Faster Amortized FHEW Bootstrapping
using Ring Automorphisms

Gabrielle De Micheli (UCSD)
Joint work with: Duhyeong Kim (Intel), Daniele Micciancio and
Adam Suhl (UCSD)

PKC 2024

April 2024

1/30

Motivation /Goal

Main approaches to FHE Bootstrapping:

’ Bootstrapping ‘ BGV/BFV ‘ FHEW/TFHE ‘
Message space (Zp) Small (Z3)
Latency Slow (several minutes) (< 1 second)
Amortized Time Slow
Our work:

> New algorithm to bootstrap n FHEW ciphertexts with very
small overhead (< n) to a single FHEW bootstrapping.

» Previous work [M., Sorrell, ICALP 2018]: theoretically
promising, but impractical due to very high overhead.

» Our work: Similar asymptotic amortized cost but much
smaller overhead.

2/30

Bootstrapping for LWE Ciphertext

Bootstrapping: Homomorphic evaluation of decryption circuit
» Decs(ar,...,an,b)=|b+> 1 ;aisi]|
» Bootstrapping keys: Enc(z), ..., Enc(z,)
» Bootstrap(as,...,an, b) =

{b—k zn:a,- : Enc(z;)w = Enc ({b—k zn:a,- : z,-—D = Enc(m)
i=1

i=1

3/30

FHEW Bootstrapping [Ducas, M., Eurocrypt'15]

» Homomorphic decryption “in the exponent”.
» Enc(z;) = RGSW(X%) (i.e., RGSW register).
> A two-step process:

1. Inner Product':

b+ ai - Enc(z) = RGSW(XPHi a2)
i=1
2. Rounding (msbExtract):

RGSW(XbT2iaarzy —y L[WE(m)

!Possible optimization: use RLWE ciphertexts with an external product.
4/30

Limitation of LWE bootstrapping

» Cost: O(n) homomorphic multiplications per message.
» Bootstrap n messages: total cost O(n?) crypto ops.

» Infeasible computational cost in practical FHE parameters
(e.g., n=21%).

5/30

Amortized Bootstrapping

> Utilize RLWE decryption instead of LWE decryption:

Dec,(a,b) = |a-z+ b]
> A three-step process:
1. Ring packing:

{LWE,(m;)}{ => RLWE,(m(X)) € R

with some packing key.
2. Inner Product: For (a,b) = RLWE,(m(X)), homomorphically

compute
a-[z]+b

3. Rounding (msbExtract): Compute homomorphic rounding for
each coefficient of a -[z]+ b.

6/30

Amortized Bootstrapping

> Utilize RLWE decryption instead of LWE decryption:
Dec,(a,b) = |a-z+ b]

> A three-step process:

2. Inner Product: For (a,b) = RLWE,(m(X)), homomorphically

compute
a-[z]+b

6/30

FHEW vs FFT-based Solution
Goal: Compute a-[z]+ b homomorphically.

One Solution: Fast Fourier Transform (over finite field)
» homomorphic operations: addition/subtraction and
multiplication by “twiddle” factors powers of a primitive root of unity.
> less homomorphic operations O(nlog n) compared to O(n?).

FHEW FFT

[H
[H
[H

n log n 7/%

Previous work [M., Sorrell, ICALP'18]

The
>

first work on amortized FHEW bootstrapping:

Bottleneck: RGSW registers only support homomorphic
addition.

In theory: bootstrap n messages with O(3¢ - n'*t1/%) crypto
ops, which gives O(3¢ - n*/%) amortized cost.

In practice: Even worse than O(n) sequential FHEW, due to
very high overhead.

key observation:

we “can” efficiently perform homomorphic scalar
multiplication in RGSW register,

and hence we “can” apply FFT for homomorphic INTT.

better asymptotic complexity, smaller overhead.

8/30

A (very) brief description of FFT

General idea:
» evaluate degree-n polynomials at appropriate values (roots of
unity) O(nlog n)
> compute pointwise multiplication O(n)
Evaluation:
> compute a remainder tree
» each layer corresponds to a reduction of polynomials modulo
other polynomials (operations: ag + a1¢ + -+ + akﬁk)
> optimize algorithm: regroup the number of layers (radix).

Pointwise multiplication: similar operations needed.

9/30

What operations are needed homomorphically?

Notation for encrypted data:

Question: What operations do we need?

» scalar multiplication : ax —

> addition: + —

The feasability of these homomorphic operations depends on the
encryption schemes considered: GadgetRLWE, RGSW.

10/30

More on the homomorphic operations ...

Message encoding: scalar values v € Z are encoded in the
exponent, i.e., mapping it to the monomial XV.

» In our algorithm, we will work with both RGSW and RLWE’
registers, i.e., RGSW/RLWE' encryptions of XV for v € Z.

With the schemes:

» scalar multiplication: ax — automorphisms on
GadgetRLWE.
> addition: + — GadgetRLWE x RGSW

multiplication.

11/30

Ring automorphisms

P scalar multiplication: ax
GadgetRLWE.

— automorphisms on

Automorphisms: bijective map from the ring R to itself :

a(X) — a(X*), t € Z¢,.

Automorphisms in RLWE/RLWE' :
» RLWE ciphertext : (a(X),b(X)) under sk.

> it R — R, a(X) — a(X?).

» apply ¥ to RLWE components:

(a(X®), b(X")) = RLWEg(x:)(m(X"))

> apply key switching function to get RLWE(x)(m(X"))

12/30

Gadget RLWE x RGSW Multiplication

> addition: + — GadgetRLWE x RGSW
multiplication

Multiplication RLWE x RGSW — RLWE:

RLWEsk(ml)*RGSWSk(mg) = a@RLWES’k(s-mz)—i—bQRLWE;k(mz)

» This operation allows to multiply two ciphertexts, which in
the exponent acts like an addition.

13/30

An additional scheme-switching technique

> If we want to multiply a ciphertext by a scalar, we use
automorphisms (for RLWE' ciphertexts only!): X2*¢ = (X¢)?
(allows homomorphic exponentiation).

» If we want to add two ciphertexts (in the exponent) we use
RLWE’ x RGSW multiplication: XT@ = X x X<

A necessary scheme-switch:
» In our algorithm, we primarily use RLWE' registers.
» RGSW is only needed for multiplication.

» We also introduce a novel scheme-switching method from
RLWE' to RGSW.

14/30

Using Fast Fourier Transform

The second step of amortized boostrapping is: let
(a,b) = RLWE,(m(X)): homomorphically compute decryption,
i.e., compute

a-z+b
Main goal: compute a single polynomial multiplication a - z using
FFT.
Important: We have an encryption of z.

FFT-based multiplication algorithm:
a—— FFT(a) FFT(a-z) = FFT(a) x FFT(2)

FFT
z——|FFT(z)|—— » — |FFT(a - 2) —>

15/30

What needs to be computed (homomorphically)

1. Compute an FFT of a in cleartext form.
2. Evaluation key: contains RGSW registers of FFT(z).

3. Homomorphically compute FFT(a - z) (pointwise
multiplication)
Compute inverse FFT: FFT 1(a- z).

Operations performed:

Cj — to scalar multiply in the exponent, use automorphisms.

a;i¢

+

a,'/Cj,

— to add two encrypted data, use

scheme-switc
multiplication GadgetRLWE x RGSW.

hing GadgetRLWE — RGSW and then perform a

16 /30

One layer of FFT: evaluation example

Goal: compute +[a)(+ C2 + C3
> re-write as ((C +)C +> ¢ +

> are RLWE' ciphertexts

(a3 +[22]
(3K +[22))¢
(a K +[a])¢ +

(3 +[2)¢ +[a))¢
(3 +[22)C + [1)C + [30]

17/30

Overview of the amortized bootstrapping scene

Scheme Amortized| Modulus Pros Cons
cost

FHEW/TFHE| O(n) Polynomial | — Cost

[MS18] 5(3l -n°) | Polynomial | Promising... | Large overhead

Our work Polynomial non-power-2
cycl/Impractical

Guimar3es, Polynomial Impractical

Pereira, Van

Leeuwen, AC23

Liu, Wang, | O(n'®) Polynomial | — Worse complex-

EC23 ity

Liu, Wang, Polynomial | Good com- | Impractical

EC23 plexity

Liu, Wang, Super- Large modulus

AC23 polynomial

18/30

Conclusion and future work

Where we stand now:

> New methods to amortize FHEW bootstrapping overcoming
practical limitations of [MS'18].

» No clear winning candidate in terms of practical performance.
» Performance gap between amortized FHEW and BGV/BFV.

What about an efficient implementation?

» Much needed: (better) support for general cyclotomics (other
than powers-of-two) in FHE libraries.

19/30

Thank you !

20/30

What encryption schemes to use ?

Let Rq = gt" prime cyclotomic ring, q prime.

» GadgetRLWE (RLWE’): consider a gadget vector
v=(v,vi, -, Vk_1) € Rg.
GadgetRLWE is expressed as a vector of RLWE ciphertexts:
RLWE'(m) = (RLWE(vo - m), - - - , RLWE(vk_1 - m))

» RGSW: For a message m € R4 and a secret key z < x, we
define

RGSW,(m) = (RLWE'(z - m), RLWE'(m)) € R2*2

21/30

An important operation: ®

» Main operation in our algorithm: scalar multiplication by
arbitrary ring elements.
» One uses RLWE' with gadget vector v = (vp, vi, -+ , Vk—1)-

» The scalar multiplication: R ® RLWE’ corresponds to
® : R x RLWE" — RLWE defined as

k—1
t© RLWE[(m) :=) "t; - RLWEg(v; - m)
i=0
k—1
= RLWE (Z vi -t - m> = RLWEg(t - m)
i=0

where >, vjt; = t is the gadget decomposion of t into “short”
vectors t;.

22/30

RLWE'-to-RGSW scheme switching

Input RLWEL, (m)
Output RGSWec(m) = (RLWE/, (sk - m), RLWE/, (m))
» Goal: compute RLWE,, (sk - m).
1. Use RLWEL, (sk?) given as part of the evaluation key.

2. Operate in parallel on each of the RLWEg(v; - m), lifting each
RLWEsk(V,' . m) to RLWESk(V,' - sk - m)
3. For each RLWEg(v; - m) := (a, b), compute

a ® RLWE (sk?) + (b, 0).

23/30

Scheme switching (cont.)

» (b,0) = noiseless RLWE encryption of b - sk under secret key
sk.

> Above computation gives

a ® RLWEL (sk?) + (b,0) = RLWE(a - sk® + b - sk)
= RLWEg((a - sk + b) - sk)
= RLWESk((V,' -m + e) . Sk)

» We get RLWEg(v; - sk - m), but with an additional error
e - sk.

» Choose the secret key sk with small norm (e.g., binary) so
that this multiplicative error growth remains small.

We are now ready for our homomorphic FFT!

24/30

Homomorphic pointwise multiplication
Goal: compute FFT(a - z).
What we have so far:
» FFT(a) = list of polynomials &; = a(x) (mod x* — ¢;) :
computed in the clear for different values of (.

» encryption of FFT(z) = list of polynomials Z; = z(x)
(mod x¥ — ¢;) as part of the evaluation key.
What we do: we multiply &;(x) and Z;(x) modulo (x* — ¢;) (for
all i),
Example:

a(x) (mod x¥ — ¢) = d + d1x + d2x°

z(x) (mod x* — () =20 |+|z k+[2

As (x¥ — () has such a nice form (1), we get a “simple” formula:

Constant term: 50 + g‘(él +-00)

25/30

More generally, the j-th coefficient of &; - Z; is equal to an inner

product:
E) aj7§J 17"'7507<5k*17"'7<~5j+1)>

» Compute this inner product homomorphically in a telescoping
manner (see formula in paper).

Operations: ax , and +

Zi1

s~ _, ,

-1
(aJ St Zl)aj 1dj-2-

26/30

The next step: inverse FFT

After pointwise multiplication, we have:

FFT(a-z)|= list of RLWE' encryptions of X"

vj: all coefficients of all products a; - z;.
What we want now: [a - z] i.e. RLWE encryptions of the
coefficients of a - z.

Goal: compute an homomorphic inverse FFT.

» can be reduced to a forward FFT with an additional
multiplication.

27/30

Operations for Homomorphic inverse FFT

Input RLWE' registers, outputs of pointwise multiplication
Output RLWE encryptions of a - z.

1. Split registers into groups.

2. For each group, perform a standard (not primitive) forward
FFT.

3. Homomorphically multiply each output register in each group
by a power of the root of unity. (automorphism).

Focus on operations in forward FFT (step 2):
» FFT works with a remainder tree,

> At each layer, a child node is produced by taking an input
polynomial and reducing it modulo X* — (.

» Each reduction results in a computation of the form Z,(i.

28/30

Analysis of our algorithm

How to evaluate the performance of our algorithm?

> we count the number of ® operations, i.e, the number of
R © RLWE' operations.

» we quantify the error growth in our algorithm (necessary for
correctness).
» in previous work, error analysis is done for power-of-2
cyclotomics.
» in this work, we use prime cyclotomic rings
> new error growth analysis (in the paper).

» The amortized cost per message is O(n*/* -log n - /)
homomorphic operations (in terms of the number of

R ® RLWE’ operations).

29/30

Concurrent and follow-up works

1. Amortized Bootstrapping Revisited: Simpler,
Asymptotically-faster, Implemented, Antonio Guimaraes,
Hilder V. L. Pereira and Barry van Leeuwen at Asiacrypt
2023

» Very similar algorithm with same asymptotic amortized cost.
» Some technical differences:

> Uses circular rings (Ours: cyclotomic rings),
> Focuses on RGSW Register (Ours: RLWE).
2. Batch Bootstrapping I:: A New Framework for SIMD
Bootstrapping in Polynomial Modulus, Feng-Hao Liu and Han
Wang at Eurocrypt 2023

3. Batch Bootstrapping Il: Bootstrapping in Polynomial Modulus
Only Requires O(1) FHE Multiplications in Amortization,
Feng-Hao Liu and Han Wang at Eurocrypt 2023

4. Amortized Functional Bootstrapping in less than 7ms, with
O(1) polynomial multiplications, Zeyu Liu and Yunhao Wang,
at Asiacrypt 2023

30/30

