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2004: Dual EC presented at NIST workshop
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2005-2006: Dual EC standardized in NIST SP 800-90A
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2005-2007: State-recovery backdoor possible in Dual EC

“The relationship between P and Q
[in Dual EC] is used as an escrow
key and stored…the output of the
generator [is used] to reconstruct
the random number with the
escrow key.”
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2012-2015: Hack of Juniper Network’s Dual EC constants
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History of Dual EC

…and Micali-Schnorr

Dual EC
2004 Proposed inclusion in ANSI x9.82
2005 NIST SP 800-9A draft

2005-2007 Identification of possible backdoor
2013 Snowden Disclosures
2014 Removal from SP 800-90A

2012-2015 Exploitation of Juniper Networks

Micali-Schnorr
✓
ISO 18031
?
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2004: Micali-Schnorr presented at NIST workshop
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2005: Micali-Schnorr standardized in ISO 18031
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History of Dual EC…and Micali-Schnorr

Dual EC
2004 Proposed inclusion in ANSI x9.82
2005 NIST SP 800-9A draft

2005-2007 Identification of possible backdoor
2013 Snowden Disclosures
2014 Removal from SP 800-90A

2012-2015 Exploitation of Juniper Networks

Micali-Schnorr
✓
ISO 18031
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Micali-Schnorr’s design: repeated RSA encryption
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Micali-Schnorr’s design: repeated RSA encryption

2ksi+1 + bi+1 ≡ sie (mod N)

10



Micali-Schnorr’s design: repeated RSA encryption

Unclear how to recover the state using RSA decryption.
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Does the factorization of the public modulus lead to
an attack against Micali-Schnorr?
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Does the factorization, or otherwise malicious
construction, of the public modulus lead to an

attack against Micali-Schnorr?
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Observation 1

There is no simple backdoor in
Micali-Schnorr.
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No simple backdoors in Micali-Schnorr

Theorem: Any potential backdoor in Micali-Schnorr must exploit
the non-random structure of textbook RSA encryption.

RSA decryption alone is not enough.

Micali-Schnorr is like a sponge with duplex construction. It is
secure if RSA is replaced with an invertible random function.
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Observation 2

There is an algebraic attack on the
standard with non-default settings
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Algebraic state recovery attacks

We want to recover the unknown state from the observed output.

2ksi+1 + bi+1 ≡ si
e (mod N)

Since e is 3 by default, this is a low-degree polynomial with a small
solution. Can we use the multivariate Coppersmith’s method?

No. The ISO 18031 state size is not small enough, and this
approach fails.
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Backdooring Micali-Schnorr with non-default exponent

Backdoor idea: Use non-default public exponent e where the
private exponent d is small.

Coppersmith’s method successfully solves this polynomial.

(si+12k + bi+1)
d ≡ si (mod N)

ISO 18031: “The implementation should allow” non-default e.
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Observation 3

We can force short cycles in a related
RSA-based construction
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RSA PRG

• State si = s0ei
mod N
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RSA PRG can have short cycles

RSA PRG with N = 5154904286740261 and e = 3.

Iteration Value State si Output bi

0 s0 4047975530247052 338c
1 s0e 2492861700191393 34a1
2 s0e2 4862773567328857 9259
… … … …
16 s0e16 810645248255668 a6b4
17 s0e17 2887166220613321 b6c9
18 s0e18 3479941204398616 d218

19 s0e19 810645248255668 a6b4
20 s0e20 2887166220613321 b6c9
… … … …
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RSA PRG can have short cycles

• si ≡ sei
0 mod N.

• We’re in an exponent in an exponent

• Cycles have length φ(φ(N))

• Easy to generate parameters where period is very small
factor of φ(φ(N)), giving short cycles

• Such parameters are insecure… but cycling outputs would be
obvious.
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Observation 4

We can undetectably hide relations
between RSA PRG states.
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Candidate backdoor for RSA PRG: N embeds sparse relation

Simple relation gives obvious cycles:

ei ≡ ej mod φ(N)

=⇒ si ≡ sj mod N
Cycles (obvious)

But relation with more terms hides cycles:

eh + ei ≡ ej + eℓ mod φ(N)

=⇒ sh · si ≡ sj · sℓ mod N
No cycles, but still exploitable!

Candidate RSA PRG backdoor:
Choose N to encode a sparse relation between powers of e mod
φ(N). Exploit via multivariate Coppersmith method.
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Unclear how to get backdoor to work for Micali-Schnorr

Truncation prevents us from building exploitable relations

• RSA PRG has an elegant closed form: si = s0ei

• MS does not: si = ((((s0e − b1)/2k)e − b2)/2k . . .

Conclusion: Need further ideas to extend candidate backdoor to
Micali-Schnorr
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Recap of our results

• Micali-Schnorr has no “simple” backdoors
• =⇒ Any backdoor needs to exploit structure of RSA

• ISO standard allows insecure parameters

• Related construction RSA PRG can be backdoored
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Question for the audience

Have you heard of Micali-Schnorr
being used in the real world?

If so, please let us know!
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Micali-Schnorr: A fun problem that deserves more attention

MS DRBG suspiciously similar to Dual EC DRBG:

• Same origin
• Appear together in ISO 18031
• ISO 18031 specifies default RSA moduli for Micali-Schnorr

But where is the backdoor, if there is one?

• We give partial results and eliminate some avenues of attack
• Question is still open
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Questions?

On the Possibility of a Backdoor
in the Micali-Schnorr Generator

Full details on ePrint: https://ia.cr/2023/440
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