover row + column]

7

Matrix Commitment and Matrix Lookup

• A sub-matrix as rows PROJECTION [We also cover row + column]

7

Matrix Commitment and Matrix Lookup

• A sub-matrix is a rows PROJECTION [We also cover row + column]

8

Our Matrix Lookup

• Matrix Commit F⃗ = Vectorize F⃗ → f⃗ + Vector commit.

• Generic compiler from any homomorphic Vector Commitment (read it as KZG)

• Matrix Lookup for table with few columns is easy.

• Prove that ∃r⃗ , c⃗ : such that: (1) (r⃗ , c⃗ , f⃗) sub-vector of (i , j , ti ,j)i ,j

and (2) tensor structures, r⃗ = r⃗ ′ ⊗ 1⃗, c⃗ = 1⃗⊗ (A,B, . . . ,E) .
9

Zero-Knowledge Decision Tree

9

Model Provider

Server Client

Phase 1
"Commit"

Phase 2
"Prove"

The Model (Simplified)

10

Model Provider

Server Client

Phase 1
"Commit"

Phase 2
"Prove"

Efficiency:

"Universal"

The Model: ZK Decision Tree ”Statistics”

11

1

2 3

1

3

2

1 | (0,0),(3,B) |
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |

Standard Encoding
Box Econding

Our Technique: Box Encoding

12

1

2 3

1 | (0,0),(3,B) |
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |

Standard Encoding
Box Econding Matrix

Commit

1 | (0,0),(3,B) |
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |

Ct commit to T
Cm commits to M
and M submatrix of T

(4,2) lies inside the box defined by M
and the last column of M is

Commit Phase

Prove Phase
T((4,2))=

Our Technique: Basic Scheme

13

A Simple Attack and Our Fix

1 | (0,0),(3,B) |
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |
2 | (3,0),(B,5) |

Box Econding Matrix
Commit

- The attacker can claim T ((3, 2)) = • and T ((3, 2)) = •

- Fix: Prove that CT commits to a valid box encoding

- We give algebraic constraints (read it linear/hadamard constraints) for validity

- Using technique from [ZGKMR22] we get Θ(N) proving time.

(Zapico et al)

14

A Simple Attack and Our Fix

1 | (0,0),(3,B) |
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |
2 | (3,0),(B,5) |

Box Econding Matrix
Commit

- The attacker can claim T ((3, 2)) = • and T ((3, 2)) = •
- Fix: Prove that CT commits to a valid box encoding

- We give algebraic constraints (read it linear/hadamard constraints) for validity

- Using technique from [ZGKMR22] we get Θ(N) proving time.

(Zapico et al)

14

A Simple Attack and Our Fix

1 | (0,0),(3,B) |
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |
2 | (3,0),(B,5) |

Box Econding Matrix
Commit

- The attacker can claim T ((3, 2)) = • and T ((3, 2)) = •
- Fix: Prove that CT commits to a valid box encoding

- We give algebraic constraints (read it linear/hadamard constraints) for validity

- Using technique from [ZGKMR22] we get Θ(N) proving time.

(Zapico et al)

14

A Simple Attack and Our Fix

1 | (0,0),(3,B) |
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |
2 | (3,0),(B,5) |

Box Econding Matrix
Commit

- The attacker can claim T ((3, 2)) = • and T ((3, 2)) = •
- Fix: Prove that CT commits to a valid box encoding

- We give algebraic constraints (read it linear/hadamard constraints) for validity

- Using technique from [ZGKMR22] we get Θ(N) proving time.

(Zapico et al)

14

• New Lookup Argument with Fully ZK

• Generic compiler to Matrix Lookup

• zkSNARKs for decision tree inference and statistics

https://ia.cr/2023/1518

14

https://ia.cr/2023/1518

Mandaang guwu!

14

