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Structure-Preserving Cryptography (SPS)

The Groth-Sahai NIZK [GS08] allows to efficiently prove quadratic relations over:
* the group elements of a bilinear pairing group.

* and its exponents
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Structure-Preserving Cryptography (SPS)

The Groth-Sahai NIZK [GS08] allows to efficiently prove quadratic relations over:
* the group elements of a bilinear pairing group.

* |ts exponents

The structure of signatures and encryption in pairing groups is compatible with these
guadratic relations.

structure-preserving cryptography.
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Structure-Preserving Cryptography (SPS)

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:
* d Ciphertext encrypts a valid Signature_ ¢ focus on this, the other case will become clear along the way.

* a signature signs a valid ciphertext.
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In structure-preserving cryptography, the NIZK efficiently proves statements of the form:
* d Ciphertext encrypts a valid Signature_ ¢ focus on this, the other case will become clear along the way.

* a signature signs a valid ciphertext.

[GS08] NIZK is in the standard model } . Encryption and signing can be nested
perfect correctness indefinitely.
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Structure-Preserving Cryptography (SPS)

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:
* d Ciphertext encrypts a valid Signature_ ¢ focus on this, the other case will become clear along the way.

* a signature signs a valid ciphertext.

[GS08] NIZK is in the standard model } . Encryption and signing can be nested
perfect correctness indefinitely.

All operations lie in the same group, allowing for native arithmetic.

avoid generic NIZKs and expensive circuitry. LIne a-
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Motivation

Structure-preserving primitives enable or enhance a wide range of constructions:

* Verifiably Encrypted Signatures
* Delegatable Anonymous Credentials
* Group Signatures

* Ring Signatures
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Motivation

Can we get similar structure preserving cryptography for lattices?
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Motivation




Example: Regev Encryption [Regev095]

KeyGen
Sample uniform matrix A, uniform s and e <« y™

Output keys pk = (A, x =s'A +e'), sk =s

Linea
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Example: Regev Encryption [Regev095]

KeyGen
Sample uniform matrix A, uniform s and e <« y™

Output keys pk = (A, x =s'A +e'), sk =s

Enc,(msg)
Sample z <« {—1,0,1}"
Cy=AZ c; =XZ+ 7 -msg

OUtpUt (Co, Cl)

Linea
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Example: Regev Encryption [Regev095]

KeyGen
Sample uniform matrix A, uniform s and e <« y™

Output keys pk = (A, x =s'A +e'), sk =s

Enc,(msg)
Sample z <« {—1,0,1}"
Cy=AZ c; =XZ+ 7 -msg

OUtpUt (Co, Cl)

Decgk(cp, €;)

Compute d = ¢; — STCO.

Outputy € Z,s.t.d —7-y mod g closest to 0

Linea
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Example: Regev Encryption [Regev095]

KeyGen
Sample uniform matrix A, uniform s and e <« y™

Output keys pk = (A, x =s'A +e'), sk =s

Enc,(msg)
Sample z <« {—1,0,1}"
Cy=AZ c; =XZ+ 7 -msg

OUtpUt (Co, Cl)

Decg(cy, €;)
Compute d = ¢ — STCO. =) Compute ¢; = XZ + 7 - Msg — s'Az

Outputy € Z,s.t.d —7-y mod g closest to 0 s'Az+e'z+17-msg—s' Az

Linea
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Example: Regev Encryption [Regev095]

KeyGen
Sample uniform matrix A, uniform s and e <« y™

Output keys pk = (A, x =s'A +e'), sk =s

Enc,(msg)
Sample z <« {—1,0,1}"
Cy=AZ c; =XZ+ 7 -msg

OUtpUt (Co, Cl)

Decg(cy, €;)
Compute d = ¢ — STCO. =) Compute ¢; = XZ + 7 - Msg — s'Az

Outputy € Z,s.t.d —7-y mod g closest to 0 s'Az+e'z+7-msg—s Az

Linea
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Example: Regev Encryption [Regev095]

KeyGen
Sample uniform matrix A, uniform s and e <« y" A ez se 7" x=5A+e' €27
p X q q q

Output keys pk = (A, x =s'A +e'), sk =s

Enc,(msg) ze {—-1,01}" cye”Z, c €”Z,
Sample z <« {—1,0,1}"
Cy=AZ c; =XZ+ 7 -msg

OUtpUt (Co, Cl)

Decgk(cp, €;)

Compute d = ¢; — STCO.

Outputy € Z,s.t.d —7-y mod g closest to 0

Linea
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Example: Boyen’s Signature [Boyen10]

KeyGen

Generate matrix A and short trapdoor T ,
Sample uniform (C,...C,)

Output keys vk = (A, C,...C)), sk = T,

Linea
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Example: Boyen’s Signature [Boyen10]

KeyGen

Generate matrix A and short trapdoor T ,
Sample uniform (C,...C,)

Output keys vk = (A, C,...C)), sk = T,

Sign_ (msg)

4
Compute €, = €y + Z msg.C;
=
Set Fsp = [A [ Cpg,] l
Use T, to generate shortd such that ¥, .. - d = 0

Output d as the signature

Linea
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Example: Boyen’s Signature [Boyen10]

KeyGen

Generate matrix A and short trapdoor T ,
Sample uniform (C,...C,)

Output keys vk = (A, C,...C)), sk = T,

Sign_ (msg) p
Compute €, = €y + Z msg.C;
i=1

Set Fiyge = [A [ Crge] Verify  (msg, 6)
Use T 4 to generate short d such that Fmsg .d=0 Check that ¢ is short and non-zero.
Output d as the signature Check that ¥, .. -6 =0

Linea
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KeyGen

Generate matrix A and short trapdoor T ,
Sample uniform (C,...C,)

Output keys vk = (A, C,...C)), sk = T,

Sign_ (msg) p

Compute €, = €y + Z msg.C;
=

Set Figp = [A | Cmsg] l

Use T, to generate shortd such that ¥, .. - d = 0

Output d as the signature

19

nxXm
AeZq

nx2m
K eZq

msg

Verify  (msg, 6)
Check that o is short and non-zero.

Check that ¥, -6 =0

Example: Boyen’s Signature [Boyen10]
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Example: Encrypt the Signature

KeyGen Regev Encryption
Generate matrix A and short trapdoor T , Output keys pk/ =(A,x'=s"TA’+e"), sk =
Sample uniform (C,...C,)

cy=A7,¢c; =x72"+17"-ms
Output keys vk = (A, C,...C,), sk = T, 0 1 g

Linea
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Example: Encrypt the Signature

KeyGen Regev Encryption
Generate matrix A and short trapdoor T , Output keys pk/ = (A, x'=sTA’+e"),sk =&’
Sample uniform (C,...C,)

cy=A7,¢c; =x72"+17"-ms
Output keys vk = (A, C,...C,), sk = T, 0 1 g

Sign  (msg) p
Compute C .. = €y + Z msg.C;

Set Fep = [A | C e, =1

Use T, to generate short d such that F .. - d = 0

Sample Z, output ¢y = A'Z, ¢, =x2Z"+ 7' - d

Linea
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Example: Encrypt the Signature

KeyGen Regev Encryption
Generate matrix A and short trapdoor T , Output keys pk/ = (A, x'=sTA’+e"),sk =&’
Sample uniform (C,...C,)

cy=A7,¢c; =x72"+17"-ms
Output keys vk = (A, C,...C,), sk = T, 0 1 g

Sign  (msg) p
Compute C .. = €y + Z msg.C;
Set Fogp = [A|Cpggl

Use T, to generate short d such that F .. - d = 0

Sample Z, output ¢y = A'Z, ¢, =x2Z"+ 7' - d

Verifyvk(msg, Cy, C)

Check that d is short and non-zero.

Check that F o, - 6 =0

Linea
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Example: Encrypt the Signature

KeyGen Regev Encryption
Generate matrix A and short trapdoor T , Output keys pk/ = (A, x'=sTA’+e"),sk =&’
Sample uniform (C,...C,)

c,=A7,¢c; =x72+17"-ms
Output keys vk = (A, C,...C,), sk = T, 0 1 Y g

Sign  (msg) p
Compute C .. = €y + Z msg.C;
Set Fogp = [A|Cpggl

Use T, to generate short d such that F .. - d = 0

Sample Z, output ¢y = A'Z, ¢, =x2Z"+ 7' - d

Verifyvk(msg, Cy, C)

Check that d is short and non-zero. = \e do not have d anymore!
Check that F o, - 6 =0

Linea
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Example: Encrypt the Signature

KeyGen Regev Encryption
Generate matrix A and short trapdoor T , Output keys pk/ = (A, x'=sTA’+e"),sk =&’
Sample uniform (C,...C,)

cy=A7,¢c; =x72"+17"-ms
Output keys vk = (A, C,...C,), sk = T, 0 1 g

Sign  (msg) p
Compute C .. = €y + Z msg.C;
Set Fogp = [A|Cpggl

Use T, to generate short d such that F .. - d = 0
Sample Z, output ¢y = A’Z, ¢, =x2'+7'-d === generate proof & and include it in the output.
Verifyvk(msg, Cy, C)

Check that d is short and non-zero.

Check that F o, - 6 =0

Linea
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Example: Encrypt the Signature

KeyGen Regev Encryption
Generate matrix A and short trapdoor T , Output keys pk/ = (A, x'=sTA’+e"),sk =&’
Sample uniform (C,...C,)

cy=A7,¢c; =x72"+17"-ms
Output keys vk = (A, C,...C,), sk = T, 0 1 g

Sign  (msg) p
Compute C .. = €y + Z msg.C;
Set Fogp = [A|Cpggl

Use T, to generate short d such that F .. - d = 0
Sample Z, output ¢y = A’Z, ¢, =x2'+7'-d === generate proof & and include it in the output.
Verify  (msg, ¢y, ¢;)

Check that d is short and non-zero. ==——Jp \Ne also need proofs for the shortness and non-zero checks.
Check that F o, - 6 =0

Linea
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Example: Encrypt the Signature

KeyGen Regev Encryption
Generate matrix A and short trapdoor T , Output keys pk/ = (A, x'=sTA’+e"),sk =&’
Sample uniform (C,...C,)

cy=A7,¢c; =x72"+17"-ms
Output keys vk = (A, C,...C,), sk = T, 0 1 g

Sign  (msg) p
Compute C .. = €y + Z msg.C;
Set Fogp = [A|Cpggl

Use T, to generate short d such that F .. - d = 0

Sample Z, output ¢y = A’Z, ¢, =x2'+7'-d === generate proof & and include it in the output.
Verifyvk(msg, Cy, C)

Check that d is short and non-zero. ==——Jp \Ne also need proofs for the shortness and non-zero checks.

Check that Fmsg 6 =10 —eeell- [\ OMOMOTPhiC evaluation leads to an encryption of 0

check it using a NIZK proof 7 Llnea.
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Example: Boyen’s Signature [Boyen10]

KeyGen Regev Encryption
Generate matrix A and short trapdoor T, Output keys pk = (A, x'=s A’ +eT), sk =&’
Sample uniform (C,...C,)

c,.=A'7 ¢, =x'7 "~ ms
Output keys vk = (A, C,...C)), sk =T, 0 1 T7 g

Sign , (msg) )

Compute CmSg = C, + Z msgi(jl. Wanted: a proof that something encrypted is:
i=1 * short

Set Fineg = [A | Cingl * non-zero

Use T to generate short d such that F ., - d = 0 + an encryption of (

Sample Z, output ¢y = AZ, ¢, =x2Z'+7'-d

Verifyvk(msg, Cp, 1)

Check that d is short and non-zero.

Check that ¥, -6 =0

LiInhea
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Example: Boyen’s Signature [Boyen10]

KeyGen Regev Encryption
Generate matrix A and short trapdoor T , Output keys pk/ = (A, x'=s'A'+e), sk = s’
Sample uniform (C,...C,)

¢c,.=A'z7 ¢, =x'7"+7-ms
Output keys vk = (A, C,...C)), sk =T, 0 1 v g

Sign , (msg) )

Compute CmSg = C,+ Z msgiCi Wanted: a proof that something encrypted is:
i=1 * short

Set Fineg = [A | Cingl * non-zero

Use T to generate short d such that F ., - d = 0 + an encryption of (

Sample Z, output ¢y = A'Z/, ¢, = xX'Z' + 7' - d Wanted: the encrypted signature becomes hidden.

Goal: * hide something short (smudge it)

Verity ,(msg, ¢, ¢;) » despite being hidden, we can check that the original was short.

Check that d is short and non-zero.

Check that ., - 6 =0

LiInhea
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Example: Boyen’s Signature [Boyen10]

KeyGen Regev Encryption
Generate matrix A and short trapdoor T , Output keys pk/ = (A’ x' = STA'+ e’T), sk = §’
Sample uniform (C,...C,)

¢c,.=A'z7 ¢, =x'7"+7-ms
Output keys vk = (A, C,...C)), sk =T, 0 1 v g

Sign , (msg) ;

Compute CmSg = C,+ Z msgiCl. Wanted: a proof that something encrypted is:
i=1 * short

Set Fineg = [A | Cingl * non-zero

Use T, to generate short d such that F .. - d = 0 + an encryption of 0

Sample Z, output ¢y = A'Z/, ¢, = xX'Z' + 7' - d Wanted: the encrypted signature becomes hidden.

Goal: * hide something short (smudge it)

Verity ,(msg, ¢, ¢;) » despite being hidden, we can check that the original was short.

Check that d is short and non-zero.

Check that FmSg o0 =10 Smudging is not with superpolynomially larger noise.

LiInhea
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Structure-Preserving Sets, First Step

Goal: hide the short signatures

Set $ C Zg is structure-preserving if there exists a noise distribution D such that:

« We can hide the elements of $ using smudging.

Linea
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Structure-Preserving Sets, First Step

Set $ C Zg is structure-preserving if there exists a noise distribution D such that:

« We can hide the elements of $ using smudging.

« We can still check whether smudged elements belong to the original set S

Linea

31



Structure-Preserving Sets, First Step

Set $ C Zg is structure-preserving if there exists a noise distribution D such that:
» D smudges the elements of S, forany s, s’ € S and any d € D:
s+d ~¢ s'+d

« D smudging preserves membership and non-membership in S:

S+ supp(D) N (Z,\S) +supp(D) = O

Linea
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Structure-Preserving Sets, First Step

Set $ C Zg is structure-preserving if there exists a noise distribution D such that:
» D smudges the elements of S, forany s, s’ € Sand any d € D:

s+d ~¢ s'+d
« D smudging preserves membership and non-membership in S:

S+ supp(D) N (Z,\S) +supp(D) = O

We will be able to check if the hidden signature is short (membership check).

Linea
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Structure-Preserving Sets, First Step

Smudging will also require rejection sampling.

Linea
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Structure-Preserving Sets

Set § C Z‘q’Z is structure-preserving if there exists a noise distribution [, constant «, and function success s.t.

» D smudges the elements of S, for any s, s’ € S and any d € D:

Linea
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Structure-Preserving Sets

Set § C Zg is structure-preserving if there exists a noise distribution [, constant «, and function success s.t.

» D smudges the elements of S, for any s, s’ € S and any d € D:

d —. D X¢ d —. D
Output s + d with probability success(s, s’, d) Output s" + d with probability o
1 with 1 — success(s, s', d) 1 with probability 1 — o

Linea
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Structure-Preserving Sets

Set § C Zg is structure-preserving if there exists a noise distribution [, constant «, and function success s.t.

» D smudges the elements of S, for any s, s’ € S and any d € D:

d —. D X¢ d —. D
Output s + d with probability success(s, s’, d) Output s" + d with probability o
1 with 1 — success(s, s', d) 1 with probability 1 — o

success and a stem from [Lyubashevsky12]’s
rejection sampling.

Linea
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Structure-Preserving Sets

Set § C Zg is structure-preserving if there exists a noise distribution [, constant «, and function success s.t.

» D smudges the elements of S, for any s, s’ € S and any d € D:

d —. D X¢ d —. D
Output s + d with probability success(s, s’, d) Output s" + d with probability o
1 with 1 — success(s, s', d) 1 with probability 1 — o

success and a stem from [Lyubashevsky12]’s
rejection sampling.

« Membership for D and (S + D) are easy.
S+D N (ZN\S)+D =0
®
LiNnNea
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Structure-Preserving Sets

Set § C Zg is structure-preserving if there exists a noise distribution [, constant «, and function success s.t.

» D smudges the elements of S, for any s, s’ € S and any d € D:

d —. D X¢ d —. D
Output s + d with probability success(s, s’, d) Output s" + d with probability o
1 with 1 — success(s, s', d) 1 with probability 1 — o

success and a stem from [Lyubashevsky12]’s
rejection sampling.

« Membership for D and (S + D) are easy.

S+ D N (Zg\S) + D ~ % noisiness around S, actual definition w.r.t. B5(S) and noise 0

Linea
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Structure-Preserving Set—Example

Example: any coset of any additive subgroup G C Zg.
Example: any singleton (as a coset of the additive group {0})

Example: Every set S where S — S € B,({0})

meaning that the vectors are close to each other

Example: if §; and S, are structure preserving, so is §; X $,

Linea
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Example: Boyen’s Signature [Boyen10]

KeyGen A € Znxm
Generate matrix A and short trapdoor T , 1
Sample uniform (C,,...C

( 0 1/”) Fmsg = ZZme

Output keys vk = (A, C,,...C,), sk = T

Sign , (msg) p
Compute CmSg = C, + Z msgiCi Check that o belongs to structure preserving set of short vectors.

SetF... =[A]|C =1
msg [A] msg] Check that Fmsg-GbeIongs to the structure preserving set {0}

Use T to generate short d such that F .. -d = 0

Verity  (msg, o)

. We ignore non-zero check for now
Output d as the signature J

Verify  (msg, 6)

Check that o is short and non-zero.

Check that F (o, -6 =0

Linea
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Example: Boyen’s Signature [Boyen10]

KeyGen A € Znxm
Generate matrix A and short trapdoor T , 1

Sample uniform (C,...C,) .
F. €2

Output keys vk = (A, C,,...C,), sk = T

Sign , (msg) y

Compute CmSg = CO + Z msgiCi et fvlk’msg(a) — Fmsg . 0, 3k,msg(o') — -

Set Frpee = [A|Cpgp] ™~

Use T to generate short d such that F .. -d = 0

Verity  (msg, o)

e Consider structure-preserving sets §; = {0} and S,, a ball of short vectors.

Output 1 iff\ik msg((7) = S, forboth i = {1,2}
Output d as the signature

Verify  (msg, 6)

Check that o is short and non-zero.

Check that F (o, -6 =0

Linea
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Example: Boyen’s Signature [Boyen10]

KeyGen A € Znxm
Generate matrix A and short trapdoor T , 1

Sample uniform (C,...C,)

F... € 2"
Output keys vk = (A, C,,...C,), sk = T

msg

Sign , (msg) y
Compute CmSg = CO + Z msgiCi et fvlk’msg(a) — Fmsg . 0, 3k,msg(o') — -
Set Frpee = [A|Cpgp] ™~

Use T to generate short d such that F .. -d = 0

Verity  (msg, o)

e Consider structure-preserving sets §; = {0} and S,, a ball of short vectors.

Output d as the signature Output 1 if 5k,msg((’) = 5;forboth i = 11,2]

Verify  (msg, 6)

Check that 6 is short and non-zero. <« we ignore the non-zero check for now

Check that F (o, -6 =0

Linea
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Structure-Preserving Signature Definition

A structure-preserving signature for a function family & is a digital signature where for all

verification keys vk, message msg and signature o,

Verify(vk,msg,0) =1 <= fims(0) €5

[N\

f depends on vk and msg structure-preserving set S

Linea

44



Structure-Preserving Signature Definition

A structure-preserving signature for a function family & is a digital signature where for all

verification keys vk, message msg and signature o,

Verify(vk,msg,0) =1 <= fims(0) €5

[N\

f depends on vk and msg structure-preserving set S

The actual definition is more general to cover strongly unforgeable schemes.
It applies to [Boyen10], [Rlckert10] and a new Inhomogenous SIS-based scheme we introduce in this paper.

modification of [Ruckert10] with delegation strategy of [ABB10]

Linea
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Formalising SPS Encryption from Regev Encryption

KeyGen KeyGen
Sample uniform matrix A, uniform s and e « ;" Matrix B & ngf

Output keys pk = (A, x =s' A +e'), sk =s

Enc,(msg)
Sample z < {—1,0,1}"
Cy=AzZ ¢, =Xz+ 7 -msg
Output (¢, ¢;)

Decgk(cp, €¢)
Compute d = ¢; — s ' ¢,

Outputy € Z,st.d —7-y mod g closest to 0

Linea
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Formalising SPS Encryption from Regev Encryption

KeyGen KeyGen
Sample uniform matrix A, uniform s and e « ;" Matrix B & ngf

Output keys pk = (A, x =s' A +e'), sk =s

Enc,(msg) Enc
Sample z « {—1,0,1}" invertible additive homomorphic encoding g : M — Z
Cy=Az,cy =XZ+ 7 -msg Sample randomness r <, X
Output (¢, ¢;) Ciphertext willbe ct = B - r + g(msg)

Decgk(cp, €¢)
Compute d = ¢; — s ' ¢,

Outputy € Z,st.d —7-y mod g closest to 0

Linea
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Formalising SPS Encryption from Regev Encryption

KeyGen KeyGen
Sample uniform matrix A, uniform s and e « ;" Matrix B & ngf

Output keys pk = (A, x =s' A +e'), sk =s

Enc,(msg) Enc
Sample z « {—1,0,1}" invertible additive homomorphic encoding g : M — Z
Cy=Az,cy =XZ+ 7 -msg Sample randomness r <, X
Output (¢, ¢;) Ciphertext willbe ct = B - r + g(msg)
Decgk(cy, €;) A
Compute d = ¢; — S ' ¢,,. Matrix B = 1, ® (X) 0
T - msg,
Outputy € Z,st.d —7-y mod g closest to 0 Matrix g(msg,...msg ) = I, @ .
0
T -msg

Linea
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Formalising SPS Encryption from Regev Encryption

KeyGen KeyGen
Sample uniform matrix A, uniform s and e « ;" Matrix B & ngf

Output keys pk = (A, x =s' A +e'), sk =s

Enc,(msg) Enc
Sample z « {—1,0,1}" invertible additive homomorphic encoding g : M — Z
Cy=Az,cy =XZ+ 7 -msg Sample randomness r <, X
Output (¢, ¢;) Ciphertext willbe ct = B - r + g(msg)
Decgk(cy, €;)
T r belongs to a structure-preserving set R with overwhelming probability.

Computed = ¢, — S'Cp.
P 1 0 this also models Gaussian noise like in dual Regev.

Outputy € Z,st.d —7-y mod g closest to 0

Linea
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Formalising SPS Encryption from Regev Encryption

KeyGen
Sample uniform matrix A, uniform s and e < y""

Output keys pk = (A, x =s' A +e'), sk =s

Enc,(msg)
Sample z < {—1,0,1}"
Cy=AzZ ¢, =Xz+ 7 -msg
Output (¢, ¢;)

Decgk(cy, €;)

Compute d = ¢; — s ' ¢,

Outputy € Z,st.d —7-y mod g closest to 0

KeyGen
Matrix B € ZgXT

Enc
invertible additive homomorphic encoding g : M — Z

Sample randomness r <, X

Ciphertext willbe ct = B - r + g(msg)

\

I belongs to a structure-preserving set R with overwhelming probability.
this also models Gaussian noise like in dual Regev.

allows for message homomorphism

Linea
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Formalising SPS Encryption from Regev Encryption

KeyGen
Sample uniform matrix A, uniform s and e < y""

Output keys pk = (A, x =s' A +e'), sk =s

Enc,(msg)
Sample z < {—1,0,1}"
Cy=AzZ ¢, =Xz+ 7 -msg
Output (¢, ¢;)

Decgk(cy, €;)

Compute d = ¢; — s ' ¢,

Outputy € Z,st.d —7-y mod g closest to 0

KeyGen
Matrix B € ZgXT

Enc
invertible additive homomorphic encoding g : M — Z

Sample randomness r <, X

Ciphertext willbe ct = B - r + g(msg)

\

I belongs to a structure-preserving set R with overwhelming probability.
this also models Gaussian noise like in dual Regev.

allows for message homomorphism

the actual definition also covers a series of noise properties.

Linea
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Structure-Preserving Encryption Definition

In a structure-preserving encryption scheme, the public key is expressible as a matrix B.

The randomness space R is a structure preserving set. and g is a invertible additive homomorphism.

Enc(pk, msg;r) = Br + g(msg)

Linea
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Regev Encryption of a Boyen Signature

KeyGen

Generate matrix A and short trapdoor T,
Sample uniform (C,...C),)

Output keys vk = (A, C,...C,), sk = T,

Sign  (msg)

£
Compute C i, = Cy + Z msg C;
i=1

Set Fgp = [A | Cmsg]

Use T, to generate short o such that ¥, -6 = 0

Sample r, output 6°™ =B - r + g(d)

Verify  (msg, 6)

Apply f\fk msg NOMomorphically on c°""
Getof”C:B-ri+g( i (d))

vk,msg

We need a way to check that ff; d) €,

k,msg

Regev SPS Encryption
Public-key matrix B € ZgXT
invertible additive homomaorphic encoding g : /# — Zg

Sample randomness r <, X

Ciphertext willbe ct = B - r + g(msg)

Verify  (msg, 6) for Boyen SPS

1 _ 2 _
Let ka,msg(a) =F_ Yy vk,msg(a) =0

Consider structure-preserving sets §; = {0}

and S,, a ball of short vectors.
Output 1 iffék,msg(a) = §, forbothi = { 1,2}

computable since g is homomorphic
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Regev Encryption of a Boyen Signature

KeyGen

Generate matrix A and short trapdoor T,

Sample uniform (C,...C),)

Output keys vk = (A, C,...C,), sk = T,

Sign  (msg)

£
Compute C i, = Cy + Z msg C;

Set Fgp = [A | Cmsg]

Use T, to generate short 6 such that F

Sample r, output 6°™ =B - r + g(d)

Verify  (msg, 6)

Apply fék,ms - homomorphically on c°""

Geto;™ =B -r; + g(

=1

]
vk,msg

@)

g

0O

0

Regev SPS Encryption
Public-key matrix B € ZgXT
invertible additive homomaorphic encoding g : /# — Zg
Sample randomness r <, X

Ciphertext willbe ct = B - r + g(msg)

Verify  (msg, 6) for Boyen SPS

1 _ 2 _
Let ka,msg(a) =F_ Yy vk,msg(a) =0

Consider structure-preserving sets §; = {0}

and S,, a ball of short vectors.
Output 1 iffék,msg(a) = §, forbothi = { 1,2}

computable since g is homomorphic

We need a way to check that f\‘;k msg(d) € S; == How to do this?
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Regev Encryption of a Boyen Signature

KeyGen

Generate matrix A and short trapdoor T
Sample uniform (C,...C),)

Output keys vk = (A, C,...C,), sk =T,

Sign  (msg)

a4
Compute C i, = Cy + Z msg C;
i=1

Set Fgp = [A | Cmsg]

Use T, to generate short o such that ¥, -6 = 0

Sample r, output 6°™ =B - r 4+ g(d)  NIZK proof 7

Verify  (msg, 6)

Apply f\fk msg NOMomorphically on c°""
Getal?”°=B-ri+g< i (d))

vk,msg

Check thatf’, _ (d) € S; and that NIZK proof 7 is valid

Regev SPS Encryption
Public-key matrix B € ZgXT
invertible additive homomaorphic encoding g : /# — Zg

Sample randomness r <, X

Ciphertext willbe ct = B - r + g(msg)

Verify  (msg, 6) for Boyen SPS

1 _ 2 _
Let ka,msg(a) =F_ Yy vk,msg(a) =0

Consider structure-preserving sets §; = {0}

and S,, a ball of short vectors.
Output 1 iffék,msg(a) = §, forbothi = { 1,2}

computable since g is homomorphic

where S is structure preserving

We need a NIZK to check that a ct is of the form Enc(msg) where msg € §

Linea

k,msg
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Structure-Preserving NIZK

We need a NIZK to check that a ct is of the form Enc(msg) where msg € §.
We adapt the sigma protocol of [Libert et al. 2020]

Linea
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From Structure-Preserving 2.-Protocol to NIZK

Option 1: Use Fiat-Shamir

Option 2: use correlation-intractable hashing to obtain security in the standard model.

[Libert et al. 2020] uses Cl-Hashing for NC; circuits

Linea
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Recap: Encryption of a Signature

KeyGen Regev SPS Encryption

Generate matrix A and short trapdoor T Public-key matrix B € ng"

Sample uniform (C,,...C,) invertible additive homomorphic encoding g : /# — Zg
Output keys vk = (A, C,...C,), sk =Ty Sample randomness r <, X

Ciphertext willbe ct = B - r + g(msg)

Sign  (msg) )

Compute CmSg =C,+ Z msgiCi Verify  (msg, o) for Boyen SPS

Set ey = [A [ Cprggl Letf (@) =F, -6, 2, (6)=0

Consider structure-preserving sets §; = {0}
Use T, to generate shorte suchthatF_ . -6 =0

: and S,, a ball of short vectors.
Sample r, output 6°™ =B - r + g (d) NIZK proof 7 Output 1 iffék,msg(a) = S, forboth i = {1,2}
computable since g, Is homomorphic where S is structure preserving

Apply f\ik msg OMomorphically on c°"°
Geto!™ =B -r, + g( " (d))

vk,msg

Check that f 5k,msg(d) € S; and that NIZK proof 7 is valid@=—===\Ne now have a NIZK to check that a ct is of the form Enc(msg) where msg € §

LiInhea
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Structure-Preserving Cryptography (SPS)

In structure-preserving cryptography, our NIZK efficiently proves statements of the form:
* a ciphertext encrypts a valid signature. € we have shown how to do this

* a signature signs a valid ciphertext. < aNIZK proof certifies that the ciphertext is valid

Linea
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Application: Verifiable Encrypted Signature (VES)

Prove that an encrypted signature is valid without revealing the signature.

Our construction is the most efficient lattice-based VES in the standard model.

Linea
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Motivation: Contract Signing

Alice and Bob want to sign a contract.

Alice Bob

ﬁ UAIlce = Sign(skafice, contract)

OBob = Slgn(skBob contract)

Linea
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Motivation: Contract Signing

Alice and Bob want to sign a contract.

Alice Bob

Alice = Sign(skaiice, contract) Sign(skajice contract)

OBob = Slgn(skBob, contract)

Bob refuses to sign and instead forwards opjice t0 a third party to negotiate.

Bob can impersonate Alice to another third party.

Linea
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Motivation: Contract Signing

= D

1l

pk, sk

Alice Bob
Enco(oajice): NIZK proof zajice

Oplice = Slgn(skajice, contract) 0Bob = Slign(skggp, contract)

check if wa|ice certifies valid oajjce for
the contract.

Enc,(ogop), NIZK proof 7ggp
4_—_—

O Alice
_—

OBob

Linea
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Motivation: Contract Signing

= D

1l

pk, sk

Alice Bob
Enco(oajice): NIZK proof zajice

Oplice = Slgn(skajice, contract) 0Bob = Slign(skggp, contract)

check if wa|ice certifies valid oajjce for
the contract.

EnCpk(UBob), NIZK proof 7ggp

OAlice :

OBob
4_——

If any party refuses to sign, the other party forwards the encryption and proof to the authority which will decrypt.
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Contributions

We put forward: ¢ a unifying framework for structure-preserving cryptography for lattices.

[Boyen10] Signatures  Regev Encryption [Regev05]  Encryption

[Ruckert10] Dual Regev [GPV08]

new modification of [Ruckert10] using [GSW13]
[ABB10] delegation

Linea
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Contributions

We put forward: ¢ a unifying framework for structure-preserving cryptography for lattices.

[Boyen10] Signatures  Regev Encryption [Regev05]  Encryption

[Ruckert10] Dual Regev [GPV08]

new modification of [Ruckert10] using [GSW13]
[ABB10] delegation

» structure-preserving NIZK, generalising a protocol from [Libert et al. 2020]
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Contributions

We put forward: ¢ a unifying framework for structure-preserving cryptography for lattices.

[Boyen10] Signatures  Regev Encryption [Regev05]  Encryption

[Ruckert10] Dual Regev [GPV08]

new modification of [Ruckert10] using [GSW13]
[ABB10] delegation

» structure-preserving NIZK, generalising a protocol from [Libert et al. 2020]

* application to verifiable encrypted signature (VES).
new proof, similar to [Fuchsbauer2011] with several new technical details.
currently the most efficient lattice VES in the standard model
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Limitation and an Open Problem

new ISIS-based

[Ruckert10]’s signature

[Boyen10]

signature
[Regev05] compatible compatible incompatible
[GPV08] compatible compatible incompatible
[GSW13] compatible compatible compatible
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Thank you for your attention!

Questions?

LiInhea
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