
On Structure-Preserving Cryptography and
Lattices

Linea, Consensys2

1

 ETH Zurich1

Dennis Hofheinz , Kristina Hostáková , Roman Langrehr , Bogdan Ursu1 1 1 2

Structure-Preserving Cryptography (SPS)

2

The Groth-Sahai NIZK [GS08] allows to efficiently prove quadratic relations over:

• the group elements of a bilinear pairing group.

• and its exponents

Structure-Preserving Cryptography (SPS)

3

The Groth-Sahai NIZK [GS08] allows to efficiently prove quadratic relations over:

• the group elements of a bilinear pairing group.

• its exponents

The structure of signatures and encryption in pairing groups is compatible with these
quadratic relations.

structure-preserving cryptography.

Structure-Preserving Cryptography (SPS)

4

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:

• a ciphertext encrypts a valid signature.

• a signature signs a valid ciphertext.

focus on this, the other case will become clear along the way.

Structure-Preserving Cryptography (SPS)

5

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:

• a ciphertext encrypts a valid signature.

• a signature signs a valid ciphertext.

[GS08] NIZK is in the standard model

focus on this, the other case will become clear along the way.

perfect correctness

⏟
Encryption and signing can be nested
indefinitely.

Structure-Preserving Cryptography (SPS)

6

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:

• a ciphertext encrypts a valid signature.

• a signature signs a valid ciphertext.

All operations lie in the same group, allowing for native arithmetic.

focus on this, the other case will become clear along the way.

avoid generic NIZKs and expensive circuitry.

[GS08] NIZK is in the standard model
perfect correctness

Encryption and signing can be nested
indefinitely.

⏟

Motivation

7

Structure-preserving primitives enable or enhance a wide range of constructions:

• Delegatable Anonymous Credentials
• Verifiably Encrypted Signatures

• Group Signatures

• Ring Signatures

Motivation

8

Can we get similar structure preserving cryptography for lattices?

Motivation

9

Can we get similar structure preserving cryptography for lattices?

We formalise unifying notions shared by a family
of encryption and signatures schemes

Provide a NIZK that is compatible with this notion

standard model security

Example: Regev Encryption [Regev05]

10

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Example: Regev Encryption [Regev05]

11

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀

Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Example: Regev Encryption [Regev05]

12

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀

Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0

Example: Regev Encryption [Regev05]

13

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀

Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0 Compute c1 = xz + τ ⋅ 𝗆𝗌𝗀 − s⊤Az

 s⊤Az + e⊤z + τ ⋅ 𝗆𝗌𝗀 − s⊤Az

Example: Regev Encryption [Regev05]

14

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀

Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0 Compute c1 = xz + τ ⋅ 𝗆𝗌𝗀 − s⊤Az

 s⊤Az + e⊤z + τ ⋅ 𝗆𝗌𝗀 − s⊤Az

Example: Regev Encryption [Regev05]

15

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀

Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

A ∈ ℤn×m
q

z ∈ {−1,0,1}m

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0

s ∈ ℤn
q x = s⊤A + e⊤ ∈ ℤm

q

𝖼0 ∈ ℤn
q 𝖼1 ∈ ℤq

Example: Boyen’s Signature [Boyen10]

16

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Example: Boyen’s Signature [Boyen10]

17

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Output as the signatured

Example: Boyen’s Signature [Boyen10]

18

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Output as the signatured Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)
Check that is short and non-zero. σ

Example: Boyen’s Signature [Boyen10]

19

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

A ∈ ℤn×m
q

F𝗆𝗌𝗀 ∈ ℤn×2m
q

Output as the signatured Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)
Check that is short and non-zero. σ

Example: Encrypt the Signature

20

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Regev Encryption

Example: Encrypt the Signature

21

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Sample , output , Z c0 = A′ Z′ c1 = x′ Z′ + τ′ ⋅ d

Regev Encryption

Example: Encrypt the Signature

22

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, c0, c1)

Check that is short and non-zero. d

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Sample , output , Z c0 = A′ Z′ c1 = x′ Z′ + τ′ ⋅ d

Regev Encryption

Example: Encrypt the Signature

23

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, c0, c1)

Check that is short and non-zero. d

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Sample , output , Z c0 = A′ Z′ c1 = x′ Z′ + τ′ ⋅ d

Regev Encryption

we do not have anymore!d

Example: Encrypt the Signature

24

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, c0, c1)

Check that is short and non-zero. d

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Sample , output , Z c0 = A′ Z′ c1 = x′ Z′ + τ′ ⋅ d

Regev Encryption

generate proof and include it in the output. π

Example: Encrypt the Signature

25

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, c0, c1)

Check that is short and non-zero. d

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Sample , output , Z c0 = A′ Z′ c1 = x′ Z′ + τ′ ⋅ d

Regev Encryption

generate proof and include it in the output. π

We also need proofs for the shortness and non-zero checks.

Example: Encrypt the Signature

26

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, c0, c1)

Check that is short and non-zero. d

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Sample , output , Z c0 = A′ Z′ c1 = x′ Z′ + τ′ ⋅ d

Regev Encryption

homomorphic evaluation leads to an encryption of 0
check it using a NIZK proof π

generate proof and include it in the output. π

We also need proofs for the shortness and non-zero checks.

Example: Boyen’s Signature [Boyen10]

27

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, c0, c1)

Check that is short and non-zero. d

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Sample , output , Z c0 = A′ Z′ c1 = x′ Z′ + τ′ ⋅ d

Regev Encryption

Wanted: a proof that something encrypted is:
• short
• non-zero
• an encryption of 0

Example: Boyen’s Signature [Boyen10]

28

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, c0, c1)

Check that is short and non-zero. d

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Sample , output , Z c0 = A′ Z′ c1 = x′ Z′ + τ′ ⋅ d

Regev Encryption

Wanted: a proof that something encrypted is:
• short
• non-zero
• an encryption of 0

Goal:

• despite being hidden, we can check that the original was short.
• hide something short (smudge it)

Wanted: the encrypted signature becomes hidden.

Example: Boyen’s Signature [Boyen10]

29

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, c0, c1)

Check that is short and non-zero. d

Output keys , 𝗉𝗄′ = (A′ , x′ = s′ ⊤A′ + e′ ⊤) 𝗌𝗄′ = s′

, c′ 0 = A′ z′ c′ 1 = x′ z′ + τ′ ⋅ 𝗆𝗌𝗀

Sample , output , Z c0 = A′ Z′ c1 = x′ Z′ + τ′ ⋅ d

Regev Encryption

Wanted: a proof that something encrypted is:
• short
• non-zero
• an encryption of 0

Smudging is not with superpolynomially larger noise.

Wanted: the encrypted signature becomes hidden.

Goal:

• despite being hidden, we can check that the original was short.
• hide something short (smudge it)

Structure-Preserving Sets, First Step

30

Set is structure-preserving if there exists a noise distribution such that:S ⊆ ℤd
q D

• We can hide the elements of using smudging.S

Goal: hide the short signatures

Structure-Preserving Sets, First Step

31

Set is structure-preserving if there exists a noise distribution such that:S ⊆ ℤd
q D

• We can hide the elements of using smudging.S

• We can still check whether smudged elements belong to the original set S

Structure-Preserving Sets, First Step

32

Set is structure-preserving if there exists a noise distribution such that:S ⊆ ℤd
q D

• smudges the elements of , for any and any : D S s, s′ ∈ S d ∈ D

s + d ≈S s′ + d

• smudging preserves membership and non-membership in : D S

S + 𝗌𝗎𝗉𝗉(D) (ℤp∖S) + 𝗌𝗎𝗉𝗉(D)∩ = ∅

Structure-Preserving Sets, First Step

33

Set is structure-preserving if there exists a noise distribution such that:S ⊆ ℤd
q D

• smudges the elements of , for any and any : D S s, s′ ∈ S d ∈ D

s + d ≈S s′ + d

• smudging preserves membership and non-membership in : D S

We will be able to check if the hidden signature is short (membership check).

S + 𝗌𝗎𝗉𝗉(D) (ℤp∖S) + 𝗌𝗎𝗉𝗉(D)∩ = ∅

Structure-Preserving Sets, First Step

34

Smudging will also require rejection sampling.

Structure-Preserving Sets

35

Set is structure-preserving if there exists a noise distribution , constant , and function s.t.S ⊆ ℤd
q D α success

• smudges the elements of , for any and any : D S s, s′ ∈ S d ∈ D

Structure-Preserving Sets

36

Set is structure-preserving if there exists a noise distribution , constant , and function s.t.S ⊆ ℤd
q D α success

• smudges the elements of , for any and any : D S s, s′ ∈ S d ∈ D

d ←r D ≈S

Output with probability s + d success(s, s′ , d)

 with ⊥ 1 − success(s, s′ , d)

d ←r D
Output with probability s′ + d α

 with probability ⊥ 1 − α

Structure-Preserving Sets

37

Set is structure-preserving if there exists a noise distribution , constant , and function s.t.S ⊆ ℤd
q D α success

• smudges the elements of , for any and any : D S s, s′ ∈ S d ∈ D

d ←r D ≈S

Output with probability s + d success(s, s′ , d)

 with ⊥ 1 − success(s, s′ , d)

d ←r D
Output with probability s′ + d α

 with probability ⊥ 1 − α

 and stem from [Lyubashevsky12]’s
rejection sampling.
success α

Structure-Preserving Sets

38

Set is structure-preserving if there exists a noise distribution , constant , and function s.t.S ⊆ ℤd
q D α success

• smudges the elements of , for any and any : D S s, s′ ∈ S d ∈ D

S + D (ℤd
q∖S) + D∩ = ∅

d ←r D ≈S

Output with probability s + d success(s, s′ , d)

 with ⊥ 1 − success(s, s′ , d)

d ←r D
Output with probability s′ + d α

 with probability ⊥ 1 − α

• Membership for and are easy. D (S + D)

 and stem from [Lyubashevsky12]’s
rejection sampling.
success α

Structure-Preserving Sets

39

Set is structure-preserving if there exists a noise distribution , constant , and function s.t.S ⊆ ℤd
q D α success

• smudges the elements of , for any and any : D S s, s′ ∈ S d ∈ D

S + D (ℤd
q∖S) + D∩ ≈ ∅

d ←r D ≈S

Output with probability s + d success(s, s′ , d)

 with ⊥ 1 − success(s, s′ , d)

d ←r D
Output with probability s′ + d α

 with probability ⊥ 1 − α

 and stem from [Lyubashevsky12]’s
rejection sampling.
success α

noisiness around , actual definition w.r.t. and noise S Bδ(S) δ

• Membership for and are easy. D (S + D)

Structure-Preserving Set—Example

40

Example: Every set where S S − S ∈ BT({0})
meaning that the vectors are close to each other

Example: if and are structure preserving, so is S1 S2 S1 × S2

Example: any coset of any additive subgroup .G ⊆ ℤd
q

Example: any singleton (as a coset of the additive group){0}

Example: Boyen’s Signature [Boyen10]

41

Generate matrix and short trapdoor A TA

Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

A ∈ ℤn×m
q

F𝗆𝗌𝗀 ∈ ℤn×2m
q

Output as the signatured

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)
Check that is short and non-zero. σ

Check that belongs to structure preserving set of short vectors. σ
𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

Check that belongs to the structure preserving set F𝗆𝗌𝗀 ⋅ σ {0}

We ignore non-zero check for now

Example: Boyen’s Signature [Boyen10]

42

Generate matrix and short trapdoor A TA

Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

A ∈ ℤn×m
q

F𝗆𝗌𝗀 ∈ ℤn×2m
q

Output as the signatured

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)
Check that is short and non-zero. σ

Let , f1
𝗏𝗄,𝗆𝗌𝗀(σ) = F𝗆𝗌𝗀 ⋅ σ f 2

𝗏𝗄,𝗆𝗌𝗀(σ) = σ

Consider structure-preserving sets S1 = {0}

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

and , a ball of short vectors. S2

Output 1 if for both f i
𝗏𝗄,𝗆𝗌𝗀(σ) = Si i = {1,2}

Example: Boyen’s Signature [Boyen10]

43

Generate matrix and short trapdoor A TA

Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA d F𝗆𝗌𝗀 ⋅ d = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

A ∈ ℤn×m
q

F𝗆𝗌𝗀 ∈ ℤn×2m
q

Output as the signatured

Check that F𝗆𝗌𝗀 ⋅ σ = 0

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)
Check that is short and non-zero. σ we ignore the non-zero check for now

Let , f1
𝗏𝗄,𝗆𝗌𝗀(σ) = F𝗆𝗌𝗀 ⋅ σ f 2

𝗏𝗄,𝗆𝗌𝗀(σ) = σ

Consider structure-preserving sets S1 = {0}

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

and , a ball of short vectors. S2

Output 1 if for both f i
𝗏𝗄,𝗆𝗌𝗀(σ) = Si i = {1,2}

Structure-Preserving Signature Definition

44

A structure-preserving signature for a function family is a digital signature where for all ℱ
verification keys , message and signature , 𝗏𝗄 𝗆𝗌𝗀 σ

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) = 1 f𝗏𝗄,𝗆𝗌𝗀(σ) ∈ S⟺

structure-preserving set S depends on and f 𝗏𝗄 𝗆𝗌𝗀

Structure-Preserving Signature Definition

45

A structure-preserving signature for a function family is a digital signature where for all ℱ
verification keys , message and signature , 𝗏𝗄 𝗆𝗌𝗀 σ

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, σ) = 1 ⟺

structure-preserving set S depends on and f 𝗏𝗄 𝗆𝗌𝗀

The actual definition is more general to cover strongly unforgeable schemes.
It applies to [Boyen10], [Rückert10] and a new Inhomogenous SIS-based scheme we introduce in this paper.

modification of [Rúckert10] with delegation strategy of [ABB10]

f𝗏𝗄,𝗆𝗌𝗀(σ) ∈ S

Formalising SPS Encryption from Regev Encryption

46

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀
Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0

Matrix B ∈ ℤd×τ
q

KeyGen

Formalising SPS Encryption from Regev Encryption

47

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀
Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0

Matrix B ∈ ℤd×τ
q

KeyGen

invertible additive homomorphic encoding g : ℳ → ℤd
q

Enc

Sample randomness r ←r ℛ
Ciphertext will be 𝖼𝗍 = B ⋅ r + g(𝗆𝗌𝗀)

Formalising SPS Encryption from Regev Encryption

48

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀
Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0

Matrix B ∈ ℤd×τ
q

KeyGen

invertible additive homomorphic encoding g : ℳ → ℤd
q

Enc

Sample randomness r ←r ℛ
Ciphertext will be 𝖼𝗍 = B ⋅ r + g(𝗆𝗌𝗀)

Matrix B = In ⊗ (A
X)

Matrix g(msg1…msgα) = In ⊗

0
τ ⋅ msg1

⋮
0

τ ⋅ msgα

Formalising SPS Encryption from Regev Encryption

49

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀
Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0

 belongs to a structure-preserving set with overwhelming probability.r R
this also models Gaussian noise like in dual Regev.

Matrix B ∈ ℤd×τ
q

KeyGen

invertible additive homomorphic encoding g : ℳ → ℤd
q

Enc

Sample randomness r ←r ℛ
Ciphertext will be 𝖼𝗍 = B ⋅ r + g(𝗆𝗌𝗀)

Formalising SPS Encryption from Regev Encryption

50

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀
Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0

 belongs to a structure-preserving set with overwhelming probability.r R
this also models Gaussian noise like in dual Regev.

allows for message homomorphism

Matrix B ∈ ℤd×τ
q

KeyGen

invertible additive homomorphic encoding g : ℳ → ℤd
q

Enc

Sample randomness r ←r ℛ
Ciphertext will be 𝖼𝗍 = B ⋅ r + g(𝗆𝗌𝗀)

Formalising SPS Encryption from Regev Encryption

51

Sample uniform matrix , uniform and A s e ← χm

Output keys , 𝗉𝗄 = (A, x = s⊤A + e⊤) 𝗌𝗄 = s

KeyGen

Sample z ← {−1,0,1}m

, c0 = Az c1 = xz + τ ⋅ 𝗆𝗌𝗀
Output (c0, c1)

𝖤𝗇𝖼𝗉𝗄(𝗆𝗌𝗀)

Output s.t. closest to γ ∈ ℤp d − τ ⋅ γ mod q 0

𝖣𝖾𝖼sk(𝖼0, c1)
Compute . d = c1 − s⊤c0

 belongs to a structure-preserving set with overwhelming probability.r R
this also models Gaussian noise like in dual Regev.

allows for message homomorphism

the actual definition also covers a series of noise properties.

Matrix B ∈ ℤd×τ
q

KeyGen

invertible additive homomorphic encoding g : ℳ → ℤd
q

Enc

Sample randomness r ←r ℛ
Ciphertext will be 𝖼𝗍 = B ⋅ r + g(𝗆𝗌𝗀)

Structure-Preserving Encryption Definition

52

In a structure-preserving encryption scheme, the public key is expressible as a matrix .B

The randomness space is a structure preserving set. and is a invertible additive homomorphism. R g

𝖤𝗇𝖼(𝗉𝗄, 𝗆𝗌𝗀; r) Br + g(msg)=

Regev Encryption of a Boyen Signature

53

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA σ F𝗆𝗌𝗀 ⋅ σ = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Let , f1
𝗏𝗄,𝗆𝗌𝗀(σ) = F𝗆𝗌𝗀 ⋅ σ f 2

𝗏𝗄,𝗆𝗌𝗀(σ) = σ

Consider structure-preserving sets S1 = {0}

 for Boyen SPS𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

and , a ball of short vectors. S2
Output 1 if for both f i

𝗏𝗄,𝗆𝗌𝗀(σ) = Si i = {1,2}Sample , output r σ𝖾𝗇𝖼 = B ⋅ r + g(d)

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

Apply homomorphically on f i
𝗏𝗄,𝗆𝗌𝗀 σ𝖾𝗇𝖼

Get σ𝖾𝗇𝖼
i = B ⋅ ri + g(f i

𝗏𝗄,𝗆𝗌𝗀(d))
We need a way to check that f i

𝗏𝗄,𝗆𝗌𝗀(d) ∈ Si

Regev SPS Encryption
Public-key matrix B ∈ ℤd×τ

q
invertible additive homomorphic encoding g : ℳ → ℤd

q

Sample randomness r ←r ℛ
Ciphertext will be 𝖼𝗍 = B ⋅ r + g(𝗆𝗌𝗀)

computable since is homomorphicg

Regev Encryption of a Boyen Signature

54

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Let , f1
𝗏𝗄,𝗆𝗌𝗀(σ) = F𝗆𝗌𝗀 ⋅ σ f 2

𝗏𝗄,𝗆𝗌𝗀(σ) = σ

Consider structure-preserving sets S1 = {0}

 for Boyen SPS𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

and , a ball of short vectors. S2
Output 1 if for both f i

𝗏𝗄,𝗆𝗌𝗀(σ) = Si i = {1,2}

How to do this?

computable since is homomorphicg

Regev SPS Encryption
Public-key matrix B ∈ ℤd×τ

q
invertible additive homomorphic encoding g : ℳ → ℤd

q

Sample randomness r ←r ℛ
Ciphertext will be 𝖼𝗍 = B ⋅ r + g(𝗆𝗌𝗀)

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

Apply homomorphically on f i
𝗏𝗄,𝗆𝗌𝗀 σ𝖾𝗇𝖼

Get σ𝖾𝗇𝖼
i = B ⋅ ri + g(f i

𝗏𝗄,𝗆𝗌𝗀(d))

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA σ F𝗆𝗌𝗀 ⋅ σ = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Sample , output r σ𝖾𝗇𝖼 = B ⋅ r + g(d)

We need a way to check that f i
𝗏𝗄,𝗆𝗌𝗀(d) ∈ Si

Regev Encryption of a Boyen Signature

55

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Let , f1
𝗏𝗄,𝗆𝗌𝗀(σ) = F𝗆𝗌𝗀 ⋅ σ f 2

𝗏𝗄,𝗆𝗌𝗀(σ) = σ

Consider structure-preserving sets S1 = {0}

 for Boyen SPS𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

and , a ball of short vectors. S2
Output 1 if for both f i

𝗏𝗄,𝗆𝗌𝗀(σ) = Si i = {1,2}NIZK proof π

and that NIZK proof is validπ We need a NIZK to check that a is of the form where 𝖼𝗍 𝖤𝗇𝖼(𝗆𝗌𝗀) 𝗆𝗌𝗀 ∈ S

where is structure preservingS

Regev SPS Encryption
Public-key matrix B ∈ ℤd×τ

q
invertible additive homomorphic encoding g : ℳ → ℤd

q

Sample randomness r ←r ℛ
Ciphertext will be 𝖼𝗍 = B ⋅ r + g(𝗆𝗌𝗀)

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

Apply homomorphically on f i
𝗏𝗄,𝗆𝗌𝗀 σ𝖾𝗇𝖼

Get σ𝖾𝗇𝖼
i = B ⋅ ri + g(f i

𝗏𝗄,𝗆𝗌𝗀(d))
Check that f i

𝗏𝗄,𝗆𝗌𝗀(d) ∈ Si

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA σ F𝗆𝗌𝗀 ⋅ σ = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Sample , output r σ𝖾𝗇𝖼 = B ⋅ r + g(d)

computable since is homomorphicg

Structure-Preserving NIZK

56

We need a NIZK to check that a is of the form where .𝖼𝗍 𝖤𝗇𝖼(𝗆𝗌𝗀) 𝗆𝗌𝗀 ∈ S
We adapt the sigma protocol of [Libert et al. 2020]

From Structure-Preserving -Protocol to NIZKΣ

57

Option 1: Use Fiat-Shamir

Option 2: use correlation-intractable hashing to obtain security in the standard model.

[Libert et al. 2020] uses CI-Hashing for circuits 𝖭𝖢1

Recap: Encryption of a Signature

58

Generate matrix and short trapdoor A TA
Sample uniform (C0…Cℓ)
Output keys , 𝗏𝗄 = (A, C0…Cℓ) 𝗌𝗄 = TA

KeyGen

Compute C𝗆𝗌𝗀 = C0 +
ℓ

∑
i=1

𝗆𝗌𝗀iCi

Set Fmsg = [A |C𝗆𝗌𝗀]

Use to generate short such that TA σ F𝗆𝗌𝗀 ⋅ σ = 0

𝖲𝗂𝗀𝗇𝗌𝗄(𝗆𝗌𝗀)

Let , f1
𝗏𝗄,𝗆𝗌𝗀(σ) = F𝗆𝗌𝗀 ⋅ σ f 2

𝗏𝗄,𝗆𝗌𝗀(σ) = σ

Consider structure-preserving sets S1 = {0}

 for Boyen SPS𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

and , a ball of short vectors. S2
Output 1 if for both f i

𝗏𝗄,𝗆𝗌𝗀(σ) = Si i = {1,2}Sample , output r σ𝖾𝗇𝖼 = Bα ⋅ r + gα(d)

computable since is homomorphicgα

NIZK proof π

We now have a NIZK to check that a is of the form where 𝖼𝗍 𝖤𝗇𝖼(𝗆𝗌𝗀) 𝗆𝗌𝗀 ∈ S

where is structure preservingS

Regev SPS Encryption
Public-key matrix B ∈ ℤd×τ

q
invertible additive homomorphic encoding g : ℳ → ℤd

q

Sample randomness r ←r ℛ
Ciphertext will be 𝖼𝗍 = B ⋅ r + g(𝗆𝗌𝗀)

and that NIZK proof is validπ

𝖵𝖾𝗋𝗂𝖿𝗒𝗏𝗄(𝗆𝗌𝗀, σ)

Apply homomorphically on f i
𝗏𝗄,𝗆𝗌𝗀 σ𝖾𝗇𝖼

Get σ𝖾𝗇𝖼
i = B ⋅ ri + g(f i

𝗏𝗄,𝗆𝗌𝗀(d))
Check that f i

𝗏𝗄,𝗆𝗌𝗀(d) ∈ Si

Structure-Preserving Cryptography (SPS)

59

In structure-preserving cryptography, our NIZK efficiently proves statements of the form:

• a ciphertext encrypts a valid signature.

• a signature signs a valid ciphertext.

we have shown how to do this

a NIZK proof certifies that the ciphertext is valid

Application: Verifiable Encrypted Signature (VES)

60

Prove that an encrypted signature is valid without revealing the signature.

Our construction is the most efficient lattice-based VES in the standard model.

Motivation: Contract Signing

61

Alice Bob

 σAlice = 𝖲𝗂𝗀𝗇(𝗌𝗄Alice, contract)

Alice and Bob want to sign a contract.

 σBob = 𝖲𝗂𝗀𝗇(𝗌𝗄Bob, contract)

62

Alice Bob

 σAlice = 𝖲𝗂𝗀𝗇(𝗌𝗄Alice, contract)

Alice and Bob want to sign a contract.

 σBob = 𝖲𝗂𝗀𝗇(𝗌𝗄Bob, contract)

Bob refuses to sign and instead forwards to a third party to negotiate.σAlice

Motivation: Contract Signing

Bob can impersonate Alice to another third party.

63

Alice
 σAlice = 𝖲𝗂𝗀𝗇(𝗌𝗄Alice, contract) σBob = 𝖲𝗂𝗀𝗇(𝗌𝗄Bob, contract)

𝗉𝗄, 𝗌𝗄

, NIZK proof 𝖤𝗇𝖼𝗉𝗄(σAlice) πAlice
Bob

, NIZK proof 𝖤𝗇𝖼𝗉𝗄(σBob) πBob

check if certifies valid for
the contract.

πAlice σAlice

 σAlice

 σBob

Motivation: Contract Signing

64

Alice

𝗉𝗄, 𝗌𝗄

Bob

If any party refuses to sign, the other party forwards the encryption and proof to the authority which will decrypt.

Motivation: Contract Signing

 σAlice = 𝖲𝗂𝗀𝗇(𝗌𝗄Alice, contract) σBob = 𝖲𝗂𝗀𝗇(𝗌𝗄Bob, contract)
, NIZK proof 𝖤𝗇𝖼𝗉𝗄(σAlice) πAlice

, NIZK proof 𝖤𝗇𝖼𝗉𝗄(σBob) πBob

check if certifies valid for
the contract.

πAlice σAlice

 σAlice

 σBob

Contributions

65

We put forward: • a unifying framework for structure-preserving cryptography for lattices.

[Boyen10]
[Rúckert10]
new modification of [Rúckert10] using

[ABB10] delegation

Signatures Regev Encryption [Regev05]
Dual Regev [GPV08]
[GSW13]

Encryption

Contributions

66

We put forward: • a unifying framework for structure-preserving cryptography for lattices.

[Boyen10]
[Rúckert10]
new modification of [Rúckert10] using

[ABB10] delegation

Signatures Regev Encryption [Regev05]
Dual Regev [GPV08]
[GSW13]

Encryption

• structure-preserving NIZK, generalising a protocol from [Libert et al. 2020]

Contributions

67

We put forward: • a unifying framework for structure-preserving cryptography for lattices.

[Boyen10]
[Rúckert10]
new modification of [Rúckert10] using

[ABB10] delegation

Signatures Regev Encryption [Regev05]
Dual Regev [GPV08]
[GSW13]

Encryption

• application to verifiable encrypted signature (VES).

currently the most efficient lattice VES in the standard model
new proof, similar to [Fuchsbauer2011] with several new technical details.

• structure-preserving NIZK, generalising a protocol from [Libert et al. 2020]

Limitation and an Open Problem

68

new ISIS-based
signature [Rückert10]’s signature [Boyen10]

[Regev05] compatible compatible incompatible

[GPV08] compatible compatible incompatible

[GSW13] compatible compatible compatible

Thank you for your attention!
Questions?

69

