Towards Practical MK-TFHE:

Parallelizable, Quasi-linear and Key-compatible

Hyesun Kwak, Seonhong Min, Yongsoo Song

Seoul National University, Seoul

4 3 4 3 4 3 4

Fully Homomorphic Encryption

- Fully Homomorphic Encryption (HE) supports arbitrary function evaluation on encrypted data.
- Various Applications: privacy preserving machine learning, private information retrieval, private set intersection ...

FHE for Multiple Parties

	MKHE	(<i>n</i> -out-of- <i>n</i>) Threshold HE
Key structure	$ar{\mathbf{s}} := (s_1 s_2 \dots s_k)$	$ar{\mathbf{s}} := \sum_{i=1}^k s_i$
Dynamic	Dynamic	Static
Communication	Independent	Interactive
Time/Space Complexity	Dependent to k	Comparable to single-key

Table: Comparison between Multi-Party HE schemes.

э

イロト イポト イヨト イヨト

Previous Works

- Theoretical studies
 - LATV12, CM15, MW16, PS16, BP16, CZW17
 - (Mostly) GSW scheme
 - No implementations
- Practical schemes
 - CCS19¹ : TFHE/FHEW, quadratic complexity
 - CDKS19² : CKKS/BFV, quadratic complexity
- Better time complexity
 - KKLSS22³ : CKKS/BFV, quasi-linear complexity
 - This work : TFHE/FHEW, quasi-linear complexity

¹Chen, Chillotti and Song, Asiacrypt '19 ²Chen, Dai, Kim and Song, CCS '19 ³Kim, Kwak, Lee, Seo and Song, CCS '23

TFHE/FHEW scheme description

- FHE scheme that supports bits operations (NAND, AND, OR...).
- Secret Key:
 - LWE secret $\mathbf{s} = (s_1, \ldots, s_n)$
 - RLWE secret $t \in R = \mathbb{Z}[X]/(X^N + 1)$
- Encoding: $m \in \{-1,1\} \mapsto \mu = \frac{q}{8}m \in \mathbb{Z}_q$

• **Decoding**:
$$\begin{cases} 1 & \text{if } \mu > 0 \\ -1 & \text{otherwise} \end{cases}$$

- Encryption: $c = (b, \mathbf{a}) \in \mathbb{Z}_q^{n+1}$ for $\mathbf{a} \leftarrow \mathcal{U}(\mathbb{Z}_q^n)$, $e \leftarrow$ small dist., $b = -\langle \mathbf{a}, \mathbf{s} \rangle + \mu + e \pmod{q}$.
- Decryption: $b + \langle \mathbf{a}, \mathbf{s} \rangle = \mu + e \pmod{q}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homomorphic Gate Evaluation (TFHE/FHEW)

• Each bit operation consists of the following pipeline:

$$\begin{array}{ccc} c_1 \longrightarrow \\ c_2 \longrightarrow \end{array} \quad \text{Linear Combination} \longrightarrow c \longrightarrow \text{Bootstrapping} \longrightarrow c' \end{array}$$

• Linear Combination : The linear combination corresponding to a Boolean gate is evaluated.

- ex) NAND :
$$c = (\frac{q}{8}, \mathbf{0}) - c_1 - c_2$$

- output ciphertext contains a large noise e.
- Bootstrapping : Reduces the size of noise for further evaluation.
 - ex) $\|e\| < rac{q}{8}
 ightarrow \|e'\| < rac{q}{16}$
 - Consists of Blind Rotation and Key Switching

Blind Rotation

• Input : $\mathbf{c} = (b, \mathbf{a})$ such that $b + \langle \mathbf{a}, \mathbf{s} \rangle = \frac{q}{8}m + e \pmod{q}$.

• Let
$$\tilde{b} = \left\lfloor \frac{2N}{q} \cdot b \right\rfloor$$
, $\tilde{\mathbf{a}} = \left\lfloor \frac{2N}{q} \cdot \mathbf{a} \right\rfloor$.
• $\tilde{b} + \langle \tilde{\mathbf{a}}, \mathbf{s} \rangle = \frac{2N}{8}m + \tilde{e} \pmod{2N}$.

 Pre-assign the coefficients to a polynomial tv, so that the constant term of tv · X^{˜b+⟨ã,s⟩} ∈ R_q = R/qR is ^q/₈m.

Since $X^N + 1 = 0$, mod 2N is naturally supported over the exponent.

- We can bootstrap the input ciphertext by computing tv · X^{˜b+(ã,s)}, and extracting the constant term.
- Homomorphically multiply $[X^{a_i s_i}]_t$ to $tv \cdot X^b$ iteratively.
- This is the main bottleneck of TFHE/FHEW bootstrapping.

MKTFHE description

• Setup: Each *i*-th party samples...

– LWE secret
$$\mathbf{s}_i = (s_{i,1}, \ldots, s_{i,n})$$

- RLWE secret $t_i \in R$

• MK secret is the concatenation of each party's secret.

– LWE secret
$$\bar{\mathbf{s}} = (\mathbf{s}_1 | \dots | \mathbf{s}_k)$$

- RLWE secret
$$\overline{t} = (t_1, \ldots, t_k)$$

• Ciphertext:
$$c = (b|\mathbf{a}_1| \dots |\mathbf{a}_k) \in \mathbb{Z}_q^{kn+1}$$

- $b + \sum_{i=1}^k \langle \mathbf{a}_i, \mathbf{s}_i \rangle \approx \mu \pmod{q}$.

• Decryption:
$$b + \sum_{i=1}^{k} \langle \mathbf{a}_i, \mathbf{s}_i \rangle = \mu + e$$

A (1) < A (2) < A (2) </p>

Blind Rotation (CCS19)

• Homomorphically multiply monomials $[X^{a_{i,j}s_{i,j}}]_{t_i}$ to $tv \cdot X^b$ iteratively.

- Major building block: Hybrid product
 - homomorphic multiplication between MK-RLWE ciphertext and single-key RGSW-style encryption.
 - Õ(kn) time complexity
- *kn* hybrid products, therefore overall time complexity is $\tilde{O}(k^2n^2)$.
- The timing scales quadratically as # of parties grows.

Our Idea

Motivation : Perform blind rotation party-wisely in a single-key manner, to achieve linear complexity $\tilde{O}(kn^2)$.

Challenge : No known homomorphic multiplication algorithm between multi-key and 'noisy' single-key ciphertexts.

Our Result : **()** Generalized External Product

 A new homomorphic multiplication operation between MK-RLWE and generic single-key RGSW-like ciphertexts

2 Improved Hybrid Product

We improve Hybrid product by reducing the number of gadget decompositions.

Faster Blind Rotation

- The time complexity is reduced to $\tilde{O}(kn^2)$.
- Parallelizable, Key-compatible.

Generalized External Product (Simplified)

Input:

- MK-RLWE encryption $\overline{\text{ct}} = (c_0, \ldots, c_k)$ such that $\sum_{j=0}^k c_j \cdot t_j \approx m \pmod{q}$.
- RGSW-like (noisy) encryption **C** of μ under secret t_i
- RGSW-like (fresh) encryption **rlk** of t_i under secret t_i
- Idea:
 - Multiply **C** to each index of \overline{ct} to obtain MK-RLWE encryption $\overline{ct}' = (\mathbf{x}|\mathbf{y})$ of $m \cdot \mu$.
 - However, key is changed to $(1, t_i) \bigotimes (1, t_1, \ldots, t_k)!$
 - ▶ i.e., $\langle \mathbf{x}, (1, t_1, \dots, t_k) \rangle + \langle \mathbf{y}, t_i \cdot (1, t_1, \dots, t_k) \rangle \approx m \cdot \mu \pmod{q}$
 - Multiply **rlk** to **y** using hybrid product, and add to **x**.
 - Key is changed back to $(1, t_1, \ldots, t_k)$.
- Time complexity: $\tilde{O}(kn)$

Faster Blind Rotation

• Our Algorithm:

- **(**) Compute $[X^{\langle \mathbf{a}_i, \mathbf{s}_i \rangle}]_t$ for each *i*-th party with RGSW-like ciphertext.
- 3 Multiply them to $X^b \cdot tv$ iteratively, using the generalized external product.
- Time Complexity:
 - The first step requires $\tilde{O}(n^2)$ time complexity for each party.
 - The second step requires k generalized external products.
 - In total, the time complexity is $\tilde{O}(kn^2 + k^2n)$.
 - In practice, $k \ll n$ and therefore **quasi-linear**.
- Parallelizable: The first step can be algorithmically parallelizable.
- **Key-Compatible:** The public key is identical to the single-key scheme, with an extra relinearization key.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Faster Blind Rotation

Figure: High-level overview of the blind rotation algorithm of MK variant of TFHE from CCS19 and Ours.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Timing Results

k	CCS19	Ours	Parallelized
2	0.24s	0.24s	0.17s
4	0.89s	0.88s	0.27s
8	3.32s	2.23s	0.35s
16	24.72s	5.65s	0.47s
32	-	13.94s	0.88s

Table: The elapsed time of our scheme and the CCS19 scheme.

- We achieve 4.38x speedup without parallelization!
- **52.60x** speedup with parallelization!
- CCS19 doesn't support a practical parameter for \geq 32 parties.

・ 同 ト ・ ヨ ト ・ ヨ ト

Timing Results

Figure: The elapsed time of our scheme and the CCS19 scheme.

æ

< □ > < □ > < □ > < □ > < □ > < □ >

- Julia : https://github.com/SNUCP/MKTFHE
- Go : https://github.com/sp301415/tfhe-go

・ 何 ト ・ ヨ ト ・ ヨ ト