Lookup Arguments: Improvements, Extensions and Applications to Zero-Knowledge Decision Trees

```
Matteo Campanelli }\mp@subsup{}{}{1}\mathrm{ A. Faonio }\mp@subsup{}{}{2}\mathrm{ Dario Fiore }\mp@subsup{}{}{3}\mathrm{ Tianyu Li }\mp@subsup{}{}{4}\mathrm{ Helger Lipmaa}\mp@subsup{}{}{5
Protocol Labs (now at Matter Labs)
```

IMDEA Software Institute
Delft University of Technology
University of Tartu

zkSNARKs

Proof Systems that are:

1. Non-Interactive single message from \mathcal{P} to \mathcal{V}
2. Argument of Knowledge $\forall \operatorname{PPT} \mathcal{P}: \exists \mathcal{E} \rightarrow w$
3. Succinct. $|\pi| \ll|w|$
4. Zero-Knowledge.

zkSNARKs

Proof Systems that are:

1. Non-Interactive single message from \mathcal{P} to \mathcal{V}
2. Argument of Knowledge $\forall \operatorname{PPT} \mathcal{P}: \exists \mathcal{E} \rightarrow w$
3. Succinct. $|\pi| \ll|w|$
4. Zero-Knowledge.
(1),(2),(3) without (4) is already cool, but with (4) is awesome.

Vector Commitment and Lookup Argument

- Binding
- Succicntness
- Hiding (or Not-Hiding),

Prove that col D (comm. as C_f) subvector of col A (committed as C_T)

State-of-Art:

- CQ [EFG'22] based on Cached Quotients (NEWS: Tue, 2nd Session, Track 2) \Leftarrow (Eagen, Gabizon and Fiore)
- Lasso [STW'23] for "structured tables".
(Setty, Thaler and Wahby)

State-of-Art:

- CQ [EFG'22] based on Cached Quotients (NEWS: Tue, 2nd Session, Track 2) \Leftarrow (Eagen, Gabizon and Fiore)
- Lasso [STW'23] for "structured tables".
(Setty, Thaler and Wahby)

Some Facts:

- Prove \vec{f} commit'd as C_{f} is sub-vector of \vec{t} commit'd as C_{t}.
- Proving Time independent of $|\vec{t}|=N$ after pre-computation" (we assume $|\vec{t}| \gg|\vec{f}|$)
- Since we need pre-computation, we assume \vec{t} is fixed.
- Based on KZG where $\operatorname{com}_{\vec{t}}=g^{T(s)}$ and T poly interpolating values.

Our Contributions

- Improve over CQ along three directions:
- Efficiency
- Zero-Knowledge and Fully Zero-Knowledge.
- Flexibility
- Extend the notion of Lookup Argument from vectors to matrices.
- Application to Privacy-Preserving Machine Learning: Zero-Knowledge Decision-Tree Statistics

Improve over CQ

Haböck's Logaritmic Derivatives Lemma and CQ

\vec{f} subvector of \vec{t} iff \exists sparse $\vec{m} \in \mathbb{N}^{N}$

$$
\sum_{i=1}^{N} \frac{m_{i}}{t_{i}+X}=\sum_{i=1}^{n} \frac{1}{f_{i}+X}
$$

- $A(X)$ interpolates $\frac{m_{i}}{t_{i}+\beta}, B(X)$ interpolates $\frac{1}{f_{i}+\beta}($ random $\beta)$

Haböck's Logaritmic Derivatives Lemma and CQ

\vec{f} subvector of \vec{t} iff \exists sparse $\vec{m} \in \mathbb{N}^{N}$

$$
\sum_{i=1}^{N} \frac{m_{i}}{t_{i}+X}=\sum_{i=1}^{n} \frac{1}{f_{i}+X}
$$

- $A(X)$ interpolates $\frac{m_{i}}{t_{i}+\beta}, B(X)$ interpolates $\frac{1}{f_{i}+\beta}($ random $\beta)$

$$
A(X)
$$

$$
B(X)
$$

- 2 Sum-Checks Protocols to prove $\sum A\left(\omega_{N}^{i}\right)=\sum B\left(\omega_{n}^{j}\right)$.
- If the (interpolation) subgroups $\left\langle\omega_{n}\right\rangle \subset\left\langle\omega_{N}\right\rangle$ then there exists $Z(X)$:

- If the (interpolation) subgroups $\left\langle\omega_{n}\right\rangle \subset\left\langle\omega_{N}\right\rangle$ then there exists $Z(X)$:

- Now, we can batch Sum-Checks together!
- If the (interpolation) subgroups $\left\langle\omega_{n}\right\rangle \subset\left\langle\omega_{N}\right\rangle$ then there exists $Z(X)$:

- Now, we can batch Sum-Checks together!
- Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].
- Fully ZK: privacy for both (big) table and (sub) vector.
- If the (interpolation) subgroups $\left\langle\omega_{n}\right\rangle \subset\left\langle\omega_{N}\right\rangle$ then there exists $Z(X)$:

- Now, we can batch Sum-Checks together!
- Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].
- Fully ZK: privacy for both (big) table and (sub) vector.
- Shorter proofs: $\left\{\mathrm{CQ}^{++}, \mathrm{zkCQ}^{++}\right\}$using tricks from [LSZ22] (Lipmaa, Siim, Zajac)

Matrix Lookup Arguments

Matrix Commitment and Matrix Lookup

Matrix Commitment and Matrix Lookup

- A sub-matrix as rows PROJECTION [We also cover row + column]

Matrix Commitment and Matrix Lookup

- A sub-matrix is a rows PROJECTION [We also cover row + column]

Our Matrix Lookup

- Matrix Commit $\vec{F}=$ Vectorize $\vec{F} \rightarrow \vec{f}+$ Vector commit.
- Generic compiler from any homomorphic Vector Commitment (read it as KZG)
- Matrix Lookup for table with few columns is easy.
- Prove that $\exists \vec{r}, \vec{c}$: such that: (1) $(\vec{r}, \vec{c}, \vec{f})$ sub-vector of $\left(i, j, t_{i, j}\right)_{i, j}$ and (2) tensor structures, $\vec{r}=\vec{r}^{\prime} \otimes \overrightarrow{1}, \quad \vec{c}=\overrightarrow{1} \otimes(A, B, \ldots, E)$.

Zero-Knowledge Decision Tree

The Model (Simplified)

The Model: ZK Decision Tree "Statistics"

Efficiency: $\Theta(|f|+n d)$ "Universal"

Our Technique: Box Encoding

Our Technique: Basic Scheme

Commit Phase

> Standard Encoding
Box Econding Matrix

Prove Phase

$$
\mathrm{T}((4,2))=0
$$

$\frac{\frac{1|(0,0),(3, B)| O}{2|(3,0),(B, 5)|}}{3|(3,5),(B, B)|} \Rightarrow C_{M}$
$\pi=\begin{aligned} & \mathrm{Ct} \text { commit to } \mathrm{T} \\ & \mathrm{Cm} \text { commits to } \mathrm{M}\end{aligned}$
Π =and lies inside the box defined by M and M submatrix of T

A Simple Attack and Our Fix

- The attacker can claim $T((3,2))=\bullet$ and $T((3,2))=\bullet$

A Simple Attack and Our Fix

- The attacker can claim $T((3,2))=\bullet$ and $T((3,2))=\bullet$
- Fix: Prove that C_{T} commits to a valid box encoding

A Simple Attack and Our Fix

- The attacker can claim $T((3,2))=\bullet$ and $T((3,2))=\bullet$
- Fix: Prove that C_{T} commits to a valid box encoding
- We give algebraic constraints (read it linear/hadamard constraints) for validity

A Simple Attack and Our Fix

- The attacker can claim $T((3,2))=\bullet$ and $T((3,2))=\bullet$
- Fix: Prove that C_{T} commits to a valid box encoding
- We give algebraic constraints (read it linear/hadamard constraints) for validity
- Using technique from [ZGKMR22] we get $\Theta(N)$ proving time. (Zapico et al)
- New Lookup Argtiment with Fully Zz
- Generic compiler to Matrix Lookup
- zkSNARKs for decision tree inference and statistics
https://ia. cr/2023/1518

