Lookup Arguments: Improvements, Extensions and Applications to Zero-Knowledge Decision Trees

 ${\sf Matteo \ Campanelli^1} \quad {\sf A. \ Faonio^2} \quad {\sf Dario \ Fiore^3} \quad {\sf Tianyu \ Li^4} \quad {\sf Helger \ Lipmaa^5}$

Protocol Labs (now at Matter Labs)

IMDEA Software Institute

Delft University of Technology

University of Tartu

Proof Systems that are:

- 1. **Non-Interactive** single message from \mathcal{P} to \mathcal{V}
- 2. Argument of Knowledge $\forall PPT \mathcal{P} : \exists \mathcal{E} \rightarrow w$
- 3. Succinct. $|\pi| << |w|$
- 4. Zero-Knowledge.

Proof Systems that are:

- 1. Non-Interactive single message from ${\cal P}$ to ${\cal V}$
- 2. Argument of Knowledge $\forall PPT \mathcal{P} : \exists \mathcal{E} \rightarrow w$
- 3. Succinct. $|\pi| << |w|$
- 4. Zero-Knowledge.

(1),(2),(3) without (4) is already cool, but with (4) is

awesome.

Vector Commitment and Lookup Argument

- Binding
- Succientness
- Hiding (or Not-Hiding),

Prove that col D (comm. as C_f) **subvector** of col A (committed as C_T)

State-of-Art:

- CQ [EFG'22] based on Cached Quotients (NEWS: Tue, 2nd Session, Track 2) ⇐ (Eagen, Gabizon and Fiore)
- Lasso [STW'23] for "structured tables".

(Setty, Thaler and Wahby)

State-of-Art:

- CQ [EFG'22] based on Cached Quotients (NEWS: Tue, 2nd Session, Track 2) ⇐ (Eagen, Gabizon and Fiore)
- Lasso [STW'23] for "structured tables".

(Setty, Thaler and Wahby)

Some Facts:

- Prove \vec{f} commit'd as C_f is sub-vector of \vec{t} commit'd as C_t .
- Proving Time independent of |t| = N after pre-computation" (we assume |t| >> |t|)
- Since we need pre-computation, we assume \vec{t} is fixed.
- Based on KZG where $com_{\vec{t}} = g^{T(s)}$ and T poly interpolating values.

- Improve over CQ along three directions:
 - Efficiency
 - Zero-Knowledge and Fully Zero-Knowledge.
 - Flexibility
- Extend the notion of Lookup Argument from vectors to matrices.
- Application to Privacy-Preserving Machine Learning: Zero-Knowledge Decision-Tree Statistics

Improve over CQ

Haböck's Logaritmic Derivatives Lemma and CQ

 \vec{f} subvector of \vec{t} iff \exists sparse $\vec{m} \in \mathbb{N}^N$

$$\sum_{i=1}^{N} \frac{m_i}{t_i + X} = \sum_{i=1}^{n} \frac{1}{f_i + X}$$

•
$$A(X)$$
 interpolates $\frac{m_i}{t_i+\beta}$, $B(X)$ interpolates $\frac{1}{f_i+\beta}$ (random β)

Haböck's Logaritmic Derivatives Lemma and CQ

 \vec{f} subvector of \vec{t} iff \exists sparse $\vec{m} \in \mathbb{N}^N$

• 2 Sum-Checks Protocols to prove $\sum A(\omega_N^j) = \sum B(\omega_n^j)$.

${CQ^+, zkCQ^+}$: From two sum-checks to one

• If the (interpolation) subgroups $\langle \omega_n \rangle \subset \langle \omega_N \rangle$ then there exists Z(X):

${CQ^+, zkCQ^+}$: From two sum-checks to one

• If the (interpolation) subgroups $\langle \omega_n \rangle \subset \langle \omega_N \rangle$ then there exists Z(X):

• Now, we can batch Sum-Checks together!

{CQ⁺, $zkCQ^+$ }: From two sum-checks to one

• If the (interpolation) subgroups $\langle \omega_n \rangle \subset \langle \omega_N \rangle$ then there exists Z(X):

- Now, we can batch Sum-Checks together!
- Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].
- Fully ZK: privacy for both (big) table and (sub) vector.

{CQ⁺, $zkCQ^+$ }: From two sum-checks to one

• If the (interpolation) subgroups $\langle \omega_n \rangle \subset \langle \omega_N \rangle$ then there exists Z(X):

- Now, we can batch Sum-Checks together!
- Zero-Knowledge: using ZK-SumCheck from Lunar [CFFHQ19].
- Fully ZK: privacy for both (big) table and (sub) vector.
- Shorter proofs: {CQ⁺⁺, zkCQ⁺⁺} using tricks from [LSZ22] (Lipmaa, Siim, Zajac)

6

Matrix Lookup Arguments

Matrix Commitment and Matrix Lookup

	A	в	c	D	E	
1	14	42	84	133	45	
2	423	465	507	45	549	
3	21	63	105	46	147	
4	122	164	206	47	248	
5	133	175	217	48	259	
6	244	286	328	49	370	
7	1	43	85	50	127	
8	1621	1663	1705	51	1747	
9	1234	1276	1318	52	1360	
0	1253	1295	1337	53	1379	
1	1523	1565	1607	54	1649	
2	1	43	85	55	127	
13	325	367	409	56	451	
14	123	165	207	57	249	
15	5	47	89	58	131	
16	3215	3257	3299	59	3341	
17	325	367	409	60	451	
18	12	54	96	61	138	
19	325	367	409	62	451	
20						
21						

Matrix Commitment and Matrix Lookup

	A	в	c	D	E	
1	14	42	84	133	45	
2	423	465	507	45	549	
3	21	63	105	46	147	
4	122	164	206	47	248	
5	133	175	217	48	259	
6	244	286	328	49	370	
7	1	43	85	50	127	
8	1621	1663	1705	51	1747	
9	1234	1276	1318	52	1360	
0	1253	1295	1337	53	1379	
11	1523	1565	1607	54	1649	
12	1	43	85	55	127	
13	325	367	409	56	451	
14	123	165	207	57	249	
15	5	47	89	58	131	
16	3215	3257	3299	59	3341	
17	325	367	409	60	451	
18	12	54	96	61	138	
19	325	367	409	62	451	
20						
21						

• A sub-matrix as rows **PROJECTION** [We also cover row + column]

Matrix Commitment and Matrix Lookup

	A	в	c	D	E		
1	14	42	84	133	45		
2	423	465	507	45	549		
3	21	63	105	46	147		
4	122	164	206	47	248		
5	133	175	217	48	259		
6	244	286	328	49	370		
7	1	43	85	50	127		
8	1621	1663	1705	51	1747		
9	1234	1276	1318	52	1360		
10	1253	1295	1337	53	1379		
11	1523	1565	1607	54	1649		
12	1	43	85	55	127		
13	325	367	409	56	451		
14	123	165	207	57	249		
15	5	47	89	58	131		
16	3215	3257	3299	59	3341		
17	325	367	409	60	451		
18	12	54	96	61	138		
19	325	367	409	62	451		
20							
21							

• A sub-matrix is a rows **PROJECTION** [We also cover row + column]

Our Matrix Lookup

- Matrix Commit \vec{F} = Vectorize $\vec{F} \rightarrow \vec{f}$ + Vector commit.
- Generic compiler from any homomorphic Vector Commitment (read it as KZG)
- Matrix Lookup for table with few columns is easy.
- Prove that $\exists \vec{r}, \vec{c}$: such that: (1) $(\vec{r}, \vec{c}, \vec{f})$ sub-vector of $(i, j, t_{i,j})_{i,j}$ and (2) tensor structures, $\vec{r} = \vec{r}' \otimes \vec{1}$, $\vec{c} = \vec{1} \otimes (A, B, \dots, E)$.

Zero-Knowledge Decision Tree

The Model (Simplified)

Our Technique: Box Encoding

Box Econding

Our Technique: Basic Scheme

Commit Phase

13

- The attacker can claim $T((3,2)) = \bullet$ and $T((3,2)) = \bullet$

- The attacker can claim $T((3,2)) = \bullet$ and $T((3,2)) = \bullet$
- Fix: Prove that C_T commits to a valid box encoding

- The attacker can claim $T((3,2)) = \bullet$ and $T((3,2)) = \bullet$
- Fix: Prove that C_T commits to a valid box encoding
- We give algebraic constraints (read it linear/hadamard constraints) for validity

- The attacker can claim $T((3,2)) = \bullet$ and $T((3,2)) = \bullet$
- Fix: Prove that C_T commits to a valid box encoding
- We give algebraic constraints (read it linear/hadamard constraints) for validity
- Using technique from **[ZGKMR22]** we get $\Theta(N)$ proving time. (Zapico et al)

New Lookup Argument with Fully ZK
Generic compiler to Matrix Lookup
zkSNARKs for decision tree inference and statistics

https://ia.cr/2023/1518

Mandaang guwu!