Faster Amortized FHEW Bootstrapping using Ring Automorphisms

Gabrielle De Micheli (UCSD)
Joint work with: Duhyeong Kim (Intel), Daniele Micciancio and Adam Suhl (UCSD)

PKC 2024
April 2024

Motivation/Goal

Main approaches to FHE Bootstrapping:

Bootstrapping	BGV/BFV	FHEW/TFHE
Message space	Large $\left(\mathbb{Z}_{p}^{n}\right)$	Small $\left(\mathbb{Z}_{2}\right)$
Latency	Slow (several minutes)	Fast (<1 second)
Amortized Time	Fast	Slow

Our work:

- New algorithm to bootstrap n FHEW ciphertexts with very small overhead ($\ll n$) to a single FHEW bootstrapping.
- Previous work [M., Sorrell, ICALP 2018]: theoretically promising, but impractical due to very high overhead.
- Our work: Similar asymptotic amortized cost but much smaller overhead.

Bootstrapping for LWE Ciphertext

Bootstrapping: Homomorphic evaluation of decryption circuit

- $\operatorname{Dec}_{s}\left(a_{1}, \ldots, a_{n}, b\right)=\left\lfloor b+\sum_{i=1}^{n} a_{i} \cdot s_{i}\right\rceil$
- Bootstrapping keys: $\operatorname{Enc}\left(z_{1}\right), \ldots, \operatorname{Enc}\left(z_{n}\right)$
- Bootstrap $\left(a_{1}, \ldots, a_{n}, b\right)=$

$$
\left\lfloor+\sum_{i=1}^{n} a_{i} \cdot \operatorname{Enc}\left(z_{i}\right)\right\rceil=\operatorname{Enc}\left(\left\lfloor b+\sum_{i=1}^{n} a_{i} \cdot z_{i}\right\rceil\right)=\operatorname{Enc}(m)
$$

FHEW Bootstrapping [Ducas, M., Eurocrypt'15]

- Homomorphic decryption "in the exponent".
$-\operatorname{Enc}\left(z_{i}\right)=\operatorname{RGSW}\left(X^{z_{i}}\right)$ (i.e., RGSW register).
- A two-step process:

1. Inner Product ${ }^{1}$:

$$
b+\sum_{i=1}^{n} a_{i} \cdot \operatorname{Enc}\left(z_{i}\right)=\operatorname{RGSW}\left(X^{b+\sum_{i=1}^{n} a_{i} \cdot z_{i}}\right)
$$

2. Rounding (msbExtract):

$$
\operatorname{RGSW}\left(X^{b+\sum_{i=1}^{n} a_{i} \cdot z_{i}}\right) \rightarrow \operatorname{LWE}(m)
$$

${ }^{1}$ Possible optimization: use RLWE ciphertexts with an external product.

Limitation of LWE bootstrapping

- Cost: $O(n)$ homomorphic multiplications per message.
- Bootstrap n messages: total cost $O\left(n^{2}\right)$ crypto ops.
- Infeasible computational cost in practical FHE parameters (e.g., $n=2^{14}$).

Amortized Bootstrapping

- Utilize RLWE decryption instead of LWE decryption:

$$
\operatorname{Dec}_{\mathbf{z}}(\mathbf{a}, \mathbf{b})=\lfloor\mathbf{a} \cdot \mathbf{z}+\mathbf{b}\rceil
$$

- A three-step process:

1. Ring packing:

$$
\left\{\operatorname{LWE}_{s}\left(m_{i}\right)\right\}_{i=0}^{d-1} \Longrightarrow \operatorname{RLWE}_{\mathbf{z}}(m(X)) \in \mathcal{R}_{q}^{2}
$$

with some packing key.
2. Inner Product: For $(\mathbf{a}, \mathbf{b})=\operatorname{RLWE}_{\mathbf{z}}(m(X))$, homomorphically compute

$$
\mathbf{a} \cdot \mathbf{z}+\mathbf{b}
$$

3. Rounding (msbExtract): Compute homomorphic rounding for each coefficient of $\mathbf{a} \cdot \mathbf{z}+\mathbf{b}$.

Amortized Bootstrapping

- Utilize RLWE decryption instead of LWE decryption:

$$
\operatorname{Dec}_{\mathbf{z}}(\mathbf{a}, \mathbf{b})=\lfloor\mathbf{a} \cdot \mathbf{z}+\mathbf{b}\rceil
$$

- A three-step process:

2. Inner Product: For $(\mathbf{a}, \mathbf{b})=\operatorname{RLWE}_{\mathbf{z}}(m(X))$, homomorphically compute

$$
\mathbf{a} \cdot \mathbf{z}+\mathbf{b}
$$

FHEW vs FFT-based Solution

Goal: Compute $\mathbf{a} \cdot \mathbf{z}+\mathbf{b}$ homomorphically.
One Solution: Fast Fourier Transform (over finite field)

- homomorphic operations: addition/subtraction and multiplication by "twiddle" factors powers of a prinitive root of unity.
- less homomorphic operations $O(n \log n)$ compared to $O\left(n^{2}\right)$.

FHEW
FFT

n

$\log n$

Previous work [M., Sorrell, ICALP'18]

The first work on amortized FHEW bootstrapping:

- Bottleneck: RGSW registers only support homomorphic addition.
- In theory: bootstrap n messages with $O\left(3^{\ell} \cdot n^{1+1 / \ell}\right)$ crypto ops, which gives $O\left(3^{\ell} \cdot n^{1 / \ell}\right)$ amortized cost.
- In practice: Even worse than $O(n)$ sequential FHEW, due to very high overhead.
Our key observation:
- we "can" efficiently perform homomorphic scalar multiplication in RGSW register,
- and hence we "can" apply FFT for homomorphic INTT.
- better asymptotic complexity, smaller overhead.

A (very) brief description of FFT

General idea:

- evaluate degree- n polynomials at appropriate values (roots of unity) $O(n \log n)$
- compute pointwise multiplication $O(n)$

Evaluation:

- compute a remainder tree
- each layer corresponds to a reduction of polynomials modulo other polynomials (operations: $a_{0}+a_{1} \zeta+\cdots+a_{k} \zeta^{k}$)
- optimize algorithm: regroup the number of layers (radix).

Pointwise multiplication: similar operations needed.

What operations are needed homomorphically?

Notation for encrypted data:

Question: What operations do we need?

- scalar multiplication : $a \times \square \rightarrow \square$
\rightarrow addition: $\square+\square \rightarrow \square$

The feasability of these homomorphic operations depends on the encryption schemes considered: GadgetRLWE, RGSW.

More on the homomorphic operations ...

Message encoding: scalar values $v \in \mathbb{Z}_{q}$ are encoded in the exponent, i.e., mapping it to the monomial X^{v}.

- In our algorithm, we will work with both RGSW and RLWE' registers, i.e., RGSW/RLWE' encryptions of X^{v} for $v \in \mathbb{Z}_{q}$.

With the schemes:

- scalar multiplication: $a \times \square \rightarrow$ automorphisms on GadgetRLWE.
- addition: $\square+\square \rightarrow$ GadgetRLWE \times RGSW multiplication.

Ring automorphisms

- scalar multiplication: $a \times \square \rightarrow$ automorphisms on GadgetRLWE.

Automorphisms: bijective map from the ring \mathcal{R} to itself : $\mathbf{a}(X) \mapsto \mathbf{a}\left(X^{t}\right), t \in \mathbb{Z}_{q}^{*}$.

Automorphisms in RLWE/RLWE' :

- RLWE ciphertext: $(\mathbf{a}(X), \mathbf{b}(X))$ under $\mathbf{s k}$.
- $\psi_{t}: \mathcal{R} \rightarrow \mathcal{R}, \mathbf{a}(X) \mapsto \mathbf{a}\left(X^{t}\right)$.
- apply ψ_{t} to RLWE components:

$$
\left(\mathbf{a}\left(X^{t}\right), \mathbf{b}\left(X^{t}\right)\right)=\operatorname{RLWE}_{\mathbf{s k}\left(X^{t}\right)}\left(\mathbf{m}\left(X^{t}\right)\right)
$$

- apply key switching function to get $\operatorname{RLWE}_{\mathbf{s k}(X)}\left(\mathbf{m}\left(X^{t}\right)\right)$

Gadget RLWE \times RGSW Multiplication

- addition: $\square+\square \rightarrow$ GadgetRLWE \times RGSW multiplication

Multiplication RLWE \star RGSW \rightarrow RLWE:
$\operatorname{RLWE}_{\mathbf{s k}}\left(\mathbf{m}_{1}\right) \star \operatorname{RGSW}_{\mathbf{s k}}\left(\mathbf{m}_{2}\right)=\mathbf{a} \odot R L W E_{\mathbf{s k}}^{\prime}\left(\mathbf{s} \cdot \mathbf{m}_{2}\right)+\mathbf{b} \odot R L W E_{\mathbf{s k}}^{\prime}\left(\mathbf{m}_{2}\right)$

- This operation allows to multiply two ciphertexts, which in the exponent acts like an addition.

An additional scheme-switching technique

- If we want to multiply a ciphertext by a scalar, we use automorphisms (for RLWE' ciphertexts only!): $X^{a \times c}=\left(X^{c}\right)^{a}$ (allows homomorphic exponentiation).
- If we want to add two ciphertexts (in the exponent) we use RLWE \times RGSW multiplication: $X^{c_{1}+c_{2}}=X^{c_{1}} \times X^{c_{2}}$

A necessary scheme-switch:

- In our algorithm, we primarily use RLWE' registers.
- RGSW is only needed for multiplication.
- We also introduce a novel scheme-switching method from RLWE' to RGSW.

Using Fast Fourier Transform

The second step of amortized boostrapping is: let $(\mathbf{a}, \mathbf{b})=\operatorname{RLWE}_{\mathbf{z}}(m(X))$: homomorphically compute decryption, i.e., compute

$$
\mathbf{a} \cdot \mathbf{z}+\mathbf{b}
$$

Main goal: compute a single polynomial multiplication $\mathbf{a} \cdot \mathbf{z}$ using FFT.
Important: We have an encryption of \mathbf{z}.
FFT-based multiplication algorithm:

What needs to be computed (homomorphically)

1. Compute an FFT of a in cleartext form.
2. Evaluation key: contains RGSW registers of $\operatorname{FFT}(\mathbf{z})$.
3. Homomorphically compute $\operatorname{FFT}(\mathbf{a} \cdot \mathbf{z})$ (pointwise multiplication)
4. Compute inverse FFT: $\mathrm{FFT}^{-1}(\mathbf{a} \cdot \mathbf{z})$.

Operations performed:
$a_{i} j^{j} \rightarrow$ to scalar multiply in the exponent, use automorphisms.
$a_{i} \zeta^{j}+a_{i^{\prime}} \zeta^{j^{\prime}} \rightarrow$ to add two encrypted data, use
scheme-switching GadgetRLWE \rightarrow RGSW and then perform a multiplication GadgetRLWE \times RGSW.

One layer of FFT: evaluation example

Goal: compute $a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}$

- re-write as $\left(\left(\boxed{a_{3}} \zeta+\boxed{a_{2}}\right) \zeta+\boxed{a_{1}}\right) \zeta+a_{0}$
- a_{i} are RLWE' ciphertexts

Overview of the amortized bootstrapping scene

Scheme	Amortized cost	Modulus	Pros	Cons
FHEW/TFHE	$\hat{O}(n)$	Po	-	Cost
[MS18]	$\tilde{O}\left(3^{\frac{1}{\epsilon}} \cdot n^{\epsilon}\right)$	Polynomi	Promising...	Large overhead
Our work Guimarães, Pereira, Van Leeuwen, AC23	$\begin{aligned} & O\left(\frac{1}{\epsilon} \cdot n^{\epsilon}\right) \\ & O\left(\frac{1}{\epsilon} \cdot n^{\epsilon}\right) \end{aligned}$	Polynomial Polynomial	smaller over- head smaller over- head	non-power-2 cycl/Impractical Impractical
Liu, Wang, EC23 Liu, Wang, EC23	$\begin{aligned} & \tilde{O}\left(n^{.75}\right) \\ & \tilde{O}(1) \end{aligned}$	Polynomial Polynomial	Good complexity	Worse complexity Impractical
$\begin{array}{ll} \text { Liu, Wang, } \\ \text { AC23 } \end{array}$	Of(1)	Superpolynomial	Best practical perf.	Large modulus

Conclusion and future work

Where we stand now:

- New methods to amortize FHEW bootstrapping overcoming practical limitations of [MS'18].
- No clear winning candidate in terms of practical performance.
- Performance gap between amortized FHEW and BGV/BFV.

What about an efficient implementation?

- Much needed: (better) support for general cyclotomics (other than powers-of-two) in FHE libraries.

Thank you !

What encryption schemes to use ?

Let $\mathcal{R}_{q}=q^{\text {th }}$ prime cyclotomic ring, q prime.

- GadgetRLWE (RLWE'): consider a gadget vector

$$
\mathbf{v}=\left(v_{0}, v_{1}, \cdots, v_{k-1}\right) \in \mathcal{R}_{q}^{k}
$$

GadgetRLWE is expressed as a vector of RLWE ciphertexts:

$$
\operatorname{RLWE}^{\prime}(\mathbf{m})=\left(\operatorname{RLWE}\left(v_{0} \cdot \mathbf{m}\right), \cdots, \operatorname{RLWE}\left(v_{k-1} \cdot \mathbf{m}\right)\right)
$$

- RGSW: For a message $\mathbf{m} \in \mathcal{R}_{q}$ and a secret key $\mathbf{z} \leftarrow \chi$, we define

$$
\operatorname{RGSW}_{\mathbf{z}}(\mathbf{m})=\left(\operatorname{RLWE}^{\prime}(\mathbf{z} \cdot \mathbf{m}), \operatorname{RLWE}^{\prime}(\mathbf{m})\right) \in \mathcal{R}_{q}^{2 \times 2 k}
$$

An important operation: \odot

- Main operation in our algorithm: scalar multiplication by arbitrary ring elements.
- One uses RLWE' with gadget vector $\mathbf{v}=\left(v_{0}, v_{1}, \cdots, v_{k-1}\right)$.
- The scalar multiplication: $\mathcal{R} \odot$ RLWE $^{\prime}$ corresponds to $\odot: \mathcal{R} \times$ RLWE $^{\prime} \rightarrow$ RLWE defined as
$\begin{aligned} \mathbf{t} \odot R L W E_{\text {sk }}^{\prime}(\mathbf{m}) & :=\sum_{i=0}^{k-1} \mathbf{t}_{i} \cdot R L W E_{\text {sk }}\left(v_{i} \cdot \mathbf{m}\right) \\ & =R L W E_{\text {sk }}\left(\sum_{i=0}^{k-1} v_{i} \cdot \mathbf{t}_{i} \cdot \mathbf{m}\right)=R L W E_{\text {sk }}(\mathbf{t} \cdot \mathbf{m})\end{aligned}$
where $\sum_{i} v_{i} \mathbf{t}_{i}=\mathbf{t}$ is the gadget decomposion of \mathbf{t} into "short" vectors $\mathbf{t}_{\boldsymbol{i}}$.

RLWE'-to-RGSW scheme switching

Input $\operatorname{RLWE}_{\text {sk }}^{\prime}(m)$
Output $\operatorname{RGSW}_{\mathbf{s k}}(\mathbf{m})=\left(\operatorname{RLWE}_{\mathbf{s k}}^{\prime}(\mathbf{s k} \cdot \mathbf{m}), \operatorname{RLWE}_{\mathbf{s k}}^{\prime}(\mathbf{m})\right)$

- Goal: compute $\operatorname{RLWE}_{\text {sk }}^{\prime}(\mathbf{s k} \cdot \mathbf{m})$.

1. Use $\operatorname{RLWE}_{\text {sk }}^{\prime}\left(\mathbf{s k}^{\mathbf{2}}\right)$ given as part of the evaluation key.
2. Operate in parallel on each of the $\operatorname{RLWE}_{\mathbf{s k}}\left(v_{i} \cdot \mathbf{m}\right)$, lifting each $\operatorname{RLWE}_{\mathbf{s k}}\left(v_{i} \cdot \mathbf{m}\right)$ to $\operatorname{RLWE}_{\mathbf{s k}}\left(v_{i} \cdot \mathbf{s k} \cdot \mathbf{m}\right)$.
3. For each $\operatorname{RLWE}_{\mathbf{s k}}\left(v_{i} \cdot \mathbf{m}\right):=(\mathbf{a}, \mathbf{b})$, compute

$$
\mathbf{a} \odot R L W E_{\mathbf{s k}}^{\prime}\left(\mathbf{s k}^{2}\right)+(\mathbf{b}, 0) .
$$

Scheme switching (cont.)

- $(\mathbf{b}, 0)=$ noiseless RLWE encryption of $\mathbf{b} \cdot \mathbf{s k}$ under secret key sk.
- Above computation gives

$$
\begin{aligned}
\mathbf{a} \odot R L W E_{\mathbf{s k}}^{\prime}\left(\mathbf{s k}^{2}\right)+(\mathbf{b}, 0) & =\operatorname{RLWE}_{\mathbf{s k}}\left(\mathbf{a} \cdot \mathbf{s k} \mathbf{k}^{2}+\mathbf{b} \cdot \mathbf{s k}\right) \\
& =\operatorname{RLWE}_{\mathbf{s k}}((\mathbf{a} \cdot \mathbf{s k}+\mathbf{b}) \cdot \mathbf{s k}) \\
& =\operatorname{RLWE}_{\mathbf{s k}}\left(\left(v_{i} \cdot \mathbf{m}+\mathbf{e}\right) \cdot \mathbf{s k}\right)
\end{aligned}
$$

- We get $\operatorname{RLWE}_{\text {sk }}\left(v_{i} \cdot \mathbf{s k} \cdot \mathbf{m}\right)$, but with an additional error e.sk.
- Choose the secret key sk with small norm (e.g., binary) so that this multiplicative error growth remains small.

We are now ready for our homomorphic FFT!

Homomorphic pointwise multiplication

Goal: compute FFT(a•z).

What we have so far:

- $\operatorname{FFT}(\mathbf{a})=$ list of polynomials $\tilde{\mathbf{a}}_{i}=\mathbf{a}(x)\left(\bmod x^{k}-\zeta_{i}\right):$ computed in the clear for different values of ζ.
- encryption of $\operatorname{FFT}(\mathbf{z})=$ list of polynomials $\tilde{\mathbf{z}}_{i}=\mathbf{z}(x)$ $\left(\bmod x^{k}-\zeta_{i}\right)$ as part of the evaluation key.
What we do: we multiply $\tilde{\mathbf{a}}_{i}(x)$ and $\tilde{\mathbf{z}}_{i}(x)$ modulo $\left(x^{k}-\zeta_{i}\right)$ (for all i).
Example:

$$
\begin{gathered}
a(x) \quad\left(\bmod x^{k}-\zeta\right)=\tilde{a}_{0}+\tilde{a}_{1} x+\tilde{a}_{2} x^{2} \\
z(x) \quad\left(\bmod x^{k}-\zeta\right)=\tilde{z}_{0}+\tilde{z}_{1} x+\tilde{z}_{2} x^{2}
\end{gathered}
$$

As ($x^{k}-\zeta$) has such a nice form (!), we get a "simple" formula:
Constant term: $\tilde{a}_{0} \tilde{z}_{0}+\zeta\left(\tilde{a}_{1} \widetilde{\tilde{z}_{2}}+\cdots\right)$

More generally, the j-th coefficient of $\tilde{\mathbf{a}}_{i} \cdot \tilde{\mathbf{z}}_{i}$ is equal to an inner product:

$$
v_{j}=\left\langle\left(\tilde{z}_{0}, \cdots, \tilde{z}_{k-1}\right),\left(\tilde{a}_{j}, \tilde{a}_{j-1}, \ldots, \tilde{a}_{0}, \zeta \tilde{a}_{k-1}, \ldots, \zeta \tilde{a}_{j+1}\right)\right\rangle
$$

- Compute this inner product homomorphically in a telescoping manner (see formula in paper).

Operations: $a \times \square$, and $\square+\square$.

The next step: inverse FFT

After pointwise multiplication, we have:

$$
\operatorname{FFT}(\mathbf{a} \cdot \mathbf{z})=\text { list of RLWE' encryptions of } X^{v_{j}}
$$

v_{j} : all coefficients of all products $\tilde{\mathbf{a}}_{i} \cdot \tilde{\mathbf{z}}_{j}$.
What we want now: $\mathbf{a} \cdot \mathbf{z}$, i.e. RLWE encryptions of the coefficients of $\mathbf{a} \cdot \mathbf{z}$.

Goal: compute an homomorphic inverse FFT.

- can be reduced to a forward FFT with an additional multiplication.

Operations for Homomorphic inverse FFT

Input RLWE' registers, outputs of pointwise multiplication
Output RLWE encryptions of $\mathbf{a} \cdot \mathbf{z}$.

1. Split registers into groups.
2. For each group, perform a standard (not primitive) forward FFT.
3. Homomorphically multiply each output register in each group by a power of the root of unity. (automorphism).
Focus on operations in forward FFT (step 2):

- FFT works with a remainder tree,
- At each layer, a child node is produced by taking an input polynomial and reducing it modulo $X^{k}-\zeta$.
- Each reduction results in a computation of the form $\sum_{i} a_{i} \zeta^{i}$.

Analysis of our algorithm

How to evaluate the performance of our algorithm?

- we count the number of \odot operations, i.e, the number of $\mathcal{R} \odot$ RLWE' operations.
- we quantify the error growth in our algorithm (necessary for correctness).
- in previous work, error analysis is done for power-of-2 cyclotomics.
- in this work, we use prime cyclotomic rings
- new error growth analysis (in the paper).
- The amortized cost per message is $O\left(n^{1 / \ell} \cdot \log n \cdot \ell\right)$ homomorphic operations (in terms of the number of $\mathcal{R} \odot$ RLWE' $^{\prime}$ operations).

Concurrent and follow-up works

1. Amortized Bootstrapping Revisited: Simpler, Asymptotically-faster, Implemented, Antonio Guimarães, Hilder V. L. Pereira and Barry van Leeuwen at Asiacrypt 2023

- Very similar algorithm with same asymptotic amortized cost.
- Some technical differences:
- Uses circular rings (Ours: cyclotomic rings),
- Focuses on RGSW Register (Ours: RLWE).

2. Batch Bootstrapping I:: A New Framework for SIMD Bootstrapping in Polynomial Modulus, Feng-Hao Liu and Han Wang at Eurocrypt 2023
3. Batch Bootstrapping II: Bootstrapping in Polynomial Modulus Only Requires O(1) FHE Multiplications in Amortization, Feng-Hao Liu and Han Wang at Eurocrypt 2023
4. Amortized Functional Bootstrapping in less than 7 ms , with Õ(1) polynomial multiplications, Zeyu Liu and Yunhao Wang, at Asiacrypt 2023
