On Structure-Preserving Cryptography and Lattices

Dennis Hofheinz ${ }^{1}$, Kristina Hostáková ${ }^{1}$, Roman Langrehr ${ }^{1}$, Bogdan Ursu ${ }^{2}$
${ }^{1}$ ETH Zurich
${ }^{2}$ Linea, Consensys

Structure-Preserving Cryptography (SPS)

The Groth-Sahai NIZK [GS08] allows to efficiently prove quadratic relations over:

- the group elements of a bilinear pairing group.
- and its exponents

Structure-Preserving Cryptography (SPS)

The Groth-Sahai NIZK [GS08] allows to efficiently prove quadratic relations over:

- the group elements of a bilinear pairing group.
- its exponents

The structure of signatures and encryption in pairing groups is compatible with these quadratic relations.
structure-preserving cryptography.

Structure-Preserving Cryptography (SPS)

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:

- a ciphertext encrypts a valid signature.
focus on this, the other case will become clear along the way.
- a signature signs a valid ciphertext.

Structure-Preserving Cryptography (SPS)

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:

- a ciphertext encrypts a valid signature.
focus on this, the other case will become clear along the way.
- a signature signs a valid ciphertext.
[GS08] NIZK is in the standard model perfect correctness

Encryption and signing can be nested indefinitely.

Structure-Preserving Cryptography (SPS)

In structure-preserving cryptography, the NIZK efficiently proves statements of the form:

- a ciphertext encrypts a valid signature.

4 focus on this, the other case will become clear along the way.

- a signature signs a valid ciphertext.
[GS08] NIZK is in the standard model perfect correctness

All operations lie in the same group, allowing for native arithmetic. avoid generic NIZKs and expensive circuitry.

Motivation

Structure-preserving primitives enable or enhance a wide range of constructions:

- Verifiably Encrypted Signatures
- Delegatable Anonymous Credentials
- Group Signatures
- Ring Signatures

Motivation

Can we get similar structure preserving cryptography for lattices?

Motivation

Can we get similar structure preserving cryptography for lattices?

We formalise unifying notions shared by a family of encryption and signatures schemes

Provide a NIZK that is compatible with this notion
standard model security

Example: Regev Encryption [Regev05]

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{S} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys pk $=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right)$, sk $=\mathbf{s}$

Example: Regev Encryption [Regev05]

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{s} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right)$, sk $=\mathbf{s}$
$\mathrm{Enc}_{\mathrm{pk}}(\mathrm{msg})$
Sample $\mathbf{z} \leftarrow\{-1,0,1\}^{m}$
$\mathbf{c}_{0}=\mathbf{A z}, c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg}$
Output $\left(\mathbf{c}_{0}, c_{1}\right)$

Example: Regev Encryption [Regev05]

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{s} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right)$, sk $=\mathbf{s}$

```
Enc pk (msg)
Sample z}\leftarrow{-1,0,1} } 
\mp@subsup{c}{0}{}}=\mathbf{Az},\mp@subsup{c}{1}{}=\mathbf{xz}+\tau\cdot\textrm{msg
```

Output $\left(\mathbf{c}_{0}, c_{1}\right)$
$\operatorname{Dec}_{\text {sk }}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right)$
Compute $d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0}$.
Output $\gamma \in \mathbb{Z}_{p}$ s.t. $d-\tau \cdot \gamma \bmod q$ closest to 0

Example: Regev Encryption [Regev05]

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{S} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right)$, sk $=\mathbf{s}$

$$
\begin{aligned}
& \mathrm{Enc}_{\mathrm{pk}}(\mathrm{msg}) \\
& \text { Sample } \mathbf{z} \leftarrow\{-1,0,1\}^{m} \\
& \mathbf{c}_{0}=\mathbf{A z}, c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg}
\end{aligned}
$$

Output $\left(\mathbf{c}_{0}, c_{1}\right)$
$\operatorname{Dec}_{\text {sk }}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right)$
Compute $d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0}$.
Output $\gamma \in \mathbb{Z}_{p}$ s.t. $d-\tau \cdot \gamma \bmod q$ closest to 0

Compute $c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg}-\mathbf{s}^{\top} \mathbf{A z}$

$$
\mathbf{s}^{\top} \mathbf{A} \mathbf{z}+\mathbf{e}^{\top} \mathbf{z}+\tau \cdot \mathrm{msg}-\mathbf{s}^{\top} \mathbf{A} \mathbf{z}
$$

Example: Regev Encryption [Regev05]

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{S} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right)$, sk $=\mathbf{s}$

$$
\begin{aligned}
& \mathrm{Enc}_{\mathrm{pk}}(\mathrm{msg}) \\
& \text { Sample } \mathbf{z} \leftarrow\{-1,0,1\}^{m} \\
& \mathbf{c}_{0}=\mathbf{A z}, c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg}
\end{aligned}
$$

Output $\left(\mathbf{c}_{0}, c_{1}\right)$
$\operatorname{Dec}_{\text {sk }}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right)$
Compute $d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0}$.
Output $\gamma \in \mathbb{Z}_{p}$ s.t. $d-\tau \cdot \gamma \bmod q$ closest to 0
Compute $c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg}-\mathbf{s}^{\top} \mathbf{A z}$

$$
\mathbf{s}^{\top} \mathbf{A} \mathbf{z}+\mathbf{e}^{\top} \mathbf{z}+\tau \cdot \mathrm{msg}-\mathbf{s}^{\top} \mathbf{A} \mathbf{z}
$$

Example: Regev Encryption [Regev05]

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{S} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right)$, sk $=\mathbf{s}$

$E n c_{p k}(m s g)$

Sample $\mathbf{z} \leftarrow\{-1,0,1\}^{m}$
$\mathbf{c}_{0}=\mathbf{A z}, c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg}$
Output $\left(\mathbf{c}_{0}, c_{1}\right)$
$\operatorname{Dec}_{\text {sk }}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right)$
Compute $d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0}$.
Output $\gamma \in \mathbb{Z}_{p}$ s.t. $d-\tau \cdot \gamma \bmod q$ closest to 0
$\mathbf{A} \in \mathbb{Z}_{q}^{n \times m} \quad \mathbf{s} \in \mathbb{Z}_{q}^{n} \quad \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top} \in \mathbb{Z}_{q}^{m}$

$$
\mathbf{z} \in\{-1,0,1\}^{m} \quad \mathrm{c}_{0} \in \mathbb{Z}_{q}^{n} \quad \mathrm{c}_{1} \in \mathbb{Z}_{q}
$$

Example: Boyen's Signature [Boyen10]

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

Example: Boyen's Signature [Boyen10]

```
KeyGen
Generate matrix A and short trapdoor }\mp@subsup{\mathbf{T}}{\mathbf{A}}{
Sample uniform ( }\mp@subsup{\mathbf{C}}{0}{}\ldots\mp@subsup{\mathbf{C}}{\ell}{}
Output keys vk =(A, C}\mp@subsup{\mathbf{C}}{0}{}\ldots\mp@subsup{\mathbf{C}}{\ell}{})\mathrm{ , sk = T}\mp@subsup{\mathbf{T}}{\mathbf{A}}{
```

```
\(\operatorname{Sign}_{\mathrm{sk}}(\mathrm{msg})\)
Compute \(\mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \operatorname{msg}_{i} \mathbf{C}_{i}\)
Set \(\mathbf{F}_{\mathrm{msg}}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]\)
```

Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{\mathrm{msg}} \cdot \mathbf{d}=\mathbf{0}$
Output \mathbf{d} as the signature

Example: Boyen's Signature [Boyen10]

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

$$
\begin{aligned}
& \operatorname{Sign}_{\mathrm{sk}}(\mathrm{msg}) \\
& {\text { Compute } \mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \operatorname{msg}_{i} \mathbf{C}_{i}}_{\text {Set } \mathbf{F}_{\mathrm{msg}}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]}
\end{aligned}
$$

Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{\mathrm{msg}} \cdot \mathbf{d}=\mathbf{0}$
Output \mathbf{d} as the signature

Verify $_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma})$
Check that $\boldsymbol{\sigma}$ is short and non-zero.
Check that $\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}=\mathbf{0}$

Example: Boyen's Signature [Boyen10]

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$ Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

$$
\begin{aligned}
& \operatorname{Sign}_{\mathrm{sk}}(\mathrm{msg}) \\
& {\text { Compute } \mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i}}_{\text {Set } \mathbf{F}_{\mathrm{msg}}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]}
\end{aligned}
$$

Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{\mathrm{msg}} \cdot \mathbf{d}=\mathbf{0}$
Output \mathbf{d} as the signature

```
\(\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}\)
```

$\mathbf{F}_{\mathrm{msg}} \in \mathbb{Z}_{q}^{n \times 2 m}$

$$
\text { Verify }_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma})
$$

Check that $\boldsymbol{\sigma}$ is short and non-zero.
Check that $\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}=\mathbf{0}$

Example: Encrypt the Signature

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

Regev Encryption
Output keys $\mathrm{pk}^{\prime}=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathbf{s}^{\top \top} \mathbf{A}^{\prime}+\mathbf{e}^{\top \top}\right), \mathrm{sk}^{\prime}=\mathbf{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$

Example: Encrypt the Signature

```
KeyGen
Generate matrix A and short trapdoor }\mp@subsup{\mathbf{T}}{\mathbf{A}}{
Sample uniform ( ( }\mp@subsup{\mathbf{0}}{0}{}\ldots\mp@subsup{\mathbf{C}}{\ell}{}
Output keys vk =(A, C
Sign (msg)
Compute \mp@subsup{\mathbf{C}}{\textrm{msg}}{}=\mp@subsup{\mathbf{C}}{0}{}+\mp@subsup{\sum}{i=1}{l}\mp@subsup{\textrm{msg}}{i}{}\mp@subsup{\mathbf{C}}{i}{}
Set F}\mp@subsup{\mathbf{Fmsg}}{}{=[\mathbf{A}|\mp@subsup{\mathbf{C}}{\mathrm{ msg}}{}]
Use \(\mathbf{T}_{\mathrm{A}}\) to generate short \(\mathbf{d}\) such that \(\mathbf{F}_{\text {msg }} \cdot \mathbf{d}=\mathbf{0}\)
Sample \(\mathbf{Z}\), output \(\mathbf{c}_{0}=\mathbf{A}^{\prime} \mathbf{Z}^{\prime}, \mathbf{c}_{1}=\mathbf{x}^{\prime} \mathbf{Z}^{\prime}+\tau^{\prime} \cdot \mathbf{d}\)
```


Regev Encryption

Output keys pk $=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathbf{s}^{\top} \mathbf{A}^{\prime}+\mathbf{e}^{\top}\right)$, sk' $=\mathbf{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$

Example: Encrypt the Signature

Regev Encryption

Output keys $\mathrm{pk}^{\prime}=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathbf{s}^{\top} \mathbf{A}^{\prime}+\mathbf{e}^{\top}\right), \mathrm{sk}=\mathbf{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$

Example: Encrypt the Signature

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$
$\operatorname{Sign}_{\mathrm{sk}}(\mathrm{msg})$
Compute $^{\mathbf{C}_{\mathrm{msg}}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i}$
Set $\mathbf{F}_{\mathrm{msg}}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]$

Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{\mathrm{msg}} \cdot \mathbf{d}=\mathbf{0}$
Sample \mathbf{Z}, output $\mathbf{c}_{0}=\mathbf{A}^{\prime} \mathbf{Z}^{\prime}, \mathbf{c}_{1}=\mathbf{x}^{\prime} \mathbf{Z}^{\prime}+\tau^{\prime} \cdot \mathbf{d}$

Verify $_{\text {vk }}\left(\mathrm{msg}, \mathbf{c}_{0}, \mathbf{c}_{1}\right)$

Check that \mathbf{d} is short and non-zero.
Check that $\mathbf{F}_{\text {msg }} \cdot \boldsymbol{\sigma}=\mathbf{0}$

Regev Encryption

Output keys $\mathrm{pk}^{\prime}=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathbf{s}^{\top} \mathbf{A}^{\prime}+\mathbf{e}^{\top}\right), \mathrm{sk}=\mathbf{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$

Example: Encrypt the Signature

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

Regev Encryption

Output keys $\mathrm{pk}^{\prime}=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathbf{s}^{\top \top} \mathbf{A}^{\prime}+\mathbf{e}^{\top}\right), \mathrm{sk}=\mathbf{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$
$\operatorname{Sign}_{\text {sk }}(\mathrm{msg})$
Compute $^{\mathbf{C}_{\mathrm{msg}}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \operatorname{msg}_{i} \mathbf{C}_{i}$
$\operatorname{Set} \mathbf{F}_{\text {mon }}=\left\lceil\mathbf{A} \mid \mathbf{C}_{\text {mon }}\right]$

Use \mathbf{T}_{A} to generate short \mathbf{d} such that $\mathbf{F}_{\text {msg }} \cdot \mathbf{d}=\mathbf{0}$
Sample \mathbf{Z}, output $\mathbf{c}_{0}=\mathbf{A}^{\prime} \mathbf{Z}^{\prime}, \mathbf{c}_{1}=\mathbf{x}^{\prime} \mathbf{Z}^{\prime}+\tau^{\prime} \cdot \mathbf{d}$ \qquad generate proof π and include it in the output.

Verify $_{\text {vk }}\left(\mathrm{msg}, \mathbf{c}_{0}, \mathbf{c}_{1}\right)$

Check that \mathbf{d} is short and non-zero.
Check that $\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}=\mathbf{0}$

Example: Encrypt the Signature

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

Regev Encryption

Output keys $p k^{\prime}=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathbf{s}^{\top} \mathbf{A}^{\prime}+\mathbf{e}^{\top \top}\right), \mathrm{sk}^{\prime}=\mathbf{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$

$$
\begin{aligned}
& \operatorname{Sign}_{\text {sk }}(\mathrm{msg}) \\
& \text { Compute } \mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i} \\
& \text { Set } \mathbf{F}_{\mathrm{msg}}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]
\end{aligned}
$$

Use \mathbf{T}_{A} to generate short \mathbf{d} such that $\mathbf{F}_{\text {msg }} \cdot \mathbf{d}=\mathbf{0}$
Sample \mathbf{Z}, output $\mathbf{c}_{0}=\mathbf{A}^{\prime} \mathbf{Z}^{\prime}, \mathbf{c}_{1}=\mathbf{x}^{\prime} \mathbf{Z}^{\prime}+\tau^{\prime} \cdot \mathbf{d}$ \qquad generate proof π and include it in the output.

Verify $_{\text {vk }}\left(\mathrm{msg}, \mathbf{c}_{0}, \mathbf{c}_{1}\right)$

Check that \mathbf{d} is short and non-zero. \qquad We also need proofs for the shortness and non-zero checks.

Check that $\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}=\mathbf{0}$

Example: Encrypt the Signature

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

Regev Encryption

Output keys $\mathrm{pk}^{\prime}=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathbf{s}^{\top} \mathbf{A}^{\prime}+\mathbf{e}^{\top \top}\right), \mathrm{sk}=\mathbf{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$

$$
\begin{aligned}
& \operatorname{Sign}_{\text {sk }}(\mathrm{msg}) \\
& \text { Compute } \mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i} \\
& \text { Set } \mathbf{F}_{\mathrm{msg}}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]
\end{aligned}
$$

Use \mathbf{T}_{A} to generate short \mathbf{d} such that $\mathbf{F}_{\mathrm{msg}} \cdot \mathbf{d}=\mathbf{0}$
Sample \mathbf{Z}, output $\mathbf{c}_{0}=\mathbf{A}^{\prime} \mathbf{Z}^{\prime}, \mathbf{c}_{1}=\mathbf{x}^{\prime} \mathbf{Z}^{\prime}+\tau^{\prime} \cdot \mathbf{d}$ \qquad generate proof π and include it in the output.

Verify $_{\text {vk }}\left(\mathrm{msg}, \mathbf{c}_{0}, \mathbf{c}_{1}\right)$

Check that \mathbf{d} is short and non-zero.
We also need proofs for the shortness and non-zero checks.
Check that $\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}=\mathbf{0} \longrightarrow$ homomorphic evaluation leads to an encryption of $\mathbf{0}$

Example: Boyen’s Signature [Boyen10]

KeyGen

Generate matrix \mathbf{A} and short trapdoor T_{A}
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

$\operatorname{Sign}_{\mathrm{sk}}(\mathrm{msg})$

Compute $\mathbf{C}_{\mathrm{msg}}=\mathrm{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathrm{C}_{i}$
Set $\mathbf{F}_{\mathrm{msg}}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]$
Use $\mathbf{T}_{\mathbf{A}}$ to generate short \mathbf{d} such that $\mathbf{F}_{\text {msg }} \cdot \mathbf{d}=\mathbf{0}$
Sample \mathbf{Z}, output $\mathbf{c}_{0}=\mathbf{A}^{\prime} \mathbf{Z}^{\prime}, \mathbf{c}_{1}=\mathbf{x}^{\prime} \mathbf{Z}^{\prime}+\tau^{\prime} \cdot \mathbf{d}$

Verify ${ }_{\text {vk }}\left(\mathrm{msg}, \mathbf{c}_{0}, \mathbf{c}_{1}\right.$)

Check that \mathbf{d} is short and non-zero.
Check that $\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}=\mathbf{0}$

Regev Encryption

Output keys $\mathrm{pk}^{\prime}=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathrm{s}^{\top} \mathbf{A}^{\prime}+\mathrm{e}^{\top}\right), \mathrm{sk}=\mathrm{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$

Wanted: a proof that something encrypted is:

- short
- non-zero
- an encryption of $\mathbf{0}$

Example: Boyen’s Signature [Boyen10]

KeyGen

Generate matrix \mathbf{A} and short trapdoor \mathbf{T}_{A}
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

$\operatorname{Sign}_{\text {sk }}(\mathrm{msg})$

Compute $\mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i}$
Set $\mathbf{F}_{\mathrm{msg}}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]$
Use \mathbf{T}_{A} to generate short \mathbf{d} such that $\mathbf{F}_{\text {msg }} \cdot \mathbf{d}=\mathbf{0}$
Sample \mathbf{Z}, output $\mathbf{c}_{0}=\mathbf{A}^{\prime} \mathbf{Z}^{\prime}, \mathbf{c}_{1}=\mathbf{x}^{\prime} \mathbf{Z}^{\prime}+\tau^{\prime} \cdot \mathbf{d}$

Verify ${ }_{\text {vk }}\left(\mathrm{msg}, \mathbf{c}_{0}, \mathbf{c}_{1}\right.$)

Check that \mathbf{d} is short and non-zero.
Check that $\mathbf{F}_{\text {msg }} \cdot \boldsymbol{\sigma}=\mathbf{0}$

Regev Encryption

Output keys $\mathrm{pk}^{\prime}=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathrm{s}^{\top} \mathbf{A}^{\prime}+\mathrm{e}^{\top}\right), \mathrm{sk}=\mathrm{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$

Wanted: a proof that something encrypted is:

- short
- non-zero
- an encryption of $\mathbf{0}$

Wanted: the encrypted signature becomes hidden
Goal: • hide something short (smudge it)

- despite being hidden, we can check that the original was short.

Example: Boyen’s Signature [Boyen10]

```
KeyGen
Generate matrix \(\mathbf{A}\) and short trapdoor \(\mathbf{T}_{\mathrm{A}}\)
Sample uniform \(\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)\)
Output keys vk \(=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)\), sk \(=\mathbf{T}_{\mathbf{A}}\)
```


$\operatorname{Sign}_{\text {sk }}(\mathrm{msg})$

```
Compute \(\mathbf{C}_{\text {msg }}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \operatorname{msg}_{i} \mathbf{C}_{i}\)
Set \(\mathbf{F}_{\text {msg }}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]\)
Use \(\mathbf{T}_{\mathrm{A}}\) to generate short \(\mathbf{d}\) such that \(\mathbf{F}_{\text {msg }} \cdot \mathbf{d}=\mathbf{0}\)
Sample \(\mathbf{Z}\), output \(\mathbf{c}_{0}=\mathbf{A}^{\prime} \mathbf{Z}^{\prime}, \mathbf{c}_{1}=\mathbf{x}^{\prime} \mathbf{Z}^{\prime}+\tau^{\prime} \cdot \mathbf{d}\)
```


Verify ${ }_{\text {vk }}\left(\mathrm{msg}, \mathbf{c}_{0}, \mathbf{c}_{1}\right.$)

Check that \mathbf{d} is short and non-zero.
Check that $\mathbf{F}_{\text {msg }} \cdot \sigma=\mathbf{0}$

Regev Encryption

Output keys $\mathrm{pk}=\left(\mathbf{A}^{\prime}, \mathbf{x}^{\prime}=\mathrm{s}^{\top} \mathbf{A}^{\prime}+\mathrm{e}^{\top}\right)$, $\mathrm{sk}^{\prime}=\mathrm{s}^{\prime}$
$\mathbf{c}_{0}^{\prime}=\mathbf{A}^{\prime} \mathbf{z}^{\prime}, \mathbf{c}_{1}^{\prime}=\mathbf{x}^{\prime} \mathbf{z}^{\prime}+\tau^{\prime} \cdot \mathrm{msg}$

Wanted: a proof that something encrypted is:

- short
- non-zero
- an encryption of $\mathbf{0}$

Wanted: the encrypted signature becomes hidden
Goal: • hide something short (smudge it)

- despite being hidden, we can check that the original was short.

Smudging is not with superpolynomially larger noise.

Structure-Preserving Sets, First Step

Goal: hide the short signatures
Set $S \subseteq \mathbb{Z}_{q}^{d}$ is structure-preserving if there exists a noise distribution D such that:

- We can hide the elements of S using smudging.

Structure-Preserving Sets, First Step

Set $S \subseteq \mathbb{Z}_{q}^{d}$ is structure-preserving if there exists a noise distribution D such that:

- We can hide the elements of S using smudging.
- We can still check whether smudged elements belong to the original set S

Structure-Preserving Sets, First Step

Set $S \subseteq \mathbb{Z}_{q}^{d}$ is structure-preserving if there exists a noise distribution D such that:

- D smudges the elements of S, for any $s, s^{\prime} \in S$ and any $d \in D$:

$$
s+d \approx_{S} s^{\prime}+d
$$

- D smudging preserves membership and non-membership in S :

$$
S+\operatorname{supp}(D) \cap\left(\mathbb{Z}_{p} \backslash S\right)+\operatorname{supp}(D)=\varnothing
$$

Structure-Preserving Sets, First Step

Set $S \subseteq \mathbb{Z}_{q}^{d}$ is structure-preserving if there exists a noise distribution D such that:

- D smudges the elements of S, for any $s, s^{\prime} \in S$ and any $d \in D$:

$$
s+d \approx_{S} s^{\prime}+d
$$

- D smudging preserves membership and non-membership in S :

$$
S+\operatorname{supp}(D) \cap\left(\mathbb{Z}_{p} \backslash S\right)+\operatorname{supp}(D)=\varnothing
$$

We will be able to check if the hidden signature is short (membership check).

Structure-Preserving Sets, First Step

Smudging will also require rejection sampling.

Structure-Preserving Sets

Set $S \subseteq \mathbb{Z}_{q}^{d}$ is structure-preserving if there exists a noise distribution D, constant α, and function success s.t.

- D smudges the elements of S, for any $s, s^{\prime} \in S$ and any $d \in D$:

Structure-Preserving Sets

Set $S \subseteq \mathbb{Z}_{q}^{d}$ is structure-preserving if there exists a noise distribution D, constant α, and function success s.t.

- D smudges the elements of S, for any $s, s^{\prime} \in S$ and any $d \in D$:

$$
\begin{aligned}
& d \leftarrow_{r} D \\
& \text { Output } s+d \text { with } \operatorname{probability} \operatorname{success}\left(s, s^{\prime}, d\right) \\
& \qquad \perp \text { with } 1-\operatorname{success}\left(s, s^{\prime}, d\right)
\end{aligned}
$$

$$
\begin{array}{rl}
\approx_{S} & d \leftarrow_{r} D \\
& \text { Output } s^{\prime}+d \text { with probability } \alpha \\
& \perp \text { with probability } 1-\alpha
\end{array}
$$

Structure-Preserving Sets

Set $S \subseteq \mathbb{Z}_{q}^{d}$ is structure-preserving if there exists a noise distribution D, constant α, and function success s.t.

- D smudges the elements of S, for any $s, s^{\prime} \in S$ and any $d \in D$:

$$
\begin{aligned}
& d \leftarrow_{r} D \\
& \text { Output } s+d \text { with probability } \operatorname{success}\left(s, s^{\prime}, d\right) \\
& \qquad \quad \perp \text { with } 1-\operatorname{success}\left(s, s^{\prime}, d\right)
\end{aligned}
$$

$$
\begin{array}{rl}
\approx_{S} & d \leftarrow_{r} D \\
& \text { Output } s^{\prime}+d \text { with probability } \alpha \\
& \perp \text { with probability } 1-\alpha
\end{array}
$$

success and α stem from [Lyubashevsky12]'s rejection sampling.

Structure-Preserving Sets

Set $S \subseteq \mathbb{Z}_{q}^{d}$ is structure-preserving if there exists a noise distribution D, constant α, and function success s.t.

- D smudges the elements of S, for any $s, s^{\prime} \in S$ and any $d \in D$:

$$
\begin{aligned}
& d \leftarrow_{r} D \\
& \text { Output } s+d \text { with } \operatorname{probability} \operatorname{success}\left(s, s^{\prime}, d\right) \\
& \qquad \perp \text { with } 1-\operatorname{success}\left(s, s^{\prime}, d\right)
\end{aligned}
$$

$$
\begin{array}{rl}
\approx_{S} & d \leftarrow_{r} D \\
& \text { Output } s^{\prime}+d \text { with probability } \alpha \\
& \perp \text { with probability } 1-\alpha
\end{array}
$$

success and α stem from [Lyubashevsky12]'s rejection sampling.

- Membership for D and $(S+D)$ are easy.

$$
S+D \cap\left(\mathbb{Z}_{q}^{d} \backslash S\right)+D=\varnothing
$$

Structure-Preserving Sets

Set $S \subseteq \mathbb{Z}_{q}^{d}$ is structure-preserving if there exists a noise distribution D, constant α, and function success s.t.

- D smudges the elements of S, for any $s, s^{\prime} \in S$ and any $d \in D$:

$$
\begin{aligned}
& d \leftarrow_{r} D \\
& \text { Output } s+d \text { with } \operatorname{probability} \operatorname{success}\left(s, s^{\prime}, d\right) \\
& \qquad \perp \text { with } 1-\operatorname{success}\left(s, s^{\prime}, d\right)
\end{aligned}
$$

$$
\begin{array}{rl}
\approx_{S} & d \leftarrow_{r} D \\
& \text { Output } s^{\prime}+d \text { with probability } \alpha \\
& \perp \text { with probability } 1-\alpha
\end{array}
$$

success and α stem from [Lyubashevsky12]'s rejection sampling.

- Membership for D and $(S+D)$ are easy.

$$
S+D \quad \cap\left(\mathbb{Z}_{q}^{d} \backslash S\right)+D \approx \varnothing \quad \text { noisiness around } S \text {, actual definition w.r.t. } B_{\delta}(S) \text { and noise } \delta
$$

Structure-Preserving Set-Example

Example: any coset of any additive subgroup $G \subseteq \mathbb{Z}_{q}^{d}$.
Example: any singleton (as a coset of the additive group $\{\mathbf{0}\}$)
Example: Every set S where $S-S \in B_{T}(\{0\})$
meaning that the vectors are close to each other

Example: if S_{1} and S_{2} are structure preserving, so is $S_{1} \times S_{2}$

Example: Boyen’s Signature [Boyen10]

```
KeyGen
Generate matrix A and short trapdoor (T)
Sample uniform ( }\mp@subsup{\mathbf{C}}{0}{}\ldots\mp@subsup{\mathbf{C}}{\ell}{}
Output keys vk =(A, C
```

```
\(\operatorname{Sign}_{\text {sk }}(\mathrm{msg})\)
Compute \(\mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i}\)
Set \(\mathbf{F}_{\text {msg }}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]\)
```

Use \mathbf{T}_{A} to generate short \mathbf{d} such that $\mathbf{F}_{\mathrm{msg}} \cdot \mathbf{d}=\mathbf{0}$ Output \mathbf{d} as the signature

$$
\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}
$$

$$
\mathbf{F}_{\mathrm{msg}} \in \mathbb{Z}_{q}^{n \times 2 m}
$$

Verify $_{\text {vk }}(\mathrm{msg}, \boldsymbol{\sigma})$

Check that σ belongs to structure preserving set of short vectors.
Check that $\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}$ belongs to the structure preserving set $\{\mathbf{0}\}$
We ignore non-zero check for now

```
Verify }\mp@subsup{\textrm{vk}}{(msg,\sigma)}{(m)
Check that }\boldsymbol{\sigma}\mathrm{ is short and non-zero.
Check that }\mp@subsup{\mathbf{F}}{\mathrm{ msg }}{}\cdot\boldsymbol{\sigma}=\mathbf{0
```


Example: Boyen’s Signature [Boyen10]

```
KeyGen
Generate matrix A and short trapdoor }\mp@subsup{\mathbf{T}}{\mathbf{A}}{
Sample uniform ( }\mp@subsup{\mathbf{C}}{0}{}\ldots\mp@subsup{\mathbf{C}}{\ell}{}
Output keys vk =(A, C
```


$\operatorname{Sign}_{\text {sk }}(\mathrm{msg})$

Compute $\mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i}$
Set $\mathbf{F}_{\text {msg }}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]$
Use \mathbf{T}_{A} to generate short \mathbf{d} such that $\mathbf{F}_{\mathrm{msg}} \cdot \mathbf{d}=\mathbf{0}$ Output d as the signature

$$
\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}
$$

$$
\mathbf{F}_{\mathrm{msg}} \in \mathbb{Z}_{q}^{n \times 2 m}
$$

$$
\begin{aligned}
& \text { Verify }_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma}) \\
& \text { Let } f_{\mathrm{vk}, \mathrm{msg}}^{1}(\sigma)=\mathbf{F}_{\mathrm{msg}} \cdot \sigma, f_{\mathrm{vk}, \mathrm{msg}}^{2}(\sigma)=\sigma
\end{aligned}
$$

Consider structure-preserving sets $S_{1}=\{\mathbf{0}\}$ and S_{2}, a ball of short vectors.
Output 1 if $f_{\mathrm{vk}, \mathrm{msg}}^{i}(\sigma)=S_{i}$ for both $i=\{1,2\}$

[^0]
Example: Boyen’s Signature [Boyen10]

```
KeyGen
Generate matrix A and short trapdoor }\mp@subsup{\mathbf{T}}{\mathbf{A}}{
Sample uniform ( }\mp@subsup{\mathbf{C}}{0}{}\ldots\mp@subsup{\mathbf{C}}{\ell}{}
Output keys vk =(A, C
```


$\operatorname{Sign}_{\text {sk }}(\mathrm{msg})$

Compute $\mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i}$
Set $\mathbf{F}_{\text {msg }}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]$
Use \mathbf{T}_{A} to generate short \mathbf{d} such that $\mathbf{F}_{\mathrm{msg}} \cdot \mathbf{d}=\mathbf{0}$ Output \mathbf{d} as the signature

$$
\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}
$$

$$
\mathbf{F}_{\mathrm{msg}} \in \mathbb{Z}_{q}^{n \times 2 m}
$$

Verify $_{\text {vk }}(\mathrm{msg}, \boldsymbol{\sigma})$

Let $f_{\mathrm{vk}, \mathrm{msg}}^{1}(\sigma)=\mathbf{F}_{\mathrm{msg}} \cdot \sigma, f_{\mathrm{vk}, \mathrm{msg}}^{2}(\sigma)=\sigma$
Consider structure-preserving sets $S_{1}=\{\mathbf{0}\}$ and S_{2}, a ball of short vectors.

Output 1 if $f_{\mathrm{vk}, \mathrm{msg}}^{i}(\sigma)=S_{i}$ for both $i=\{1,2\}$

[^1]
Structure-Preserving Signature Definition

A structure-preserving signature for a function family \mathscr{F} is a digital signature where for all verification keys vk , message msg and signature σ,

Structure-Preserving Signature Definition

A structure-preserving signature for a function family \mathscr{F} is a digital signature where for all verification keys vk , message msg and signature σ,

The actual definition is more general to cover strongly unforgeable schemes.
It applies to [Boyen10], [Rückert10] and a new Inhomogenous SIS-based scheme we introduce in this paper.
modification of [Rúckert10] with delegation strategy of [ABB10]

Formalising SPS Encryption from Regev Encryption

```
KeyGen
    Sample uniform matrix A
    Output keys pk =(A,x = s}\mp@subsup{\mathbf{s}}{}{\top}\mathbf{A}+\mp@subsup{\mathbf{e}}{}{\top}),\mathrm{ sk = S
```

```
Enc pk (msg)
    Sample z}\leftarrow{-1,0,1\mp@subsup{}}{}{m
    \mp@subsup{c}{0}{}=\mathbf{Az},\mp@subsup{c}{1}{}=\mathbf{xz}+\tau\cdot\textrm{msg}
    Output (\mp@subsup{\mathbf{c}}{0}{},\mp@subsup{c}{1}{})
```

```
\(\operatorname{Dec}_{\text {sk }}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right)\)
Compute \(d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0}\).
Output \(\gamma \in \mathbb{Z}_{p}\) s.t. \(d-\tau \cdot \gamma \bmod q\) closest to 0
```


KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_{q}^{d \times \tau}$

Formalising SPS Encryption from Regev Encryption

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{S} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right)$, $\mathrm{sk}=\mathbf{s}$

$$
\begin{aligned}
& \mathrm{Enc}_{\mathrm{pk}}(\mathrm{msg}) \\
& \text { Sample } \mathbf{z} \leftarrow\{-1,0,1\}^{m} \\
& \mathbf{c}_{0}=\mathbf{A z}, c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg} \\
& \text { Output }\left(\mathbf{c}_{0}, c_{1}\right)
\end{aligned}
$$

$\operatorname{Dec}_{\text {sk }}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right)$
Compute $d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0}$.
Output $\gamma \in \mathbb{Z}_{p}$ s.t. $d-\tau \cdot \gamma \bmod q$ closest to 0

```
```

KeyGen

```
```

KeyGen
Matrix B}\in\mp@subsup{\mathbb{Z}}{q}{d\times\tau

```
```

 Matrix B}\in\mp@subsup{\mathbb{Z}}{q}{d\times\tau
    ```
```

```
Enc
```

Enc
invertible additive homomorphic encoding g:\mathscr{M}->\mp@subsup{\mathbb{Z}}{q}{d}
invertible additive homomorphic encoding g:\mathscr{M}->\mp@subsup{\mathbb{Z}}{q}{d}
Sample randomness }\mathbf{r}\mp@subsup{\leftarrow}{r}{}\mathscr{R
Sample randomness }\mathbf{r}\mp@subsup{\leftarrow}{r}{}\mathscr{R
Ciphertext will be ct = B}\cdot\mathbf{r}+g(msg

```
    Ciphertext will be ct = B}\cdot\mathbf{r}+g(msg
```


Formalising SPS Encryption from Regev Encryption

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{S} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right), \mathrm{sk}=\mathbf{s}$

$$
\begin{aligned}
& \mathrm{Enc}_{\mathrm{pk}}(\mathrm{msg}) \\
& \text { Sample } \mathbf{z} \leftarrow\{-1,0,1\}^{m} \\
& \mathbf{c}_{0}=\mathbf{A z}, c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg} \\
& \text { Output }\left(\mathbf{c}_{0}, c_{1}\right)
\end{aligned}
$$

$\operatorname{Dec}_{\text {sk }}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right)$

Compute $d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0}$.
Output $\gamma \in \mathbb{Z}_{p}$ s.t. $d-\tau \cdot \gamma \bmod q$ closest to 0

```
KeyGen
    Matrix B}\in\mp@subsup{\mathbb{Z}}{q}{d\times\tau
```

$$
\begin{aligned}
& \text { Enc } \\
& \text { invertible additive homomorphic encoding } g: \mathscr{M} \rightarrow \mathbb{Z}_{q}^{d} \\
& \text { Sample randomness } \mathbf{r} \leftarrow_{r} \mathscr{R} \\
& \text { Ciphertext will be ct }=\mathbf{B} \cdot \mathbf{r}+g(\mathrm{msg})
\end{aligned}
$$

$$
\begin{aligned}
& \text { Matrix } \mathbf{B}=\mathbf{I}_{n} \otimes\binom{\mathbf{A}}{\mathbf{X}} \\
& \text { Matrix } g\left(\mathrm{msg}_{1} \ldots \mathrm{msg}_{\alpha}\right)=\mathbf{I}_{n} \otimes\left(\begin{array}{c}
\mathbf{0} \\
\tau \cdot \mathrm{msg}_{1} \\
\vdots \\
\mathbf{0} \\
\tau \cdot \mathrm{msg}_{\alpha}
\end{array}\right)
\end{aligned}
$$

Formalising SPS Encryption from Regev Encryption

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{s} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right)$, $\mathrm{sk}=\mathbf{s}$

$$
\begin{aligned}
& \mathrm{Enc}_{\mathrm{pk}}(\mathrm{msg}) \\
& \text { Sample } \mathbf{z} \leftarrow\{-1,0,1\}^{m} \\
& \mathbf{c}_{0}=\mathbf{A z}, c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg} \\
& \text { Output }\left(\mathbf{c}_{0}, c_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}_{\mathbf{s k}}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right) \\
& \text { Compute } d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0} \\
& \text { Output } \gamma \in \mathbb{Z}_{p} \text { s.t. } d-\tau \cdot \gamma \bmod q \text { closest to } 0
\end{aligned}
$$

KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_{q}^{d \times \tau}$

Enc

invertible additive homomorphic encoding $g: \mathscr{M} \rightarrow \mathbb{Z}_{q}^{d}$ Sample randomness $\mathbf{r} \leftarrow_{r} \mathscr{R}$
Ciphertext will be $\mathrm{ct}=\mathbf{B} \cdot \mathbf{r}+g(\mathrm{msg})$
\mathbf{r} belongs to a structure-preserving set R with overwhelming probability this also models Gaussian noise like in dual Regev.

Formalising SPS Encryption from Regev Encryption

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{S} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right), \mathrm{sk}=\mathbf{s}$

$$
\begin{aligned}
& \mathrm{Enc}_{\mathrm{pk}}(\mathrm{msg}) \\
& \text { Sample } \mathbf{z} \leftarrow\{-1,0,1\}^{m} \\
& \mathbf{c}_{0}=\mathbf{A z}, c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg} \\
& \text { Output }\left(\mathbf{c}_{0}, c_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}_{\mathbf{s k}}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right) \\
& \text { Compute } d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0} \\
& \text { Output } \gamma \in \mathbb{Z}_{p} \text { s.t. } d-\tau \cdot \gamma \bmod q \text { closest to } 0
\end{aligned}
$$

KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_{q}^{d \times \tau}$

Enc

invertible additive homomorphic encoding $g: \mathscr{M} \rightarrow \mathbb{Z}_{q}^{d}$ Sample randomness $\mathbf{r} \leftarrow_{r} \mathscr{R}$
Ciphertext will be $\mathrm{ct}=\mathbf{B} \cdot \mathbf{r}+g(\mathrm{msg})$
\mathbf{r} belongs to a structure-preserving set R with overwhelming probability. this also models Gaussian noise like in dual Regev.

Formalising SPS Encryption from Regev Encryption

KeyGen

Sample uniform matrix \mathbf{A}, uniform \mathbf{s} and $\mathbf{e} \leftarrow \chi^{m}$
Output keys $\mathrm{pk}=\left(\mathbf{A}, \mathbf{x}=\mathbf{s}^{\top} \mathbf{A}+\mathbf{e}^{\top}\right), \mathrm{sk}=\mathbf{s}$

$$
\begin{aligned}
& \mathrm{Enc}_{\mathrm{pk}}(\mathrm{msg}) \\
& \text { Sample } \mathbf{z} \leftarrow\{-1,0,1\}^{m} \\
& \mathbf{c}_{0}=\mathbf{A z}, c_{1}=\mathbf{x z}+\tau \cdot \mathrm{msg} \\
& \text { Output }\left(\mathbf{c}_{0}, c_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}_{\text {sk }}\left(\mathrm{c}_{0}, \mathbf{c}_{1}\right) \\
& \text { Compute } d=c_{1}-\mathbf{s}^{\top} \mathbf{c}_{0} \\
& \text { Output } \gamma \in \mathbb{Z}_{p} \text { s.t. } d-\tau \cdot \gamma \bmod q \text { closest to } 0
\end{aligned}
$$

KeyGen

Matrix $\mathbf{B} \in \mathbb{Z}_{q}^{d \times \tau}$

Enc
 invertible additive homomorphic encoding $g: \mathscr{M} \rightarrow \mathbb{Z}_{q}^{d}$ Sample randomness $\mathbf{r} \leftarrow_{r} \mathscr{R}$
 Ciphertext will be $\mathrm{ct}=\mathbf{B} \cdot \mathbf{r}+g(\mathrm{msg})$
 \mathbf{r} belongs to a structure-preserving set R with overwhelming probability this also models Gaussian noise like in dual Regev.

Structure-Preserving Encryption Definition

In a structure-preserving encryption scheme, the public key is expressible as a matrix \mathbf{B}.
The randomness space R is a structure preserving set. and g is a invertible additive homomorphism.

$$
\mathrm{Enc}(\mathrm{pk}, \mathrm{msg} ; \mathbf{r})=\mathbf{B r}+g(\mathrm{msg})
$$

Regev Encryption of a Boyen Signature

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

```
\(\operatorname{Sign}_{\text {sk }}(\mathrm{msg})\)
    Compute \(\mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i}\)
    Set \(\mathbf{F}_{\text {msg }}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]\)
```

 Use \(\mathbf{T}_{\mathrm{A}}\) to generate short \(\boldsymbol{\sigma}\) such that \(\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}=\mathbf{0}\)
 Sample \(\mathbf{r}\), output \(\boldsymbol{\sigma}^{\text {enc }}=\mathbf{B} \cdot \mathbf{r}+g(\mathbf{d})\)

Verify $_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma})$

Apply $f_{\mathrm{vk}, \mathrm{msg}}^{i}$ homomorphically on $\boldsymbol{\sigma}^{\text {enc }}$
Get $\boldsymbol{\sigma}_{i}^{\mathrm{enc}}=\mathbf{B} \cdot \mathbf{r}_{i}+g\left(f_{\mathrm{vk}, \mathrm{msg}}^{i}(\mathbf{d})\right)$
We need a way to check that $f_{\mathrm{vk}, \mathrm{msg}}^{i}(\mathbf{d}) \in S_{i}$

Regev SPS Encryption

Public-key matrix $\mathbf{B} \in \mathbb{Z}_{q}^{d \times \tau}$
invertible additive homomorphic encoding $g: \mathscr{M} \rightarrow \mathbb{Z}_{q}^{d}$
Sample randomness $\mathbf{r} \leftarrow_{r} \mathscr{R}$
Ciphertext will be ct $=\mathbf{B} \cdot \mathbf{r}+g(\mathrm{msg})$

$$
\begin{aligned}
& \text { Verify }_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma}) \text { for Boyen SPS } \\
& \text { Let } f_{\mathrm{vk}, \mathrm{msg}}^{1}(\boldsymbol{\sigma})=\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}, f_{\mathrm{vk}, \mathrm{msg}}^{2}(\boldsymbol{\sigma})=\boldsymbol{\sigma}
\end{aligned}
$$

Consider structure-preserving sets $S_{1}=\{\mathbf{0}\}$ and S_{2}, a ball of short vectors.
Output 1 if $f_{\mathrm{vk}, \mathrm{msg}}^{i}(\boldsymbol{\sigma})=S_{i}$ for both $i=\{1,2\}$

computable since g is homomorphic

Regev Encryption of a Boyen Signature

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

```
\(\operatorname{Sign}_{\text {sk }}(\mathrm{msg})\)
    Compute \(\mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i}\)
    Set \(\mathbf{F}_{\text {msg }}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]\)
```

 Use \(\mathbf{T}_{\mathbf{A}}\) to generate short \(\sigma\) such that \(\mathbf{F}_{\text {msg }} \cdot \boldsymbol{\sigma}=\mathbf{0}\)
 Sample \(\mathbf{r}\), output \(\boldsymbol{\sigma}^{\text {enc }}=\mathbf{B} \cdot \mathbf{r}+g(\mathbf{d})\)
 Verify $_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma})$
Apply $f_{\mathrm{vk}, \mathrm{msg}}^{i}$ homomorphically on $\boldsymbol{\sigma}^{\text {enc }}$
Get $\boldsymbol{\sigma}_{i}^{\text {enc }}=\mathbf{B} \cdot \mathbf{r}_{i}+g\left(f_{\mathrm{vk}, \mathrm{msg}}^{i}(\mathbf{d})\right)$

We need a way to check that $f_{\mathrm{vk}, \mathrm{msg}}^{i}(\mathbf{d}) \in S_{i}$

Apply $f_{\mathrm{vk}, \mathrm{msg}}^{i}$ homomorphically on $\boldsymbol{\sigma}^{\mathrm{enc}}$
Get $\boldsymbol{\sigma}_{i}^{\mathrm{enc}}=\mathbf{B} \cdot \mathbf{r}_{i}+g\left(f_{\mathrm{vk}, \mathrm{msg}}^{i}(\mathbf{d})\right)$

Regev SPS Encryption

Public-key matrix $\mathbf{B} \in \mathbb{Z}_{q}^{d \times \tau}$
invertible additive homomorphic encoding $g: \mathscr{M} \rightarrow \mathbb{Z}_{q}^{d}$
Sample randomness $\mathbf{r} \leftarrow_{r} \mathscr{R}$
Ciphertext will be ct $=\mathbf{B} \cdot \mathbf{r}+g(\mathrm{msg})$

$$
\begin{aligned}
& \text { Verify }_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma}) \text { for Boyen SPS } \\
& \text { Let } f_{\mathrm{vk}, \mathrm{msg}}^{1}(\boldsymbol{\sigma})=\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}, f_{\mathrm{vk}, \mathrm{msg}}^{2}(\boldsymbol{\sigma})=\boldsymbol{\sigma}
\end{aligned}
$$

Consider structure-preserving sets $S_{1}=\{\mathbf{0}\}$ and S_{2}, a ball of short vectors.
Output 1 if $f_{\mathrm{vk}, \mathrm{msg}}^{i}(\boldsymbol{\sigma})=S_{i}$ for both $i=\{1,2\}$

computable since g is homomorphic

Regev Encryption of a Boyen Signature

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

```
\(\operatorname{Sign}_{\text {sk }}(\mathrm{msg})\)
    Compute \(\mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \mathrm{msg}_{i} \mathbf{C}_{i}\)
    Set \(\mathbf{F}_{\text {msg }}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right]\)
    Use \(\mathbf{T}_{\mathrm{A}}\) to generate short \(\boldsymbol{\sigma}\) such that \(\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}=\mathbf{0}\)
    Sample \(\mathbf{r}\), output \(\boldsymbol{\sigma}^{\text {enc }}=\mathbf{B} \cdot \mathbf{r}+g(\mathbf{d}) \quad\) NIZK proof \(\pi\)
```


Verify $_{\text {vk }}(\mathrm{msg}, \boldsymbol{\sigma})$

Apply $f_{\mathrm{vk}, \mathrm{msg}}^{i}$ homomorphically on $\boldsymbol{\sigma}^{\text {enc }}$

$$
\text { Get } \boldsymbol{\sigma}_{i}^{\mathrm{enc}}=\mathbf{B} \cdot \mathbf{r}_{i}+g\left(f_{\mathrm{vk}, \mathrm{msg}}^{i}(\mathbf{d})\right)
$$

Check that $f_{\mathrm{vk}, \mathrm{msg}}^{i}(\mathbf{d}) \in S_{i}$ and that NIZK proof π is valid

Regev SPS Encryption

Public-key matrix $\mathbf{B} \in \mathbb{Z}_{q}^{d \times \tau}$
invertible additive homomorphic encoding $g: \mathscr{M} \rightarrow \mathbb{Z}_{q}^{d}$
Sample randomness $\mathbf{r} \leftarrow_{r} \mathscr{R}$
Ciphertext will be $\mathrm{ct}=\mathbf{B} \cdot \mathbf{r}+g(\mathrm{msg})$

$$
\begin{aligned}
& \text { Verify }_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma}) \text { for Boyen SPS } \\
& \text { Let } f_{\mathrm{vk}, \mathrm{msg}}^{1}(\boldsymbol{\sigma})=\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}, f_{\mathrm{vk}, \mathrm{msg}}^{2}(\boldsymbol{\sigma})=\boldsymbol{\sigma}
\end{aligned}
$$

Consider structure-preserving sets $S_{1}=\{\mathbf{0}\}$
and S_{2}, a ball of short vectors.
Output 1 if $f_{\mathrm{vk}, \mathrm{msg}}^{i}(\boldsymbol{\sigma})=S_{i}$ for both $i=\{1,2\}$
computable since g is homomorphic
where S is structure preserving

We need a NIZK to check that a ct is of the form Enc(msg) where msg $\in S$

Structure-Preserving NIZK

We need a NIZK to check that a ct is of the form Enc(msg) where $\mathrm{msg} \in S$.
We adapt the sigma protocol of [Libert et al. 2020]

From Structure-Preserving Σ-Protocol to NIZK

Option 1: Use Fiat-Shamir

Option 2: use correlation-intractable hashing to obtain security in the standard model. [Libert et al. 2020] uses CI -Hashing for NC_{1} circuits

Recap: Encryption of a Signature

KeyGen

Generate matrix \mathbf{A} and short trapdoor $\mathbf{T}_{\mathbf{A}}$
Sample uniform $\left(\mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$
Output keys vk $=\left(\mathbf{A}, \mathbf{C}_{0} \ldots \mathbf{C}_{\ell}\right)$, sk $=\mathbf{T}_{\mathbf{A}}$

$$
\begin{aligned}
& \operatorname{Sign}_{\text {sk }}(\mathrm{msg}) \\
& \text { Compute } \mathbf{C}_{\mathrm{msg}}=\mathbf{C}_{0}+\sum_{i=1}^{\ell} \operatorname{msg}_{i} \mathbf{C}_{i} \\
& \text { Set } \mathbf{F}_{\mathrm{msg}}=\left[\mathbf{A} \mid \mathbf{C}_{\mathrm{msg}}\right] \\
& \text { Use } \mathbf{T}_{\mathbf{A}} \text { to generate short } \boldsymbol{\sigma} \text { such that } \mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}=\mathbf{0} \\
& \text { Sample } \mathbf{r} \text {, output } \boldsymbol{\sigma}^{\mathrm{enc}}=\mathbf{B}_{\alpha} \cdot \mathbf{r}+g_{\alpha}(\mathbf{d}) \quad \text { NIZK proof } \pi
\end{aligned}
$$

Regev SPS Encryption

Public-key matrix $\mathbf{B} \in \mathbb{Z}_{q}^{d \times}$
invertible additive homomorphic encoding $g: \mathscr{M} \rightarrow \mathbb{Z}_{q}^{d}$
Sample randomness $\mathbf{r} \leftarrow_{r} \mathscr{R}$
Ciphertext will be ct $=\mathbf{B} \cdot \mathbf{r}+g(\mathrm{msg})$

$$
\begin{aligned}
& \text { Verify }_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma}) \text { for Boyen SPS } \\
& \text { Let } f_{\mathrm{vk}, \mathrm{msg}}^{1}(\boldsymbol{\sigma})=\mathbf{F}_{\mathrm{msg}} \cdot \boldsymbol{\sigma}, f_{\mathrm{vk}, \mathrm{msg}}^{2}(\boldsymbol{\sigma})=\boldsymbol{\sigma}
\end{aligned}
$$

Consider structure-preserving sets $S_{1}=\{\mathbf{0}\}$
and S_{2}, a ball of short vectors.
Output 1 if $f_{\mathrm{vk}, \mathrm{msg}}^{i}(\boldsymbol{\sigma})=S_{i}$ for both $i=\{1,2\}$
computable since g_{α} is homomorphic

We now have a NIZK to check that a ct is of the form Enc (msg) where $\mathrm{msg} \in S$

Structure-Preserving Cryptography (SPS)

In structure-preserving cryptography, our NIZK efficiently proves statements of the form:

- a ciphertext encrypts a valid signature. 4 we have shown how to do this
- a signature signs a valid ciphertext.
a NIZK proof certifies that the ciphertext is valid

Application: Verifiable Encrypted Signature (VES)

Prove that an encrypted signature is valid without revealing the signature.

Our construction is the most efficient lattice-based VES in the standard model.

Motivation: Contract Signing

Alice and Bob want to sign a contract.

Motivation: Contract Signing

Alice and Bob want to sign a contract.

Bob refuses to sign and instead forwards $\sigma_{\text {Alice }}$ to a third party to negotiate.
Bob can impersonate Alice to another third party.

Motivation: Contract Signing

$\underline{\underline{m}}^{\text {ona }}$

$\sigma_{\text {Bob }}$

Motivation: Contract Signing

$\underline{\underline{I I I I}}^{\text {ph, }, k}$

If any party refuses to sign, the other party forwards the encryption and proof to the authority which will decrypt.

Contributions

We put forward: • a unifying framework for structure-preserving cryptography for lattices.
[Boyen10]
[Rúckert10]
new modification of [Rúckert10] using
[ABB10] delegation

Signatures
Regev Encryption [Regev05]
Dual Regev [GPV08]
[GSW13]

Contributions

We put forward: • a unifying framework for structure-preserving cryptography for lattices.

| [Boyen10] Signatures | Regev Encryption [Regev05] | Encryption |
| :---: | :---: | :---: |
| [Rúckert10] | Dual Regev [GPV08] | |
| new modification of [Rúckert10] using
 [ABB10] delegation | [GSW13] | |

- structure-preserving NIZK, generalising a protocol from [Libert et al. 2020]

Contributions

We put forward: • a unifying framework for structure-preserving cryptography for lattices.
[Boyen10] Signatures Regev Encryption [Regev05] Encryption
[Rúckert10]
new modification of [Rúckert10] using
[ABB10] delegation

Regev Encryption [Regev05] Encryption
Dual Regev [GPV08]
[GSW13]

- structure-preserving NIZK, generalising a protocol from [Libert et al. 2020]
- application to verifiable encrypted signature (VES). new proof, similar to [Fuchsbauer2011] with several new technical details. currently the most efficient lattice VES in the standard model

Limitation and an Open Problem

| | new ISIS-based
 signature | [Rückert10]'s signature | [Boyen10] |
| :---: | :---: | :---: | :---: |
| [Regev05] | compatible | compatible | incompatible |
| [GPV08] | compatible | compatible | incompatible |
| [GSW13] | compatible | compatible | compatible |

Thank you for your attention!

Questions?

[^0]: Verify $_{\mathrm{vk}}(\mathrm{msg}, \boldsymbol{\sigma})$
 Check that $\boldsymbol{\sigma}$ is short and non-zero.
 Check that $\mathbf{F}_{\text {msg }} \cdot \boldsymbol{\sigma}=\mathbf{0}$

[^1]: Verify $_{\text {vk }}(\mathrm{msg}, \boldsymbol{\sigma})$
 Check that $\boldsymbol{\sigma}$ is short and non-zero.
 Check that $\mathbf{F}_{\text {msg }} \cdot \boldsymbol{\sigma}=\mathbf{0}$

