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zkSNARKs

Proof Systems that are:

1. Non-Interactive single message from P to V
2. Argument of Knowledge ∀ PPT P : ∃ E → w

3. Succinct. |π| << |w |
4. Zero-Knowledge.

(1),(2),(3) without (4) is already cool, but with (4) is

awesome.
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- Binding
- Succicntness
- Hiding (or Not-Hiding), 

Prove that col D (comm. as C_f)
 subvector of col A (committed as C_T)

Vector Commitment and Lookup Argument
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State-of-Art:

• CQ [EFG’22] based on Cached Quotients (NEWS: Tue, 2nd Session, Track 2) ⇐
(Eagen, Gabizon and Fiore)

• Lasso [STW’23] for “structured tables”.

(Setty, Thaler and Wahby)

Some Facts:

• Prove f⃗ commit’d as Cf is sub-vector of t⃗ commit’d as Ct .

• Proving Time independent of |t⃗| = N after pre-computation”

(we assume |t⃗| >> |f⃗ |)
• Since we need pre-computation, we assume t⃗ is fixed.

• Based on KZG where comt⃗ = gT (s) and T poly interpolating values.
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Our Contributions

• Improve over CQ along three directions:

• Efficiency

• Zero-Knowledge and Fully Zero-Knowledge.

• Flexibility

• Extend the notion of Lookup Argument from vectors to matrices.

• Application to Privacy-Preserving Machine Learning: Zero-Knowledge

Decision-Tree Statistics
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Improve over CQ
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Haböck’s Logaritmic Derivatives Lemma and CQ

f⃗ subvector of t⃗ iff ∃ sparse m⃗ ∈ NN

N∑
i=1

mi

ti + X
=

n∑
i=1

1

fi + X

• A(X ) interpolates
mi
ti+β , B(X ) interpolates

1
fi+β (random β)

• 2 Sum-Checks Protocols to prove
∑

A(ωi
N) =

∑
B(ωj

n).
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{CQ+, zkCQ+}: From two sum-checks to one

• If the (interpolation) subgroups ⟨ωn⟩ ⊂ ⟨ωN⟩ then there exists Z (X ):

• Now, we can batch Sum-Checks together!

• Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].

• Fully ZK: privacy for both (big) table and (sub) vector.

• Shorter proofs: {CQ++, zkCQ++} using tricks from [LSZ22] (Lipmaa, Siim, Zajac)
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Matrix Lookup Arguments
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Matrix Commitment and Matrix Lookup

• A sub-matrix as rows PROJECTION [We also cover row + column]
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Our Matrix Lookup

• Matrix Commit F⃗ = Vectorize F⃗ → f⃗ + Vector commit.

• Generic compiler from any homomorphic Vector Commitment (read it as KZG)

• Matrix Lookup for table with few columns is easy.

• Prove that ∃r⃗ , c⃗ : such that: (1) (r⃗ , c⃗ , f⃗ ) sub-vector of (i , j , ti ,j)i ,j

and (2) tensor structures, r⃗ = r⃗ ′ ⊗ 1⃗, c⃗ = 1⃗⊗ (A,B, . . . ,E ) .
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Zero-Knowledge Decision Tree
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Model Provider

Server Client

Phase 1
"Commit"

Phase 2
"Prove"

The Model (Simplified)
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Model Provider

Server Client

Phase 1
"Commit"

Phase 2
"Prove"

Efficiency:

"Universal" 

The Model: ZK Decision Tree ”Statistics”
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1

2 3

1

3

2

1 | (0,0),(3,B) | 
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |

Standard Encoding
Box Econding

Our Technique: Box Encoding
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1

2 3

1 | (0,0),(3,B) | 
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |

Standard Encoding
Box Econding Matrix

Commit

1 | (0,0),(3,B) | 
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |

Ct commit to T
Cm commits to M
and M submatrix of T

(4,2) lies inside the box defined by M
and the last column of M is 

Commit Phase

Prove Phase
T( (4,2) )=

Our Technique: Basic Scheme
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A Simple Attack and Our Fix

1 | (0,0),(3,B) | 
2 | (3,0),(B,5) |
3 | (3,5),(B,B) |
2 | (3,0),(B,5) | 

Box Econding Matrix
Commit

- The attacker can claim T ((3, 2)) = • and T ((3, 2)) = •

- Fix: Prove that CT commits to a valid box encoding

- We give algebraic constraints (read it linear/hadamard constraints) for validity

- Using technique from [ZGKMR22] we get Θ(N) proving time.

(Zapico et al)
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• New Lookup Argument with Fully ZK

• Generic compiler to Matrix Lookup

• zkSNARKs for decision tree inference and statistics

https://ia.cr/2023/1518
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Mandaang guwu!
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