
Faster Amortized FHEW Bootstrapping
using Ring Automorphisms

Gabrielle De Micheli (UCSD)
Joint work with: Duhyeong Kim (Intel), Daniele Micciancio and

Adam Suhl (UCSD)

PKC 2024

April 2024

1 / 30

Motivation/Goal

Main approaches to FHE Bootstrapping:
Bootstrapping BGV/BFV FHEW/TFHE

Message space Large (Zn
p) Small (Z2)

Latency Slow (several minutes) Fast (< 1 second)
Amortized Time Fast Slow

Our work:

I New algorithm to bootstrap n FHEW ciphertexts with very
small overhead (� n) to a single FHEW bootstrapping.

I Previous work [M., Sorrell, ICALP 2018]: theoretically
promising, but impractical due to very high overhead.

I Our work: Similar asymptotic amortized cost but much
smaller overhead.

2 / 30

Bootstrapping for LWE Ciphertext

Bootstrapping: Homomorphic evaluation of decryption circuit

I Decs(a1, . . . , an, b) = bb +
∑n

i=1 ai · sie
I Bootstrapping keys: Enc(z1), . . . ,Enc(zn)

I Bootstrap(a1, . . . , an, b) =⌊
b +

n∑
i=1

ai · Enc(zi)

⌉
= Enc

(⌊
b +

n∑
i=1

ai · zi

⌉)
= Enc (m)

z1 z2 z3 z4

a1 a2 a3 a4
+ + +

× × × ×

3 / 30

FHEW Bootstrapping [Ducas, M., Eurocrypt’15]

I Homomorphic decryption “in the exponent”.

I Enc(zi) = RGSW(X zi) (i.e., RGSW register).
I A two-step process:

1. Inner Product1:

b +
n∑

i=1

ai · Enc(zi) = RGSW(X b+
∑n

i=1 ai ·zi)

2. Rounding (msbExtract):

RGSW(X b+
∑n

i=1 ai ·zi)→ LWE(m)

1Possible optimization: use RLWE ciphertexts with an external product.
4 / 30

Limitation of LWE bootstrapping

I Cost: O(n) homomorphic multiplications per message.

I Bootstrap n messages: total cost O(n2) crypto ops.

I Infeasible computational cost in practical FHE parameters
(e.g., n = 214).

5 / 30

Amortized Bootstrapping

I Utilize RLWE decryption instead of LWE decryption:

Decz(a,b) = ba · z + be

I A three-step process:

1. Ring packing:

{LWEs(mi)}d−1
i=0 =⇒ RLWEz(m(X)) ∈ R2

q

with some packing key.
2. Inner Product: For (a,b) = RLWEz(m(X)), homomorphically

compute
a · z + b

3. Rounding (msbExtract): Compute homomorphic rounding for
each coefficient of a · z + b.

6 / 30

Amortized Bootstrapping

I Utilize RLWE decryption instead of LWE decryption:

Decz(a,b) = ba · z + be

I A three-step process:

1. Ring packing:

{LWEs(mi)}d−1
i=0 =⇒ RLWEz(m(X)) ∈ R2

q

with some packing key.

2. Inner Product: For (a,b) = RLWEz(m(X)), homomorphically
compute

a · z + b

3. Rounding (msbExtract): Compute homomorphic rounding for
each coefficient of a · z + b.

6 / 30

FHEW vs FFT-based Solution
Goal: Compute a · z + b homomorphically.

One Solution: Fast Fourier Transform (over finite field)
I homomorphic operations: addition/subtraction and

multiplication by “twiddle” factors powers of a primitive root of unity.
I less homomorphic operations O(n log n) compared to O(n2).

n

n

FHEW

log n

n

FFT

7 / 30

Previous work [M., Sorrell, ICALP’18]

The first work on amortized FHEW bootstrapping:

I Bottleneck: RGSW registers only support homomorphic
addition.

I In theory: bootstrap n messages with O(3` · n1+1/`) crypto
ops, which gives O(3` · n1/`) amortized cost.

I In practice: Even worse than O(n) sequential FHEW, due to
very high overhead.

Our key observation:

I we “can” efficiently perform homomorphic scalar
multiplication in RGSW register,

I and hence we “can” apply FFT for homomorphic INTT.

I better asymptotic complexity, smaller overhead.

8 / 30

A (very) brief description of FFT

General idea:

I evaluate degree-n polynomials at appropriate values (roots of
unity) O(n log n)

I compute pointwise multiplication O(n)

Evaluation:

I compute a remainder tree

I each layer corresponds to a reduction of polynomials modulo
other polynomials (operations: a0 + a1ζ + · · ·+ akζ

k)

I optimize algorithm: regroup the number of layers (radix).

Pointwise multiplication: similar operations needed.

9 / 30

What operations are needed homomorphically?

Notation for encrypted data:

Question: What operations do we need?

I scalar multiplication : a× →

I addition: + →

The feasability of these homomorphic operations depends on the
encryption schemes considered: GadgetRLWE, RGSW.

10 / 30

More on the homomorphic operations ...

Message encoding: scalar values v ∈ Zq are encoded in the
exponent, i.e., mapping it to the monomial X v .

I In our algorithm, we will work with both RGSW and RLWE’
registers, i.e., RGSW/RLWE’ encryptions of X v for v ∈ Zq.

With the schemes:

I scalar multiplication: a× → automorphisms on
GadgetRLWE.

I addition: + → GadgetRLWE × RGSW
multiplication.

11 / 30

Ring automorphisms

I scalar multiplication: a× → automorphisms on
GadgetRLWE.

Automorphisms: bijective map from the ring R to itself :
a(X) 7→ a(X t), t ∈ Z∗q.

Automorphisms in RLWE/RLWE’ :

I RLWE ciphertext : (a(X),b(X)) under sk.

I ψt : R → R, a(X) 7→ a(X t).

I apply ψt to RLWE components:

(a(X t),b(X t)) = RLWEsk(X t)(m(X t))

I apply key switching function to get RLWEsk(X)(m(X t))

12 / 30

Gadget RLWE × RGSW Multiplication

I addition: + → GadgetRLWE × RGSW
multiplication

Multiplication RLWE ? RGSW→ RLWE:

RLWEsk(m1)?RGSWsk(m2) = a�RLWE ′sk(s·m2)+b�RLWE ′sk(m2)

I This operation allows to multiply two ciphertexts, which in
the exponent acts like an addition.

13 / 30

An additional scheme-switching technique

I If we want to multiply a ciphertext by a scalar, we use
automorphisms (for RLWE’ ciphertexts only!): X a×c = (X c)a

(allows homomorphic exponentiation).

I If we want to add two ciphertexts (in the exponent) we use
RLWE′ × RGSW multiplication: X c1+c2 = X c1 × X c2

A necessary scheme-switch:

I In our algorithm, we primarily use RLWE’ registers.

I RGSW is only needed for multiplication.

I We also introduce a novel scheme-switching method from
RLWE’ to RGSW.

14 / 30

Using Fast Fourier Transform

The second step of amortized boostrapping is: let
(a,b) = RLWEz(m(X)): homomorphically compute decryption,
i.e., compute

a · z + b

Main goal: compute a single polynomial multiplication a · z using
FFT.
Important: We have an encryption of z.

FFT-based multiplication algorithm:

a

z

FFT(a)

FFT(z) ? FFT(a · z) (a · z)
FFT−1

FFT(a · z) = FFT(a) ? FFT(z)

15 / 30

What needs to be computed (homomorphically)

1. Compute an FFT of a in cleartext form.

2. Evaluation key: contains RGSW registers of FFT(z).

3. Homomorphically compute FFT(a · z) (pointwise
multiplication)

4. Compute inverse FFT: FFT−1(a · z).

Operations performed:

ai ζ
j → to scalar multiply in the exponent, use automorphisms.

aiζ
j + ai ′ζ

j ′ → to add two encrypted data, use
scheme-switching GadgetRLWE→ RGSW and then perform a
multiplication GadgetRLWE× RGSW.

16 / 30

One layer of FFT: evaluation example
Goal: compute a0 + a1 ζ + a2 ζ

2 + a3 ζ
3

I re-write as
(

(a3 ζ + a2)ζ + a1
)
ζ + a0

I ai are RLWE’ ciphertexts

a0 a1 a2 a3

SW SW SW

Aut.

Mult

Aut.

Mult

Aut.

Mult

a3 ζ

a3 ζ + a2

(a3 ζ + a2)ζ

(a3 ζ + a2)ζ + a1
((a3 ζ + a2)ζ + a1)ζ

((a3 ζ + a2)ζ + a1)ζ + a0

17 / 30

Overview of the amortized bootstrapping scene

Scheme Amortized
cost

Modulus Pros Cons

FHEW/TFHE Õ(n) Polynomial – Cost

[MS18] Õ(3
1
ε ·nε) Polynomial Promising... Large overhead

Our work O(1ε · n
ε) Polynomial smaller over-

head
non-power-2
cycl/Impractical

Guimarães,

Pereira, Van

Leeuwen, AC23

O(1ε · n
ε) Polynomial smaller over-

head
Impractical

Liu, Wang,

EC23

Õ(n.75) Polynomial – Worse complex-
ity

Liu, Wang,

EC23

Õ(1) Polynomial Good com-
plexity

Impractical

Liu, Wang,

AC23

Õ(1) Super-
polynomial

Best practi-
cal perf.

Large modulus

18 / 30

Conclusion and future work

Where we stand now:

I New methods to amortize FHEW bootstrapping overcoming
practical limitations of [MS’18].

I No clear winning candidate in terms of practical performance.

I Performance gap between amortized FHEW and BGV/BFV.

What about an efficient implementation?

I Much needed: (better) support for general cyclotomics (other
than powers-of-two) in FHE libraries.

19 / 30

Thank you !

20 / 30

What encryption schemes to use ?

Let Rq = qth prime cyclotomic ring, q prime.

I GadgetRLWE (RLWE’): consider a gadget vector

v = (v0, v1, · · · , vk−1) ∈ Rk
q .

GadgetRLWE is expressed as a vector of RLWE ciphertexts:

RLWE’(m) = (RLWE(v0 ·m), · · · ,RLWE(vk−1 ·m))

I RGSW: For a message m ∈ Rq and a secret key z← χ, we
define

RGSWz(m) = (RLWE’(z ·m),RLWE’(m)) ∈ R2×2k
q

21 / 30

An important operation: �

I Main operation in our algorithm: scalar multiplication by
arbitrary ring elements.

I One uses RLWE’ with gadget vector v = (v0, v1, · · · , vk−1).

I The scalar multiplication: R� RLWE′ corresponds to
� : R× RLWE′ → RLWE defined as

t� RLWE ′sk(m) :=
k−1∑
i=0

ti · RLWEsk(vi ·m)

= RLWEsk

(
k−1∑
i=0

vi · ti ·m

)
= RLWEsk(t ·m)

where
∑

i viti = t is the gadget decomposion of t into “short”
vectors ti .

22 / 30

RLWE’-to-RGSW scheme switching

Input RLWE′sk(m)

Output RGSWsk(m) = (RLWE′sk(sk ·m),RLWE′sk(m))

I Goal: compute RLWE′sk(sk ·m).

1. Use RLWE′sk(sk2) given as part of the evaluation key.

2. Operate in parallel on each of the RLWEsk(vi ·m), lifting each
RLWEsk(vi ·m) to RLWEsk(vi · sk ·m).

3. For each RLWEsk(vi ·m) := (a,b), compute

a� RLWE ′sk(sk2) + (b, 0).

23 / 30

Scheme switching (cont.)

I (b, 0) = noiseless RLWE encryption of b · sk under secret key
sk.

I Above computation gives

a� RLWE ′sk(sk2) + (b, 0) = RLWEsk(a · sk2 + b · sk)

= RLWEsk((a · sk + b) · sk)

= RLWEsk((vi ·m + e) · sk)

I We get RLWEsk(vi · sk ·m), but with an additional error
e · sk.

I Choose the secret key sk with small norm (e.g., binary) so
that this multiplicative error growth remains small.

We are now ready for our homomorphic FFT!

24 / 30

Homomorphic pointwise multiplication

Goal: compute FFT(a · z).
What we have so far:

I FFT(a) = list of polynomials ãi = a(x) (mod xk − ζi) :
computed in the clear for different values of ζ.

I encryption of FFT(z) = list of polynomials z̃i = z(x)
(mod xk − ζi) as part of the evaluation key.

What we do: we multiply ãi (x) and z̃i (x) modulo (xk − ζi) (for
all i).
Example:

a(x) (mod xk − ζ) = ã0 + ã1x + ã2x
2

z(x) (mod xk − ζ) = z̃0 + z̃1 x + z̃2 x2

As (xk − ζ) has such a nice form (!), we get a “simple” formula:

Constant term: ã0 z̃0 + ζ(ã1 z̃2 + · · ·)

25 / 30

More generally, the j-th coefficient of ãi · z̃i is equal to an inner
product:

vj = 〈(z̃0 , · · · , z̃k−1), (ãj , ãj−1, . . . , ã0, ζ ãk−1, . . . , ζ ãj+1)〉

I Compute this inner product homomorphically in a telescoping
manner (see formula in paper).

Operations: a× , and + .

RLWE ′(z̃0) Aut. Mult Aut. · · · Mult Aut. vj

z̃1 z̃k−1

(
z̃0 ãj ã

−1
j−1 + z̃1

)
ãj−1ãj−2 · · ·

26 / 30

The next step: inverse FFT

After pointwise multiplication, we have:

FFT(a · z) = list of RLWE’ encryptions of X vj

vj : all coefficients of all products ãi · z̃i .
What we want now: a · z , i.e. RLWE encryptions of the
coefficients of a · z.

Goal: compute an homomorphic inverse FFT.

I can be reduced to a forward FFT with an additional
multiplication.

27 / 30

Operations for Homomorphic inverse FFT

Input RLWE’ registers, outputs of pointwise multiplication

Output RLWE encryptions of a · z.

1. Split registers into groups.

2. For each group, perform a standard (not primitive) forward
FFT.

3. Homomorphically multiply each output register in each group
by a power of the root of unity. (automorphism).

Focus on operations in forward FFT (step 2):

I FFT works with a remainder tree,

I At each layer, a child node is produced by taking an input
polynomial and reducing it modulo X k − ζ.

I Each reduction results in a computation of the form
∑

i ai ζ
i .

28 / 30

Analysis of our algorithm

How to evaluate the performance of our algorithm?

I we count the number of � operations, i.e, the number of
R� RLWE’ operations.

I we quantify the error growth in our algorithm (necessary for
correctness).
I in previous work, error analysis is done for power-of-2

cyclotomics.
I in this work, we use prime cyclotomic rings
I new error growth analysis (in the paper).

I The amortized cost per message is O(n1/` · log n · `)
homomorphic operations (in terms of the number of
R� RLWE′ operations).

29 / 30

Concurrent and follow-up works
1. Amortized Bootstrapping Revisited: Simpler,

Asymptotically-faster, Implemented, Antonio Guimarães,
Hilder V. L. Pereira and Barry van Leeuwen at Asiacrypt
2023
I Very similar algorithm with same asymptotic amortized cost.
I Some technical differences:

I Uses circular rings (Ours: cyclotomic rings),
I Focuses on RGSW Register (Ours: RLWE).

2. Batch Bootstrapping I:: A New Framework for SIMD
Bootstrapping in Polynomial Modulus, Feng-Hao Liu and Han
Wang at Eurocrypt 2023

3. Batch Bootstrapping II: Bootstrapping in Polynomial Modulus
Only Requires O(1) FHE Multiplications in Amortization,
Feng-Hao Liu and Han Wang at Eurocrypt 2023

4. Amortized Functional Bootstrapping in less than 7ms, with
Õ(1) polynomial multiplications, Zeyu Liu and Yunhao Wang,
at Asiacrypt 2023

30 / 30

