i ic2

SN0,

PK&@&202

Sydney

Updatable, Aggregatable, Succinct Mercurial

Vector Commitment from Lattice

Hongxiao Wang, Siu-Ming Yiu, Yanmin Zhao, Zoe L. Jiang

April 2024

Vector Commitment

—R

Commit “commitment”

C

”opening”

Open + Verify

C

Wee, Hoeteck, and David J. Wu. “Lattice-based functional commitments: Fast verification and cryptanalysis.” ASIACRYPT 2023. PowerPoint slides: https://www.cs.utexas.edu/~dwu4/lattice-fc-fast.html

https://www.cs.utexas.edu/~dwu4/lattice-fc-fast.html

Mercurial Vector Commitment

HCom “hard commitment”

? o C..... >
e :

SCom “soft commitment”

R C1.---. >

“opening”
Hopen/Sopen + Hverify/Sverify

7| — il

Sopen + Sverify ﬁ-\
CI l u
e

Mercurial Vector Commitment

“hard commitment”
] HCom

) C..... >

HCom(crs, x) = (C, aux)
Takes a common reference string and commits to a vector x

Outputs a hard commitment C and auxiliary information aux

Mercurial Vector Commitment

“opening”
Hopen/Sopen + Hverify/Sverify

07— il

HCom(crs, x) — (C, aux)

HOpen(aux, i) — m;

Takes the auxiliary information and an index i and outputs a hard
opening T;

HVerify(pp, C, (i, x;),m;) = 0/1

Checks whether m; is valid opening of C to value x; at index 1

Mercurial Vector Commitment

“opening”
Hopen/Sopen + Hverify/Sverify

(7| — il

HCom(crs, x) — (C, aux)

SOpen(aux, H, x;, i) = T;

Takes the auxiliary information, a flag [H, the value x; at an index 1
and outputs a soft opening t;

SVerify(crs, C, (i,x;),t;) = 0/1

Checks whether t; is valid opening of C to value x; at index i

Mercurial Vector Co

mmitment

Hopen/Sopen + Hverify/Sverify

C R

HCom(crs, x) — (C, aux)

HOpen(aux, i) — m;
SOpen(aux, H, x;, i) = T;
HVerify(pp, C, (i, x;),m;) = 0/1
SVerify(crs, C, (i,x;),1;) = 0/1

“opening”

i/ T

T; C TT;

For all known constructions, soft
opening T; is a proper subset of hard
opening 77; to the same message, so

as SVerify and HVerify.
Such MVC are called proper MVC.

Mercurial Vector Commitment

“soft commitment”

SCom

> C| - >

SCom(crs) —» (C, aux)

Takes a common reference string

Outputs soft commitment C and auxiliary information aux

Mercurial Vector Commitment

Sopen + Sverify ﬁ\
C ©
>

SCom(crs) — (C, aux)

SOpen(aux, S, x,i) = T;

Takes the auxiliary information, a flag S, a value x, and an index i
and outputs a soft opening t;

SVerify(crs, C, (i,x),1;) = 0/1

Checks whether ; is valid opening of C to value x at index i

Mercurial Vector Commitment

“hard commitment” “soft opening”

Sopen f-\
C R g u

“soft commitment” “soft opening,
, Sopen (T; D
C)]

Mercurial Hiding: efficient adversary cannot distinguish between
hard commitment C and soft commitment C’ with their soft
openings

Mercurial Vector Commitment

“fake commitment”

FCom

— C | --c-- >

“equivocation”

EHopen + Hverify f\
C R " n

ESopen + Sverify :
(7 e— C5

Simulating algorithms

Mercurial Vector Commitment

“equivocation”

I /7,]

EHopen/ESopen + Hverify/Sverify

C >
FCom(crs) — (C, aux)
EHOpen(aux, tk,x,i) »

Takes the auxiliary information, the trapdoor key tk, a value x, and
an index i and outputs a hard equivocation 7

ESOpen(aux, tk,x,i) - 1

Takes the auxiliary information, the trapdoor key tk, a value x, and
an index i and outputs a soft equivocation T

Mercurial Vector Commitment

Equivocation game for proper MVC
“hard commitment”

C

“fake commitment”

C

“soft commitment”

CI

“fake commitment”

C

Hopen

EHopen

Sopen

ESopen

V4

“hard opening /\
i

“hard equivocation”

i

4

(% o
“soft equivocation”,
Y el

“soft opening

Mercurial Vector Commitment

“opening”
Hopen/Sopen + Hverify/Sverify

C —— i/

Mercurial Binding: efficient adversary cannot open a hard
commitment C to two different values at the same index i successfully

It m HVerif X, TT;) =
y(crs,C,i,x;,m;) =1

e <17

\ m SVerify(crs, C,i,x;,7;) = 1

Mercurial Vector Commitment

“opening”
Hopen/Sopen + Hverify/Sverify

C —— i/

Succinctness: all commitments and openings should be short
 Short commitment: |C| = poly(4,log ¥)
* Short opening: |;| = poly(4,log)

Mercurial Vector Commitment

Scheme AS ubD AG |crs| |C| |laux| |7T|

[8] RSA v X O(Af) 0O) O(Af) O)

[17] [-DHE X v O(Af) 0O) O(Af) O)
[18]+[28]* SIS X X £?poly(4,log®) ©(A% - H) O(A%¢ - H) QA% - H)
This work SIS v X £?poly(A,logf) O(A% - H) O(A%¢ - H) O(A% - H)
This work BASISt v v £?poly(A,log®) O?-H) O((AL+1%)-H) O -H)

 {istheinputlength

* H =log?A+log??

* UD: scheme supports update both hard and soft commitment
* FV:scheme supports aggregate both hard and soft opening

*A lattice-based MVC can be trivially built by lattice-based components (e.g. [18] and [28]) in the generic framework [8].

TA new falsifiable family of basis-augmented SIS assumption (BASIS) proposed by Wee and Wu (EUROCRYPT ’23)

Mercurial Vector Commitment

Scheme AS ubD AG |crs| |C| |laux| |7T|
[8] RSA v X O(Af) 0O) O(Af) O)
[17] [-DHE X v O(Af) 0O) O(Af) O)
[18]+[28] SIS X X £?poly(A,log®) ©(A% - H) O(A%¢ - H) QA% - H)
This work SIS v X £?poly(4,log£) ©(A% - H) O(A%¢ - H) O(A% - H)
This work BASIS v v £?poly(A,log#) O?-H) O((AL+ A7) -H) O(A%-H)

The generic framework [8] of MVC including a standard MC and a standard VC
First, generate £ MC C; to each entry x; with aux;
Second, generate a VC o to the vector (Cy, ..., Cp) with aux,

Third, publish o as the MVC and store aux = (auxq, ..., aux,, aux_o)
To generate an opening, it first opens VC o at index i, then opens MC (;
To verify, it first verifies VC and then MC

Due to the generic framework, it cannot support update and aggregate

This Work

Non-black-box mercurial vector commitment based on BASIS framework This talk
* Mercurial vector commitments based on BASISiuct With smaller auxiliary information
support both update and aggregate
 Mercurial vector commitment based on SIS support update
* Redefine the property of update in mercurial vector commitment
* |Introduce new properties: stateless/differential update, updatable mercurial hiding

e Application on Zero-Knowledge Set (ZKS) and Zero-Knowledge Elementary Database(ZK-EDB)
e Lattice-based updatable £-ary ZKS (ZK-EDB) with batch verification

Starting Point: the BASIS Vector Commitment

Common reference string (CRS)

———————————————————————————

T E' trapdoor for matrix B, \E
. TT=B3(G) |

———————————————————————————

Starting Point: the BASIS Vector Commitment

Commitment relation (for all i € [£])

x.
l
— €1 + Vi
commitment Basis vector opening
e, = (1,0,..,0)7 (vector with short entries)

Commitment to £-dimensional vector x € Zé

Trapdoor in CRS allows for joint sampling of (¢, v, ..., v,) " by SampPre(B,, T', —x®e, s1)

: the commitment ,foralli € [£],

the opening

Our Approach: Extension to BASIS Framework

Commitment to Y-dimensional vectors x € Zé

Trapdoor in CRS allow for joint sampling of (¢, v, ..., v,) " by SampPre(B,, T', —x®e{, s{)

: the commitment ,foralli € [#],

the opening

Observation 1:
The private opening implies simulating algorithms that can generate a “fake”

commitment ¢’ without any message and its equivocation opening v;’' to x; with
the trapdoor of 4;. The distribution of them is statistically close to the real one.

Our Approach: Extension to BASIS Framework

Observation 2:

If we extend B, to B, with any
(D4, ...,D;), the trapdoor T' of B,
can be naturally extended and the
properties of corretness, binding,
and private opening still hold under
the BASIS assumption

Our Approach: Mercurial Vector Commitment

Mercurial Vector commitment (¢,D = (D4, ..., Dy))

Commitment relation, for all i € [£],c = |4;|D;]v; + x;e,

In hard commitment, forall i € [£], D; = A;R;, the opening v; can be joint sampled by
SampPre(B), (T')", —x®e, s)

In soft commitment, foralli € [¢],D; = G — A;R;", the opening v; can be sampled by
SampPre([4;|D;],R;’,c — x;eq,s)

* Since R;, R; are randomly sampled over {0, 1} D, is indistinguished in hard commitment and soft
commitment

* The (soft) opening v; from both hard and soft commitment is statistically close to [4;|D;] " (c — x;e,)

* R; as an additional part in hard opening to check D; = A;R; in hard commitment

Our Approach: Mercurial Vector Commitment

()

Mercurial Vector commitment (¢,D = (D4, ..., D,) \D\ —

Commitment relation, for all i € [£],c = |4;|D;]v; + x;e,

In hard commitment, forall i € [£], D; = A;R;, the opening v; can be joint sampled by
SampPre(B), (T')", —x®e, s)

In soft commitment, foralli € [¢],D; = G — A;R;", the opening v; can be sampled by
SampPre([4;|D;],R;’,c — x;eq,s)

* Since R;, R; are randomly sampled over {0, 1} D, is indistinguished in hard commitment and soft

commitment
* The (soft) opening v; from both hard and soft commitment is statistically close to [4;|D;] " (c — x;e,)

* R; as an additional part in hard opening to check D; = A;R; in hard commitment

Our Approach: Instantiation on BASIS i yct

Mercurial Vector commitment (¢, D = (D4, ..., D),))

In hard commitment, forall i € [£], D; = A;R; In soft commitment, foralli € [¢],D; = G — A;R;’

In BASIStruct assumption, A4, ..., Ay are structured by A; = W;A, where W; is a
pubilc random invertible matrix for all i € [£] and A € Z{*™™ is sampled randomly.

So, (D4, ..., D) can be structured by D; = W; D for all i € [£], where
D =ARorD =G — AR,
}mxml.

where R is randomly sampled over {0, 1

Therefore, the commitment can be compressed to (c, D).

Our Approach: Instantiation on SIS

Mercurial Vector commitment (¢, D = (D4, ..., Dy))

In hard commitment, forall i € [£],D; = A;R; In soft commitment, for alli € [¢],D; = G — A;R;’
Unlike BASIS¢truct assumption, A4, ..., Ay are randomly sampled independently, so

D4, ..., D, are independent as well.

We solve the problem using a standard vector commitment: we commit

(D4, ..., Dp) to o, and then publish (c, o) instead of (¢, D = (D4, ..., D,)).

Although this method will cause the same size of the auxiliary information as

the generic framework, we want to emphasize this it can support update due to
its non-black-box construction

This Work

Non-black-box mercurial vector commitment based on BASIS framework This talk

* Mercurial vector commitments based on BASISiuct With smaller auxiliary information

support both update and aggregate [see paper for details]
 Mercurial vector commitment based on SIS support update
* Redefine the property of update in mercurial vector commitment
* |Introduce new properties: stateless/differential update, updatable mercurial hiding
e Application on Zero-Knowledge Set (ZKS) and Zero-Knowledge Elementary Database(ZK-EDB)

e Lattice-based updatable £-ary ZKS (ZK-EDB) with batch verification

PK&&202

Sydney

Thank you !

