On Structure-Preserving Cryptography and Lattices

ETH Zurich

Dennis Hofheinz¹, Kristina Hostáková¹, Roman Langrehr¹, Bogdan Ursu²

²Linea, Consensys

The Groth-Sahai NIZK [GS08] allows to efficiently prove quadratic relations over:

- the group elements of a bilinear pairing group.
- and its exponents

- the group elements of a bilinear pairing group.
- its exponents

quadratic relations.

structure-preserving cryptography.

The Groth-Sahai NIZK [GS08] allows to efficiently prove quadratic relations over:

The structure of signatures and encryption in pairing groups is compatible with these

- a ciphertext encrypts a valid signature.
- a signature signs a valid ciphertext.

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:

focus on this, the other case will become clear along the way.

- a ciphertext encrypts a valid signature.
- a signature signs a valid ciphertext.

[GS08] NIZK is in the standard model perfect correctness

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:

focus on this, the other case will become clear along the way.

Encryption and signing can be nested indefinitely.

- a ciphertext encrypts a valid signature.
- a signature signs a valid ciphertext.

[GS08] NIZK is in the standard model perfect correctness

All operations lie in the same group, allowing for native arithmetic.

avoid generic NIZKs and expensive circuitry.

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:

focus on this, the other case will become clear along the way.

Encryption and signing can be nested indefinitely.

- Verifiably Encrypted Signatures
- Delegatable Anonymous Credentials
- Group Signatures
- Ring Signatures

Motivation

Structure-preserving primitives enable or enhance a wide range of constructions:

Can we get similar structure preserving cryptography for lattices?

Motivation

Motivation

Can we get similar structure preserving cryptography for lattices?

We formalise unifying notions shared by a family of encryption and signatures schemes

Provide a NIZK that is compatible with this notion

standard model security

KeyGen

Sample uniform matrix **A**, uniform **s** and $\mathbf{e} \leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

KeyGen

Sample uniform matrix **A**, uniform **s** and **e** $\leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg) Sample $z \leftarrow \{-1,0,1\}^m$ $\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{msg}$ Output (\mathbf{c}_0, c_1)

KeyGen

Sample uniform matrix **A**, uniform **s** and **e** $\leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg)

Sample $z \leftarrow \{-1,0,1\}^m$

$$\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{msg}$$

Output (\mathbf{c}_0, c_1)

 $Dec_{sk}(c_0, c_1)$ Compute $d = c_1 - \mathbf{s}^{\mathsf{T}} \mathbf{c}_0$. Output $\gamma \in \mathbb{Z}_p$ s.t. $d - \tau \cdot \gamma \mod q$ closest to 0

KeyGen

Sample uniform matrix **A**, uniform **s** and $\mathbf{e} \leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg)

Sample $\mathbf{z} \leftarrow \{-1,0,1\}^m$

$$\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{msg}$$

Output (\mathbf{c}_0, c_1)

 $Dec_{sk}(c_0, c_1)$ Compute $d = c_1 - \mathbf{s}^{\mathsf{T}} \mathbf{c}_0$. Output $\gamma \in \mathbb{Z}_p$ s.t. $d - \tau \cdot \gamma \mod q$ closest to 0

Compute $c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{m}\mathbf{s}\mathbf{g} - \mathbf{s}^{\mathsf{T}}\mathbf{A}\mathbf{z}$

 $\mathbf{s}^{\mathsf{T}}\mathbf{A}\mathbf{z} + \mathbf{e}^{\mathsf{T}}\mathbf{z} + \tau \cdot \mathbf{msg} - \mathbf{s}^{\mathsf{T}}\mathbf{A}\mathbf{z}$

KeyGen

Sample uniform matrix **A**, uniform **s** and **e** $\leftarrow \chi^m$

Output keys $pk = (A, x = s^{T}A + e^{T}), sk = s$

Enc_{pk}(msg)

Sample $\mathbf{z} \leftarrow \{-1,0,1\}^m$

$$\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{msg}$$

Output (\mathbf{c}_0, c_1)

Dec_{sk}(c₀, c₁) Compute $d = c_1 - \mathbf{s}^{\mathsf{T}} \mathbf{c}_0$. Output $\gamma \in \mathbb{Z}_p$ s.t. $d - \tau \cdot \gamma \mod q$ closest to 0

Compute $c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{m}\mathbf{s}\mathbf{g} - \mathbf{s}^{\mathsf{T}}\mathbf{A}\mathbf{z}$

KeyGen

Sample uniform matrix **A**, uniform **s** and **e** $\leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg)

Sample $z \leftarrow \{-1,0,1\}^m$

$$\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{msg}$$

Output (\mathbf{c}_0, c_1)

 $Dec_{sk}(c_0, c_1)$ Compute $d = c_1 - \mathbf{s}^{\mathsf{T}} \mathbf{c}_0$. Output $\gamma \in \mathbb{Z}_p$ s.t. $d - \tau \cdot \gamma \mod q$ closest to 0

$$\mathbf{A} \in \mathbb{Z}_q^{n \times m} \quad \mathbf{s} \in \mathbb{Z}_q^n \quad \mathbf{x} = \mathbf{s}^{\mathsf{T}} \mathbf{A} + \mathbf{e}^{\mathsf{T}} \in \mathbb{Z}_q^m$$

 $\mathbf{z} \in \{-1,0,1\}^m$ $\mathbf{c}_0 \in \mathbb{Z}_q^n$ $\mathbf{c}_1 \in \mathbb{Z}_q$

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$ Output keys $vk = (A, C_0 \dots C_\ell)$, $sk = T_A$

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$ Output keys $vk = (A, C_0 \dots C_\ell)$, $sk = T_A$

Sign_{sk}(msg) Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{r} msg_i \mathbf{C}_i$ Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]^{i=1}$ Use T_A to generate short d such that $F_{msg} \cdot d = 0$ Output **d** as the signature

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_\ell)$ Output keys $vk = (A, C_0 \dots C_\ell)$, $sk = T_A$

Sign_{sk}(msg) Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{b} msg_i \mathbf{C}_i$ Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]^{i=1}$ Use T_A to generate short d such that $F_{msg} \cdot d = 0$ Output **d** as the signature

Verify_{vk}(msg, σ)

Check that σ is short and non-zero.

Check that $\mathbf{F}_{msg} \cdot \boldsymbol{\sigma} = \mathbf{0}$

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_\ell)$ Output keys $vk = (A, C_0 \dots C_\ell)$, $sk = T_A$

Sign_{sk}(msg) Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{r} msg_i \mathbf{C}_i$ Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]^{i=1}$ Use T_A to generate short d such that $F_{msg} \cdot d = 0$ Output **d** as the signature

 $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$

 $\mathbf{F}_{msg} \in \mathbb{Z}_{a}^{n \times 2m}$

Verify_{vk}(msg, σ)

Check that σ is short and non-zero.

Check that $\mathbf{F}_{msg} \cdot \boldsymbol{\sigma} = \mathbf{0}$

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(C_0...C_{\ell})$ Output keys vk = $(A, C_0...C_{\ell})$, sk = T_A **Regev Encryption**

Output keys $pk' = (A', x' = s'^{T}A' + e'^{T}), sk' = s'$

 $\mathbf{c}_0' = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(C_0...C_{\ell})$ Output keys vk = $(A, C_0...C_{\ell})$, sk = T_A

Sign_{sk}(msg)
Compute
$$\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{\ell} msg_i\mathbf{C}_i$$

Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]$
Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{msg} \cdot \mathbf{d} = \mathbf{0}$
Sample \mathbf{Z} , output $\mathbf{c}_0 = \mathbf{A}'\mathbf{Z}'$, $\mathbf{c}_1 = \mathbf{x}'\mathbf{Z}' + \tau' \cdot \mathbf{d}$

Regev Encryption

Output keys $pk' = (A', x' = s'^{T}A' + e'^{T}), sk' = s'$

 $\mathbf{c}_0' = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(C_0...C_{\ell})$ Output keys vk = $(A, C_0...C_{\ell})$, sk = T_A

Sign_{sk}(msg)
Compute
$$\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{\ell} msg_i\mathbf{C}_i$$

Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]$
Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{msg} \cdot \mathbf{d} = \mathbf{0}$
Sample \mathbf{Z} , output $\mathbf{c}_0 = \mathbf{A}'\mathbf{Z}'$, $\mathbf{c}_1 = \mathbf{x}'\mathbf{Z}' + \tau' \cdot \mathbf{d}$

 $\mathsf{Verify}_{\mathsf{vk}}(\mathsf{msg}, \mathbf{c}_0, \mathbf{c}_1)$

Check that **d** is short and non-zero.

Check that $\mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma} = \mathbf{0}$

Regev Encryption

Output keys $pk' = (A', x' = s'^{T}A' + e'^{T}), sk' = s'$

 $\mathbf{c}_0' = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(C_0...C_{\ell})$ Output keys vk = $(A, C_0...C_{\ell})$, sk = T_A

Check that $\mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma} = \mathbf{0}$

Sign_{sk}(msg)
Compute
$$C_{msg} = C_0 + \sum_{i=1}^{\ell} msg_iC_i$$

Set $F_{msg} = [A | C_{msg}]$
Use T_A to generate short d such that $F_{msg} \cdot d = 0$
Sample Z , output $c_0 = A'Z'$, $c_1 = x'Z' + \tau' \cdot d$
Verify_{vk}(msg, c_0, c_1)
Check that d is short and non-zero.

Regev Encryption

Output keys $pk' = (A', x' = s'^{T}A' + e'^{T})$, sk' = s'

 $\mathbf{c}_0' = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$

lo not have **d** anymore!

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(C_0...C_{\ell})$ Output keys vk = $(A, C_0...C_{\ell})$, sk = T_A

Sign_{sk}(msg)
Compute
$$\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{\ell} msg_i \mathbf{C}_i$$

Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]^{-1}$
Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{msg} \cdot \mathbf{d} = \mathbf{0}$
Sample \mathbf{Z} , output $\mathbf{c}_0 = \mathbf{A}'\mathbf{Z}'$, $\mathbf{c}_1 = \mathbf{x}'\mathbf{Z}' + \tau' \cdot \mathbf{d}$

 $Verify_{vk}(msg, c_0, c_1)$

Check that **d** is short and non-zero.

Check that $\mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma} = \mathbf{0}$

Regev Encryption

Output keys
$$pk' = (A', x' = s'^{\top}A' + e'^{\top}), sk' = s'$$

 $\mathbf{c}_0' = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$

generate proof π and include it in the output.

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(C_0...C_{\ell})$ Output keys vk = $(A, C_0...C_{\ell})$, sk = T_A

Sign_{sk}(msg)
Compute
$$C_{msg} = C_0 + \sum_{i=1}^{\ell} msg_iC_i$$

Set $F_{msg} = [A | C_{msg}]$
Use T_A to generate short d such that $F_{msg} \cdot d = 0$
Sample Z , output $c_0 = A'Z'$, $c_1 = x'Z' + \tau' \cdot d$

 $Verify_{vk}(msg, c_0, c_1)$

Check that **d** is short and non-zero.

Check that $\mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma} = \mathbf{0}$

Regev Encryption

Output keys
$$pk' = (A', x' = s'^{\top}A' + e'^{\top}), sk' = s'$$

 $\mathbf{c}_0' = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$

We also need proofs for the shortness and non-zero checks.

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(C_0...C_{\ell})$ Output keys vk = $(A, C_0...C_{\ell})$, sk = T_A

Sign_{sk}(msg)
Compute
$$\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{\ell} msg_i\mathbf{C}_i$$

Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]^{-1}$
Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{msg} \cdot \mathbf{d} = \mathbf{0}$
Sample \mathbf{Z} , output $\mathbf{c}_0 = \mathbf{A}'\mathbf{Z}'$, $\mathbf{c}_1 = \mathbf{x}'\mathbf{Z}' + \tau' \cdot \mathbf{d}$
Verify_{vk}(msg, $\mathbf{c}_0, \mathbf{c}_1$)
Check that \mathbf{d} is short and non-zero

Check that $\mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma} = \mathbf{0}$

Regev Encryption

Output keys
$$pk' = (A', x' = s'^{\top}A' + e'^{\top}), sk' = s'$$

 $\mathbf{c}_0' = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$

Subscript generate proof π and include it in the output.

We also need proofs for the shortness and non-zero checks.

homomorphic evaluation leads to an encryption of $\mathbf{0}$ check it using a NIZK proof π

KeyGen

Generate matrix A and short trapdoor T_A Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$ Output keys $vk = (A, C_0...C_{\ell})$, $sk = T_A$

Sign_{sk}(msg)
Compute
$$C_{msg} = C_0 + \sum_{i=1}^{\ell} msg_iC_i$$

Set $F_{msg} = [A | C_{msg}]$

Use T_A to generate short d such that $F_{msg} \cdot d = 0$

Sample Z, output $\mathbf{c}_0 = \mathbf{A}'\mathbf{Z}'$, $\mathbf{c}_1 = \mathbf{x}'\mathbf{Z}' + \tau' \cdot \mathbf{d}$

$Verify_{vk}(msg, c_0, c_1)$

Check that **d** is short and non-zero.

Check that $\mathbf{F}_{msg} \cdot \boldsymbol{\sigma} = \mathbf{0}$

0

C[']

Regev Encryption

utput keys
$$pk' = (A', x' = s'^T A' + e'^T)$$
, $sk' = s'$

$$\mathbf{c}_0 = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$$

Wanted: a proof that something encrypted is:

- short
- non-zero
- an encryption of **0**

KeyGen	Reg
Generate matrix \boldsymbol{A} and short trapdoor $\boldsymbol{T}_{\boldsymbol{A}}$	Ou
Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$	C'
Output keys vk = (A, C_0C_{ℓ}), sk = T_A	•()
Sign _{sk} (msg) Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{\ell} msg_i \mathbf{C}_i$	Wan
Set $\mathbf{F}_{msg} = [\mathbf{A} \mathbf{C}_{msg}]^{l=1}$	
Use $\mathbf{T}_{\mathbf{A}}$ to generate short d such that $\mathbf{F}_{msg} \cdot \mathbf{d} = 0$	
Sample Z, output $\mathbf{c}_0 = \mathbf{A}'\mathbf{Z}'$, $\mathbf{c}_1 = \mathbf{x}'\mathbf{Z}' + \tau' \cdot \mathbf{d}$	vvan
Verify $(msg. c_0, c_1)$	Goa
$O_{k} = e_{k} + e_{k} = e_{k} + e_{k$	
Check that a is short and non-zero.	
Check that $\mathbf{F}_{msg} \cdot \boldsymbol{\sigma} = 0$	

jev Encryption

utput keys
$$pk' = (A', x' = s'^T A' + e'^T)$$
, $sk' = s'$

$$\mathbf{c}_0 = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$$

nted: a proof that something encrypted is:

- short
- non-zero
- an encryption of **0**

nted: the encrypted signature becomes hidden.

- al: hide something short (smudge it)
 - despite being hidden, we can check that the original was short.

KeyGen	Reg
Generate matrix \boldsymbol{A} and short trapdoor $\boldsymbol{T}_{\boldsymbol{A}}$	Ou
Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$	c ′
Output keys vk = (A, $C_0 \dots C_\ell$), sk = T_A	-0
Sign _{sk} (msg)	
Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{n} msg_i \mathbf{C}_i$	War
Set $\mathbf{F}_{msg} = [\mathbf{A} \mathbf{C}_{msg}]^{i=1}$	
Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{msg} \cdot \mathbf{d} = 0$	
Sample Z , output $\mathbf{c}_0 = \mathbf{A}'\mathbf{Z}'$, $\mathbf{c}_1 = \mathbf{x}'\mathbf{Z}' + \tau' \cdot \mathbf{d}$	War
$Verify_{vk}(msg, c_0, c_1)$	Goa
Check that d is short and non-zero.	
Check that $\mathbf{F}_{msg} \cdot \boldsymbol{\sigma} = 0$	Smu

gev Encryption

utput keys
$$pk' = (A', x' = s'^T A' + e'^T)$$
, $sk' = s'$

$$\mathbf{c}_0 = \mathbf{A}'\mathbf{z}', \, \mathbf{c}_1' = \mathbf{x}'\mathbf{z}' + \tau' \cdot \mathsf{msg}$$

nted: a proof that something encrypted is:

- short
- non-zero
- an encryption of **0**

nted: the encrypted signature becomes hidden.

- al: hide something short (smudge it)
 - despite being hidden, we can check that the original was short.

udging is not with superpolynomially larger noise.

Goal: hide the short signatures

Set $S \subseteq \mathbb{Z}_a^d$ is structure-preserving if there exists a noise distribution D such that:

- We can hide the elements of S using smudging.

Set $S \subseteq \mathbb{Z}_a^d$ is structure-preserving if there exists a noise distribution D such that:

• We can hide the elements of S using smudging.

• We can still check whether smudged elements belong to the original set S

Set $S \subseteq \mathbb{Z}_a^d$ is structure-preserving if there exists a noise distribution D such that:

• D smudges the elements of S, for any s

s + d

• D smudging preserves membership and non-membership in S:

S + supp(D)

$$s, s' \in S$$
 and any $d \in D$:

$$\approx_S s' + d$$

)
$$\cap (\mathbb{Z}_p \setminus S) + \operatorname{supp}(D) = \emptyset$$

Set $S \subseteq \mathbb{Z}_a^d$ is structure-preserving if there exists a noise distribution D such that:

• D smudges the elements of S, for any s

s + d

• D smudging preserves membership and non-membership in S:

S + supp(D)

$$s, s' \in S$$
 and any $d \in D$:

$$\approx_S s' + d$$

)
$$\cap (\mathbb{Z}_p \setminus S) + \operatorname{supp}(D) = \emptyset$$

We will be able to check if the hidden signature is short (membership check).

Smudging will also require rejection sampling.

Set $S \subseteq \mathbb{Z}_q^d$ is structure-preserving if there exists a noise distribution D, constant α , and function success s.t.

• D smudges the elements of S, for any $s, s' \in S$ and any $d \in D$:

• D smudges the elements of S, for any $s, s' \in S$ and any $d \in D$:

 $d \leftarrow_r D$ Output s + d with probability success(s, s', d) \perp with 1 - success(s, s', d)

Set $S \subseteq \mathbb{Z}_a^d$ is structure-preserving if there exists a noise distribution D, constant α , and function success s.t.

 $d \leftarrow_r D$ \approx_S Output s' + d with probability α \perp with probability $1 - \alpha$

• D smudges the elements of S, for any $s, s' \in S$ and any $d \in D$:

 $d \leftarrow_r D$ Output s + d with probability success(s, s', d) \perp with 1 - success(s, s', d)

Set $S \subseteq \mathbb{Z}_a^d$ is structure-preserving if there exists a noise distribution D, constant α , and function success s.t.

 \approx_S

 $d \leftarrow_r D$ Output s' + d with probability α

 \perp with probability $1 - \alpha$

success and α stem from [Lyubashevsky12]'s rejection sampling.

• D smudges the elements of S, for any $s, s' \in S$ and any $d \in D$:

 $d \leftarrow_r D$ Output s + d with probability success(s, s', d) \perp with 1 - success(s, s', d)

• Membership for D and (S + D) are easy.

$$S + D \cap \left(\mathbb{Z}_q^d \setminus S\right) + D$$

Set $S \subseteq \mathbb{Z}_a^d$ is structure-preserving if there exists a noise distribution D, constant α , and function success s.t.

 \approx_{S}

 $d \leftarrow_r D$ Output s' + d with probability α

 \perp with probability $1 - \alpha$

success and α stem from [Lyubashevsky12]'s rejection sampling.

 $= \emptyset$

• D smudges the elements of S, for any $s, s' \in S$ and any $d \in D$:

 $d \leftarrow_r D$ Output s + d with probability success(s, s', d) \perp with 1 - success(s, s', d)

• Membership for D and (S + D) are easy.

$$S+D \cap \left(\mathbb{Z}_q^d \setminus S\right) + D$$

Set $S \subseteq \mathbb{Z}_a^d$ is structure-preserving if there exists a noise distribution D, constant α , and function success s.t.

 \approx_S

 $d \leftarrow_r D$ Output s' + d with probability α

 \perp with probability $1 - \alpha$

success and α stem from [Lyubashevsky12]'s rejection sampling.

noisiness around S, actual definition w.r.t. $B_{\delta}(S)$ and noise δ

Structure-Preserving Set—Example

Example: any coset of any additive subgroup $G \subseteq \mathbb{Z}_q^d$.

Example: any singleton (as a coset of the additive group $\{0\}$)

Example: Every set *S* where $S - S \in B_T(\{0\})$ meaning that the vectors are close to each other

Example: if S_1 and S_2 are structure preserving, so is $S_1 \times S_2$

KeyGen

Generate matrix A and short trapdoor T_A

Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$

Output keys $vk = (A, C_0 \dots C_\ell)$, $sk = T_A$

Sign_{sk}(msg) Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{n} msg_i\mathbf{C}_i$ Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]^{i=1}$ Use T_A to generate short d such that $F_{msg} \cdot d = 0$ Output **d** as the signature

Verify_{vk}(msg, σ)

Check that σ is short and non-zero.

Check that $\mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma} = \mathbf{0}$

 $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$

 $\mathbf{F}_{msg} \in \mathbb{Z}_q^{n \times 2m}$

- Check that σ belongs to structure preserving set of short vectors.
- Check that $\mathbf{F}_{msg} \cdot \boldsymbol{\sigma}$ belongs to the structure preserving set $\{\mathbf{0}\}$
- We ignore non-zero check for now

KeyGen

Generate matrix A and short trapdoor T_A

Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$

Output keys $vk = (A, C_0 \dots C_\ell)$, $sk = T_A$

Sign_{sk}(msg) Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{b} msg_i \mathbf{C}_i$ Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]^{i=1}$ Use T_A to generate short d such that $F_{msg} \cdot d = 0$ Output **d** as the signature

$Verify_{vk}(msg, \sigma)$

Check that σ is short and non-zero.

Check that $\mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma} = \mathbf{0}$

 $\mathbf{A} \in$ **F**_{msg}

Verify Let f_{v}^{T}

Outpu

$$\mathbb{Z}_q^{n imes m}$$

$$\in \mathbb{Z}_q^{n \times 2m}$$

$$\mathbf{y}_{\mathsf{vk}}(\mathsf{msg}, \boldsymbol{\sigma})$$

$$\mathbf{f}_{\mathsf{vk},\mathsf{msg}}^{\mathsf{l}}(\sigma) = \mathbf{F}_{\mathsf{msg}} \cdot \sigma, \ f_{\mathsf{vk},\mathsf{msg}}^{2}(\sigma) = \sigma$$

Consider structure-preserving sets $S_1 = \{0\}$ and S_2 , a ball of short vectors.

Let 1 if
$$f_{\text{vk,msg}}^i(\sigma) = S_i$$
 for both $i = \{1,2\}$

$$\mathbb{Z}_q^{n imes m}$$

$$\in \mathbb{Z}_q^{n \times 2m}$$

$$\mathbf{y}_{\mathsf{vk}}(\mathsf{msg}, \boldsymbol{\sigma})$$

$$\mathbf{f}_{\mathsf{vk},\mathsf{msg}}^{\mathsf{l}}(\sigma) = \mathbf{F}_{\mathsf{msg}} \cdot \sigma, \ f_{\mathsf{vk},\mathsf{msg}}^{2}(\sigma) = \sigma$$

Consider structure-preserving sets $S_1 = \{0\}$ and S_2 , a ball of short vectors.

ut 1 if
$$f_{\text{vk,msg}}^i(\sigma) = S_i$$
 for both $i = \{1,2\}$

we ignore the non-zero check for now

Structure-Preserving Signature Definition

- A structure-preserving signature for a function family \mathcal{F} is a digital signature where for all verification keys vk, message msg and signature σ ,

Structure-Preserving Signature Definition

- A structure-preserving signature for a function family \mathscr{F} is a digital signature where for all verification keys vk, message msg and signature σ ,
 - $\mathsf{Verify}(\mathsf{vk},\mathsf{msg},\sigma) = 1 \iff f_{\mathsf{vk},\mathsf{msg}}(\sigma) \in S$ f depends on vk and msg structure-preserving set S
 - The actual definition is more general to cover strongly unforgeable schemes.
- It applies to [Boyen10], [Rückert10] and a new Inhomogenous SIS-based scheme we introduce in this paper.
 - modification of [Rúckert10] with delegation strategy of [ABB10]
 - Linea

KeyGen

Sample uniform matrix **A**, uniform **s** and **e** $\leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg)

Sample $\mathbf{z} \leftarrow \{-1,0,1\}^m$

 $\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{m}\mathbf{s}\mathbf{g}$

Output (\mathbf{c}_0, c_1)

 $\begin{aligned} \mathsf{Dec}_{\mathsf{sk}}(\mathsf{c}_0, \mathsf{c}_1) \\ \mathsf{Compute} \ d &= c_1 - \mathsf{s}^\top \mathsf{c}_0. \\ \mathsf{Output} \ \gamma \in \mathbb{Z}_p \text{ s.t. } d - \tau \cdot \gamma \mod q \text{ closest to } 0 \end{aligned}$

KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_q^{d \times \tau}$

KeyGen

Sample uniform matrix **A**, uniform **s** and **e** $\leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg)

Sample $\mathbf{z} \leftarrow \{-1,0,1\}^m$

 $\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{m}\mathbf{s}\mathbf{g}$

Output (\mathbf{c}_0, c_1)

 $\begin{aligned} \mathsf{Dec}_{\mathsf{sk}}(\mathsf{c}_0, \mathsf{c}_1) \\ \mathsf{Compute} \ d &= c_1 - \mathsf{s}^\top \mathsf{c}_0. \\ \mathsf{Output} \ \gamma \in \mathbb{Z}_p \text{ s.t. } d - \tau \cdot \gamma \mod q \text{ closest to } 0 \end{aligned}$

KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_q^{d \times \tau}$

Enc

invertible additive homomorphic encoding $g : \mathcal{M} \to \mathbb{Z}_q^d$ Sample randomness $\mathbf{r} \leftarrow_r \mathcal{R}$ Ciphertext will be $\mathsf{ct} = \mathbf{B} \cdot \mathbf{r} + g(\mathsf{msg})$

KeyGen

Sample uniform matrix **A**, uniform **s** and **e** $\leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg)

Sample $\mathbf{z} \leftarrow \{-1,0,1\}^m$

 $\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{m}\mathbf{s}\mathbf{g}$

Output (\mathbf{c}_0, c_1)

 $\begin{aligned} \mathsf{Dec}_{\mathsf{sk}}(\mathsf{c}_0, \mathsf{c}_1) \\ \mathsf{Compute} \ d &= c_1 - \mathsf{s}^\top \mathsf{c}_0. \\ \mathsf{Output} \ \gamma \in \mathbb{Z}_p \text{ s.t. } d - \tau \cdot \gamma \mod q \text{ closest to } 0 \end{aligned}$

KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_q^{d \times \tau}$

Enc

invertible additive homomorphic encoding $g : \mathcal{M} \to \mathbb{Z}_q^d$ Sample randomness $\mathbf{r} \leftarrow_r \mathcal{R}$ Ciphertext will be $\mathsf{ct} = \mathbf{B} \cdot \mathbf{r} + g(\mathsf{msg})$

Matrix
$$\mathbf{B} = \mathbf{I}_n \otimes \begin{pmatrix} \mathbf{A} \\ \mathbf{X} \end{pmatrix}$$

Matrix $g(\text{msg}_1...\text{msg}_{\alpha}) = \mathbf{I}_n \otimes \begin{pmatrix} \mathbf{0} \\ \tau \cdot \text{msg}_1 \\ \vdots \\ \mathbf{0} \\ \tau \cdot \text{msg}_{\alpha} \end{pmatrix}$

KeyGen

Sample uniform matrix A, uniform s and $e \leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg)

Sample $\mathbf{z} \leftarrow \{-1,0,1\}^m$

 $\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{msg}$

Output (\mathbf{c}_0, c_1)

 $\mathsf{Dec}_{\mathbf{sk}}(\mathbf{c}_0, \mathbf{c}_1)$ Compute $d = c_1 - \mathbf{s}^{\mathsf{T}} \mathbf{c}_0$. Output $\gamma \in \mathbb{Z}_p$ s.t. $d - \tau \cdot \gamma \mod q$ closest to 0

KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_{a}^{d \times \tau}$

Enc

invertible additive homomorphic encoding $g: \mathcal{M} \to \mathbb{Z}_q^d$

Sample randomness $\mathbf{r} \leftarrow_r \mathscr{R}$

Ciphertext will be $ct = \mathbf{B} \cdot \mathbf{r} + g(msg)$

 \mathbf{r} belongs to a structure-preserving set R with overwhelming probability. this also models Gaussian noise like in dual Regev.

KeyGen

Sample uniform matrix **A**, uniform **s** and **e** $\leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg)

Sample $\mathbf{z} \leftarrow \{-1,0,1\}^m$

 $\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{m}\mathbf{s}\mathbf{g}$

Output (\mathbf{c}_0, c_1)

 $\begin{aligned} & \mathsf{Dec}_{\mathsf{sk}}(\mathsf{c}_0, \mathsf{c}_1) \\ & \mathsf{Compute} \ d = c_1 - \mathbf{s}^\top \mathbf{c}_0. \\ & \mathsf{Output} \ \gamma \in \mathbb{Z}_p \text{ s.t. } d - \tau \cdot \gamma \mod q \text{ closest to } 0 \end{aligned}$

KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_q^{d \times \tau}$

Enc

invertible additive homomorphic encoding $g: \mathscr{M} \to \mathbb{Z}_q^d$

Sample randomness $\mathbf{r} \leftarrow_r \mathscr{R}$

Ciphertext will be $ct = \mathbf{B} \cdot \mathbf{r} + g(msg)$

 ${f r}$ belongs to a structure-preserving set R with overwhelming probability. this also models Gaussian noise like in dual Regev.

allows for message homomorphism

KeyGen

Sample uniform matrix A, uniform s and $\mathbf{e} \leftarrow \chi^m$

Output keys $pk = (A, x = s^TA + e^T)$, sk = s

Enc_{pk}(msg)

Sample $\mathbf{z} \leftarrow \{-1,0,1\}^m$

 $\mathbf{c}_0 = \mathbf{A}\mathbf{z}, c_1 = \mathbf{x}\mathbf{z} + \tau \cdot \mathbf{msg}$

Output (\mathbf{c}_0, c_1)

 $\mathsf{Dec}_{\mathbf{sk}}(\mathbf{c}_0, \mathbf{c}_1)$ Compute $d = c_1 - \mathbf{s}^{\mathsf{T}} \mathbf{c}_0$. Output $\gamma \in \mathbb{Z}_p$ s.t. $d - \tau \cdot \gamma \mod q$ closest to 0

KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_{a}^{d \times \tau}$

Enc

invertible additive homomorphic encoding $g: \mathcal{M} \to \mathbb{Z}_q^d$

Sample randomness $\mathbf{r} \leftarrow_r \mathscr{R}$

Ciphertext will be $ct = \mathbf{B} \cdot \mathbf{r} + g(msg)$

 \mathbf{r} belongs to a structure-preserving set R with overwhelming probability. this also models Gaussian noise like in dual Regev.

allows for message homomorphism

the actual definition also covers a series of noise properties.

Structure-Preserving Encryption Definition

In a structure-preserving encryption scheme, the public key is expressible as a matrix \mathbf{B} . The randomness space R is a structure preserving set. and g is a invertible additive homomorphism.

= **Br** + g(msg)

Regev Encryption of a Boyen Signature

KeyGen	Rec
Generate matrix ${\bf A}$ and short trapdoor ${\bf T}_{{\bf A}}$	Pu
Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_\ell)$	inv
Output keys vk = (A, $\mathbf{C}_0 \dots \mathbf{C}_{\ell}$), sk = $\mathbf{T}_{\mathbf{A}}$	Sa
	Ci
Sign _{sk} (msg)	
Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum msg_i \mathbf{C}_i$	Ve
Set $\mathbf{F}_{ms\sigma} = [\mathbf{A} \mathbf{C}_{ms\sigma}]^{i=1}$	Le
Use T_A to generate short σ such that $F_{msg} \cdot \sigma = 0$	Co
Sample r , output $\sigma^{enc} = \mathbf{B} \cdot \mathbf{r} + g(\mathbf{d})$	Ou
Varify (mag	
verny _{vk} (msg, o)	com
Apply $f_{\rm vk,msg}^i$ homomorphically on $\sigma^{\rm enc}$	
Get $\boldsymbol{\sigma}_{i}^{\text{enc}} = \mathbf{B} \cdot \mathbf{r}_{i} + g(f_{\text{vk msg}}^{i}(\mathbf{d}))$	
We need a way to aback that f^i (d) $\subset S$	
we need a way to check that $J_{vk,msg}(\mathbf{u}) \in S_i$	

gev SPS Encryption

- ublic-key matrix $\mathbf{B} \in \mathbb{Z}_q^{d imes au}$
- vertible additive homomorphic encoding $g: \mathcal{M} \to \mathbb{Z}_a^d$
- ample randomness $\mathbf{r} \leftarrow_r \mathscr{R}$
- phertext will be $ct = \mathbf{B} \cdot \mathbf{r} + g(msg)$

 $\operatorname{rify}_{vk}(\mathsf{msg}, \sigma)$ for Boyen SPS $\operatorname{et} f_{\mathsf{vk},\mathsf{msg}}^1(\boldsymbol{\sigma}) = \mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma}, \ f_{\mathsf{vk},\mathsf{msg}}^2(\boldsymbol{\sigma}) = \boldsymbol{\sigma}$ onsider structure-preserving sets $S_1 = \{\mathbf{0}\}$ and S_2 , a ball of short vectors. utput 1 if $f_{vk,msg}^{i}(\boldsymbol{\sigma}) = S_{i}$ for both $i = \{1,2\}$

putable since g is homomorphic

Regev Encryption of a Boyen Signature

KeyGen		Re
Generate matrix ${\bf A}$ and short trapdoor ${\bf T}_{{\bf A}}$		Ρι
Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$		in
Output keys vk = (A, $\mathbf{C}_0 \dots \mathbf{C}_{\ell}$), sk = $\mathbf{T}_{\mathbf{A}}$		Sa
		С
Sign _{sk} (msg)		_
Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum msg_i \mathbf{C}_i$		Ve
Set $\mathbf{F}_{msg} = [\mathbf{A} \mathbf{C}_{msg}]^{i=1}$		Le
Use T_A to generate short σ such that $F_{msg} \cdot \sigma = 0$		C
Sample r , output $\sigma^{enc} = \mathbf{B} \cdot \mathbf{r} + g(\mathbf{d})$		0
$Verify_{vk}(msg, \sigma)$		con
Apply $f_{\rm vk,msg}^i$ homomorphically on $\sigma^{\rm enc}$		0011
Get $\boldsymbol{\sigma}_i^{\text{enc}} = \mathbf{B} \cdot \mathbf{r}_i + g\left(f_{\text{vk,msg}}^i(\mathbf{d})\right)$		
We need a way to check that $f^i_{vk,msg}(\mathbf{d}) \in S_i$	How	/ to

egev SPS Encryption

- ublic-key matrix $\mathbf{B} \in \mathbb{Z}_q^{d imes au}$
- ivertible additive homomorphic encoding $g: \mathcal{M} \to \mathbb{Z}_q^d$
- ample randomness $\mathbf{r} \leftarrow_r \mathscr{R}$
- Siphertext will be $ct = \mathbf{B} \cdot \mathbf{r} + g(msg)$

erify_{vk}(msg, σ) for Boyen SPS et $f_{vk,msg}^1(\sigma) = \mathbf{F}_{msg} \cdot \sigma$, $f_{vk,msg}^2(\sigma) = \sigma$ Consider structure-preserving sets $S_1 = \{\mathbf{0}\}$ and S_2 , a ball of short vectors. Dutput 1 if $f_{vk,msg}^i(\sigma) = S_i$ for both $i = \{1,2\}$

nputable since g is homomorphic

do this?

Regev Encryption of a Boyen Signature

KeyGen	Re
Generate matrix ${\bf A}$ and short trapdoor ${\bf T}_{{\bf A}}$	Ρι
Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$	inv
Output keys $vk = (A, C_0C_{\ell})$, $sk = T_A$	Sa
	Ci
Sign _{sk} (msg) ℯ	
Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum_{i=1}^{b} msg_i \mathbf{C}_i$	Ve
Set $\mathbf{F}_{msg} = [\mathbf{A} \mathbf{C}_{msg}]^{i=1}$	Le
Use T_A to generate short σ such that $F_{msg} \cdot \sigma = 0$	Сс
Sample r , output $\sigma^{enc} = \mathbf{B} \cdot \mathbf{r} + g(\mathbf{d})$ NIZK proof π	Οι
$\begin{aligned} & Verify_{vk}(msg, \pmb{\sigma}) \\ & Apply f^i_{vk,msg} \text{ homomorphically on } \pmb{\sigma}^{enc} \\ & Get \pmb{\sigma}^{enc}_i = \mathbf{B} \cdot \mathbf{r}_i + g \Big(f^i_{vk,msg}(\mathbf{d}) \Big) \\ & Check that f^i_{vk,msg}(\mathbf{d}) \in S_i and that NIZK proof \pi is valid \end{aligned}$	com

gev SPS Encryption

- ublic-key matrix $\mathbf{B} \in \mathbb{Z}_q^{d imes au}$
- vertible additive homomorphic encoding $g: \mathcal{M} \to \mathbb{Z}_a^d$
- ample randomness $\mathbf{r} \leftarrow_r \mathscr{R}$
- iphertext will be $ct = \mathbf{B} \cdot \mathbf{r} + g(msg)$

erify_{vk}(msg, σ) for Boyen SPS $\operatorname{et} f_{\mathsf{vk},\mathsf{msg}}^1(\boldsymbol{\sigma}) = \mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma}, \ f_{\mathsf{vk},\mathsf{msg}}^2(\boldsymbol{\sigma}) = \boldsymbol{\sigma}$ onsider structure-preserving sets $S_1 = \{\mathbf{0}\}$ and S_2 , a ball of short vectors. utput 1 if $f_{\text{vk,msg}}^i(\boldsymbol{\sigma}) = S_i$ for both $i = \{1,2\}$

nputable since g is homomorphic

where S is structure preserving

We need a NIZK to check that a ct is of the form Enc(msg) where $msg \in S$

We need a NIZK to check that a ct is of the form Enc(msg) where $msg \in S$. We adapt the sigma protocol of [Libert et al. 2020]

Structure-Preserving NIZK

From Structure-Preserving Σ -Protocol to NIZK

Option 1: Use Fiat-Shamir

Option 2: use correlation-intractable hashing to obtain security in the standard model. [Libert et al. 2020] uses CI-Hashing for NC₁ circuits

Recap: Encryption of a Signature

KeyGen Generate matrix A and short trapdoor T_A Sample uniform $(\mathbf{C}_0 \dots \mathbf{C}_{\ell})$ Output keys vk = $(\mathbf{A}, \mathbf{C}_0 \dots \mathbf{C}_\ell)$, sk = $\mathbf{T}_{\mathbf{A}}$ Sign_{sk}(msg) Compute $\mathbf{C}_{msg} = \mathbf{C}_0 + \sum msg_i\mathbf{C}_i$ Set $\mathbf{F}_{msg} = [\mathbf{A} | \mathbf{C}_{msg}]^{i=1}$ Use $\mathbf{T}_{\mathbf{A}}$ to generate short $\boldsymbol{\sigma}$ such that $\mathbf{F}_{\mathsf{msg}} \cdot \boldsymbol{\sigma} = \mathbf{0}$ Sample **r**, output $\sigma^{enc} = \mathbf{B}_{\alpha} \cdot \mathbf{r} + g_{\alpha}(\mathbf{d})$ NIZK proof π

$Verify_{vk}(msg, \sigma)$

Apply $f_{vk,msg}^{i}$ homomorphically on σ^{enc} Get $\sigma_{i}^{enc} = \mathbf{B} \cdot \mathbf{r}_{i} + g\left(f_{vk,msg}^{i}(\mathbf{d})\right)$ Check that $f_{vk,msg}^{i}(\mathbf{d}) \in S_{i}$ and that NIZK proof π is valid

Regev SPS Encryption

- Public-key matrix $\mathbf{B} \in \mathbb{Z}_{a}^{d \times \tau}$
- invertible additive homomorphic encoding $g: \mathcal{M} \to \mathbb{Z}_q^d$
- Sample randomness $\mathbf{r} \leftarrow_r \mathscr{R}$
- Ciphertext will be $ct = \mathbf{B} \cdot \mathbf{r} + g(msg)$

Verify_{vk}(msg, σ) for Boyen SPS Let $f_{vk,msg}^1(\sigma) = \mathbf{F}_{msg} \cdot \sigma$, $f_{vk,msg}^2(\sigma) = \sigma$ Consider structure-preserving sets $S_1 = \{\mathbf{0}\}$ and S_2 , a ball of short vectors. Output 1 if $f_{vk,msg}^i(\sigma) = S_i$ for both $i = \{1,2\}$

computable since g_{α} is homomorphic

where S is structure preserving

We now have a NIZK to check that a ct is of the form Enc(msg) where $msg \in S$

In structure-preserving cryptography, our NIZK efficiently proves statements of the form:

- a ciphertext encrypts a valid signature.
- a signature signs a valid ciphertext.

a NIZK proof certifies that the ciphertext is valid

Application: Verifiable Encrypted Signature (VES)

Prove that an encrypted signature is valid without revealing the signature.

Our construction is the most efficient lattice-based VES in the standard model.

Alice and Bob want to sign a contract.

Motivation: Contract Signing

 $\sigma_{Alice} = Sign(sk_{Alice}, contract)$

 $\sigma_{Bob} = Sign(sk_{Bob}, contract)$

Alice and Bob want to sign a contract.

Bob refuses to sign and instead forwards σ_{Alice} to a third party to negotiate. Bob can impersonate Alice to another third party.

Motivation: Contract Signing

Motivation: Contract Signing

 $Enc_{pk}(\sigma_{Alice})$, NIZK proof π_{Alice}

 $Enc_{pk}(\sigma_{Bob})$, NIZK proof π_{Bob}

 σ_{Alice}

σ_{Bob}

 $\sigma_{\text{Bob}} = \text{Sign}(\text{sk}_{\text{Bob}}, \text{contract})$

check if π_{Alice} certifies valid σ_{Alice} for the contract.

63

Motivation: Contract Signing

If any party refuses to sign, the other party forwards the encryption and proof to the authority which will decrypt.

Bob

 $\sigma_{\text{Bob}} = \text{Sign}(\text{sk}_{\text{Bob}}, \text{contract})$

check if π_{Alice} certifies valid σ_{Alice} for the contract.

Contributions

We put forward: • a unifying framework for structure-preserving cryptography for lattices.

[Boyen10] [Rúckert10] new modification of [Re [ABB10] deleg

Signatures	Regev Encryption [Regev05]	Enc
	Dual Regev [GPV08]	
úckert10] using gation	[GSW13]	

Contributions

We put forward: • a unifying framework for structure-preserving cryptography for lattices.

[Boyen10] [Rúckert10] new modification of [R [ABB10] deleg

Signatures	Regev Encryption [Regev05]	Enc
	Dual Regev [GPV08]	
úckert10] using gation	[GSW13]	

• structure-preserving NIZK, generalising a protocol from [Libert et al. 2020]

Contributions

We put forward: • a unifying framework for structure-preserving cryptography for lattices.

[Boyen10] [Rúckert10] new modification of [R [ABB10] deleg

Signatures	Regev Encryption [Regev05]	Enc
	Dual Regev [GPV08]	
úckert10] using gation	[GSW13]	

• structure-preserving NIZK, generalising a protocol from [Libert et al. 2020]

application to verifiable encrypted signature (VES). new proof, similar to [Fuchsbauer2011] with several new technical details. currently the most efficient lattice VES in the standard model

	new ISIS-based signature	[Rückert10]'s signature	[Boyen10]
[Regev05]	compatible	compatible	incompatible
[GPV08]	compatible	compatible	incompatible
[GSW13]	compatible	compatible	compatible

Limitation and an Open Problem

Thank you for your attention!

Questions?

