
Updatable, Aggregatable, Succinct Mercurial
Vector Commitment from Lattice

Hongxiao Wang, Siu-Ming Yiu, Yanmin Zhao, Zoe L. Jiang

April 2024

Vector Commitment

𝑪
𝑥!Open + Verify

𝑥

𝜋!

𝑪
𝒙

Commit

“opening”

“commitment”

Wee, Hoeteck, and David J. Wu. “Lattice-based functional commitments: Fast verification and cryptanalysis.” ASIACRYPT 2023. PowerPoint slides: https://www.cs.utexas.edu/~dwu4/lattice-fc-fast.html

https://www.cs.utexas.edu/~dwu4/lattice-fc-fast.html

Mercurial Vector Commitment
“hard commitment”

?
HCom

𝒙

SCom

𝑪

“soft commitment”

𝑪′

?

!

“opening”

!

!′

!
𝜋!/𝜏!Hopen/Sopen + Hverify/Sverify

!!

Sopen + Sverify 𝜏! !

Mercurial Vector Commitment

“hard commitment”HCom𝒙
𝑪 !

Takes a common reference string and commits to a vector 𝒙
Outputs a hard commitment 𝐶 and auxiliary information 𝑎𝑢𝑥

HCom crs, 𝒙 → 𝐶, 𝑎𝑢𝑥

Mercurial Vector Commitment

HCom crs, 𝑥 → 𝐶, 𝑎𝑢𝑥

“opening”

! !
Hopen/Sopen + Hverify/Sverify

!!

HOpen 𝑎𝑢𝑥, 𝑖 → 𝜋!
Takes the auxiliary information and an index 𝑖 and outputs a hard
opening 𝜋!

HVerify pp, 𝐶, 𝑖, 𝑥! , 𝜋! → 0/1
Checks whether 𝜋! is valid opening of 𝐶 to value 𝑥! at index 𝑖

𝜋!/𝜏!

Mercurial Vector Commitment

HCom crs, 𝑥 → 𝐶, 𝑎𝑢𝑥

“opening”

! !
Hopen/Sopen + Hverify/Sverify

!!

SOpen 𝑎𝑢𝑥,ℍ, 𝑥! , 𝑖 → 𝜏!
Takes the auxiliary information, a flag ℍ, the value 𝑥! at an index 𝑖
and outputs a soft opening 𝜏!

SVerify crs, 𝐶, 𝑖, 𝑥! , 𝜏! → 0/1
Checks whether 𝜏! is valid opening of 𝐶 to value 𝑥! at index 𝑖

𝜋!/𝜏!

Mercurial Vector Commitment

HCom crs, 𝑥 → 𝐶, 𝑎𝑢𝑥

“opening”

! !
Hopen/Sopen + Hverify/Sverify

!!

SOpen 𝑎𝑢𝑥,ℍ, 𝑥! , 𝑖 → 𝜏!

SVerify crs, 𝐶, 𝑖, 𝑥! , 𝜏! → 0/1

HOpen 𝑎𝑢𝑥, 𝑖 → 𝜋!

HVerify pp, 𝐶, 𝑖, 𝑥! , 𝜋! → 0/1

For all known constructions, soft
opening 𝜏! is a proper subset of hard
opening 𝜋!	to the same message, so
as SVerify and HVerify.
Such MVC are called proper MVC.

𝜋!/𝜏!

𝜏! ⊂ 𝜋!

Mercurial Vector Commitment

SCom crs → 𝐶, 𝑎𝑢𝑥

SCom
“soft commitment”

𝑪′

Takes a common reference string
Outputs soft commitment 𝐶 and auxiliary information 𝑎𝑢𝑥

Mercurial Vector Commitment

SCom crs → 𝐶, 𝑎𝑢𝑥
SOpen 𝑎𝑢𝑥, 𝕊, 𝑥, 𝑖 → 𝜏!

Takes the auxiliary information, a flag 𝕊, a value 𝑥, and an index 𝑖
and outputs a soft opening 𝜏!

SVerify crs, 𝐶, 𝑖, 𝑥 , 𝜏! → 0/1
Checks whether 𝜏! is valid opening of 𝐶 to value 𝑥 at index 𝑖

!′
Sopen + Sverify 𝜏! !

Mercurial Vector Commitment

“soft opening”

!

!′

!
𝜏!Sopen

!!

Sopen 𝜏! !

Mercurial Hiding: efficient adversary cannot distinguish between
hard commitment 𝑪 and soft commitment 𝑪′ with their soft
openings

“hard commitment”

“soft commitment” “soft opening”

Mercurial Vector Commitment

FCom
“fake commitment”

𝑪

“equivocation”

! 𝜋!EHopen + Hverify
!!

ESopen + Sverify 𝜏! !!

Simulating algorithms

Mercurial Vector Commitment

FCom crs → 𝐶, 𝑎𝑢𝑥
EHOpen 𝑎𝑢𝑥, 𝑡𝑘, 𝑥, 𝑖 → 𝜋

Takes the auxiliary information, the trapdoor key 𝑡𝑘, a value 𝑥, and
an index 𝑖 and outputs a hard equivocation 𝜋

ESOpen 𝑎𝑢𝑥, 𝑡𝑘, 𝑥, 𝑖 → 𝜏
Takes the auxiliary information, the trapdoor key 𝑡𝑘, a value 𝑥, and
an index 𝑖 and outputs a soft equivocation 𝜏

“equivocation”

EHopen/ESopen + Hverify/Sverify
!! 𝜋!/𝜏!

Mercurial Vector Commitment
Equivocation game for proper MVC “hard opening”

! !
𝜋!Hopen

!!

!′
Sopen 𝜏! !

ESopen 𝜏! !!

“hard equivocation”

! 𝜋!EHopen
!!

IND

IND

“hard commitment”

“fake commitment”

“soft commitment”

“fake commitment”

“soft opening”

“soft equivocation”

Mercurial Vector Commitment

“opening”

! !
Hopen/Sopen + Hverify/Sverify

!!

Mercurial Binding: efficient adversary cannot open a hard
commitment 𝐶 to two different values at the same index 𝑖 successfully

𝜏!′

𝑖, 𝑥!

𝑖, 𝑥!′

HVerify crs, 𝐶, 𝑖, 𝑥! , 𝜋! = 1

SVerify crs, 𝐶, 𝑖, 𝑥! , 𝜏! = 1

𝜋!
!

𝜋!/𝜏!

Mercurial Vector Commitment

“opening”

! !
Hopen/Sopen + Hverify/Sverify

!!

Succinctness: all commitments and openings should be short

• Short commitment: 𝐶 = poly 𝜆, log	ℓ

• Short opening: 𝜋! = poly 𝜆, log	ℓ

𝜋!/𝜏!

Mercurial Vector Commitment

Scheme AS UD AG |𝐜𝐫𝐬| |𝑪| |𝒂𝒖𝒙| |𝝅|
[8] RSA ✓ ✗ Θ(𝜆ℓ) Θ(𝜆) Θ(𝜆ℓ) Θ(𝜆)

[17] 𝑙-DHE ✗ ✓ Θ(𝜆ℓ) Θ(𝜆) Θ(𝜆ℓ) Θ(𝜆)
[18]+[28]* SIS ✗ ✗ ℓ!poly(𝜆, log	ℓ) Θ(𝜆! ⋅ ℋ) Θ(𝜆!ℓ ⋅ ℋ) Θ(𝜆! ⋅ ℋ)
This work SIS ✓ ✗ ℓ!poly(𝜆, log	ℓ) Θ(𝜆! ⋅ ℋ) Θ(𝜆!ℓ ⋅ ℋ) Θ(𝜆! ⋅ ℋ)
This work BASIS† ✓ ✓ ℓ!poly(𝜆, log	ℓ) Θ(𝜆! ⋅ ℋ) Θ((𝜆ℓ + 𝜆!) ⋅ ℋ) Θ(𝜆! ⋅ ℋ)

• ℓ is the input length
• ℋ = log!𝜆 + log!ℓ
• UD: scheme supports update both hard and soft commitment
• FV: scheme supports aggregate both hard and soft opening

*A lattice-based MVC can be trivially built by lattice-based components (e.g. [18] and [28]) in the generic framework [8].

†A new falsifiable family of basis-augmented SIS assumption (BASIS) proposed by Wee and Wu (EUROCRYPT ’23)

Mercurial Vector Commitment

Scheme AS UD AG |𝐜𝐫𝐬| |𝑪| |𝒂𝒖𝒙| |𝝅|
[8] RSA ✓ ✗ Θ(𝜆ℓ) Θ(𝜆) Θ(𝜆ℓ) Θ(𝜆)

[17] 𝑙-DHE ✗ ✓ Θ(𝜆ℓ) Θ(𝜆) Θ(𝜆ℓ) Θ(𝜆)
[18]+[28] SIS ✗ ✗ ℓ!poly(𝜆, log	ℓ) Θ(𝜆! ⋅ ℋ) Θ(𝜆!ℓ ⋅ ℋ) Θ(𝜆! ⋅ ℋ)
This work SIS ✓ ✗ ℓ!poly(𝜆, log	ℓ) Θ(𝜆! ⋅ ℋ) Θ(𝜆!ℓ ⋅ ℋ) Θ(𝜆! ⋅ ℋ)
This work BASIS ✓ ✓ ℓ!poly(𝜆, log	ℓ) Θ(𝜆! ⋅ ℋ) Θ((𝜆ℓ + 𝜆!) ⋅ ℋ) Θ(𝜆! ⋅ ℋ)

The generic framework [8] of MVC including a standard MC and a standard VC
• First, generate ℓ MC 𝐶" to each entry 𝑥" with 𝑎𝑢𝑥"
• Second, generate a VC 𝜎 to the vector (𝐶#, … , 𝐶ℓ) with 𝑎𝑢𝑥%
• Third, publish 𝜎 as the MVC and store 𝒂𝒖𝒙 = (𝒂𝒖𝒙𝟏, … , 𝒂𝒖𝒙ℓ, 𝒂𝒖𝒙_𝝈)
• To generate an opening, it first opens VC 𝜎 at index 𝑖, then opens MC 𝐶"
• To verify, it first verifies VC and then MC
Due to the generic framework, it cannot support update and aggregate

This Work

Non-black-box mercurial vector commitment based on BASIS framework

• Mercurial vector commitments based on BASIS;<=>?< with smaller auxiliary information

support both update and aggregate

• Mercurial vector commitment based on SIS support update

• Redefine the property of update in mercurial vector commitment

• Introduce new properties: stateless/differential update, updatable mercurial hiding

• Application on Zero-Knowledge Set (ZKS) and Zero-Knowledge Elementary Database(ZK-EDB)

• Lattice-based updatable ℓ-ary ZKS (ZK-EDB) with batch verification

This talk

Starting Point: the 𝐁𝐀𝐒𝐈𝐒 Vector Commitment

Common reference string (CRS)

𝑨@ ∈ ℤAB×D

𝑨ℓ ∈ ℤAB×D
⋮

𝑩ℓ

𝑮

⋮
𝑮

gadget matrix

trapdoor for matrix 𝑩ℓ
 𝑻E = 𝑩ℓF@ 𝑮ℓ

𝑻 𝑻@

⋮ 𝑻ℓ 𝑻𝑮

Starting Point: the 𝐁𝐀𝐒𝐈𝐒 Vector Commitment

Commitment relation (for all 𝑖 ∈ ℓ)

𝒄 𝒆:
𝑥" 𝑨𝒊 𝒗!

commitment Basis vector opening
(vector with short entries)

Trapdoor in CRS allows for joint sampling of 𝒄, 𝒗#, … , 𝒗ℓ ' by SampPre(𝑩ℓ, 𝑻', −𝒙⨂𝒆#, 𝑠#)

Commitment to ℓ-dimensional vector 𝒙 ∈ 	ℤ(ℓ

𝒆" = 1,0, … , 0 #	

Private opening: the commitment 𝒄 is statistically close to uniform over ℤ𝒒𝒏, for all 𝑖 ∈ ℓ ,
the opening 𝒗𝒊 is statistically close to 𝑨𝒊,𝟏(𝒄 − 𝒙𝒊𝒆𝟏)

Our Approach: Extension to 𝐁𝐀𝐒𝐈𝐒 Framework

Private opening: the commitment 𝒄 is statistically close to uniform over ℤ𝒒𝒏, for all 𝑖 ∈ ℓ ,
the opening 𝒗𝒊 is statistically close to 𝑨𝒊,𝟏(𝒄 − 𝒙𝒊𝒆𝟏)

Trapdoor in CRS allow for joint sampling of 𝒄, 𝒗#, … , 𝒗ℓ ' by SampPre(𝑩ℓ, 𝑻', −𝒙⨂𝒆#, 𝑠#)

Commitment to ℓ-dimensional vectors 𝒙 ∈ 	ℤ(ℓ

Observation 1:
The private opening implies simulating algorithms that can generate a “fake”
commitment 𝒄′ without any message and its equivocation opening 𝒗!′ to 𝑥! with
the trapdoor of 𝑨𝒊. The distribution of them is statistically close to the real one.

Our Approach: Extension to 𝐁𝐀𝐒𝐈𝐒 Framework

Observation 2:
If we extend 𝑩ℓ to 𝑩ℓ′ with any
𝐷$, … , 𝐷ℓ , the trapdoor 𝑇′ of 𝐵ℓ′

can be naturally extended and the
properties of corretness, binding,
and private opening still hold under
the BASIS assumption

𝑨@	|	𝑫@

𝑨ℓ	|	𝑫ℓ
⋮𝑩ℓ′

𝑮

⋮
𝑮

𝑻′ 𝑻@	|	𝟎

⋮ 𝑻ℓ	|	𝟎 𝑻𝑮

𝑩ℓM 𝑻M E = 𝑮ℓ, 𝑻 = ‖𝑻M‖

Our Approach: Mercurial Vector Commitment

Mercurial Vector commitment (𝒄, 𝑫 = (𝑫@, … , 𝑫ℓ))

In hard commitment, for all 𝑖 ∈ [ℓ], 𝑫" = 𝑨"𝑹", the opening 𝒗" can be joint sampled by
SampPre(𝑩ℓ- , 𝑻- ', −𝒙⨂𝒆#, 𝑠)

In soft commitment, for all 𝑖 ∈ [ℓ], 𝑫" = 𝑮 − 𝑨"𝑹"′	, the opening 𝒗" can be sampled by
SampPre([𝑨"|𝑫"], 𝑹"′, 𝒄 − 𝑥"𝒆#, 𝑠)

• Since 𝑹", 𝑹"- are randomly sampled over 0, 1 .×.-, 𝑫" is indistinguished in hard commitment and soft

commitment

• The (soft) opening 𝒗" from both hard and soft commitment is statistically close to 𝑨" 𝑫" ,#(𝒄 − 𝑥"𝒆#)

• 𝑹" as an additional part in hard opening to check 𝑫" = 𝑨"𝑹" in hard commitment

Commitment relation, for all 𝑖 ∈ [ℓ], 𝒄 = 𝑨! 𝑫! 𝒗! + 𝑥!𝒆@

Our Approach: Mercurial Vector Commitment

Mercurial Vector commitment (𝒄, 𝑫 = (𝑫@, … , 𝑫ℓ))

In hard commitment, for all 𝑖 ∈ [ℓ], 𝑫" = 𝑨"𝑹", the opening 𝒗" can be joint sampled by
SampPre(𝑩ℓ- , 𝑻- ', −𝒙⨂𝒆#, 𝑠)

In soft commitment, for all 𝑖 ∈ [ℓ], 𝑫" = 𝑮 − 𝑨"𝑹"′	, the opening 𝒗" can be sampled by
SampPre([𝑨"|𝑫"], 𝑹"′, 𝒄 − 𝑥"𝒆#, 𝑠)

• Since 𝑹", 𝑹"- are randomly sampled over 0, 1 .×.-, 𝑫" is indistinguished in hard commitment and soft

commitment

• The (soft) opening 𝒗" from both hard and soft commitment is statistically close to 𝑨" 𝑫" ,#(𝒄 − 𝑥"𝒆#)

• 𝑹" as an additional part in hard opening to check 𝑫" = 𝑨"𝑹" in hard commitment

Commitment relation, for all 𝑖 ∈ [ℓ], 𝒄 = 𝑨! 𝑫! 𝒗! + 𝑥!𝒆@

𝐷 = Θ(ℓ)

Our Approach: Instantiation on BASIS!"#$%"

Mercurial Vector commitment (𝒄, 𝑫 = (𝑫@, … , 𝑫ℓ))

In hard commitment, for all 𝑖 ∈ [ℓ], 𝑫" = 𝑨"𝑹" In soft commitment, for all 𝑖 ∈ [ℓ], 𝑫" = 𝑮 − 𝑨"𝑹"′	

In BASIS;<=>?< assumption, 𝑨@, … , 𝑨ℓ are structured by 𝑨! = 𝑾!𝑨, where 𝑾! is a

pubilc random invertible matrix for all 𝑖 ∈ [ℓ] and 𝑨 ∈ ℤAB×D is sampled randomly.

So, (𝐷@, … , 𝐷ℓ) can be structured by 𝑫! = 𝑾!	P𝑫 for all 𝑖 ∈ [ℓ], where

P𝑫 = 𝑨𝑹 or P𝑫 = 𝑮 − 𝑨𝑹,

where 𝑹 is randomly sampled over 0, 1 D×DM.

Therefore, the commitment can be compressed to (𝒄, P𝑫).

Our Approach: Instantiation on SIS

Mercurial Vector commitment (𝒄, 𝑫 = (𝑫@, … , 𝑫ℓ))

In hard commitment, for all 𝑖 ∈ [ℓ], 𝑫" = 𝑨"𝑹" In soft commitment, for all 𝑖 ∈ [ℓ], 𝑫" = 𝑮 − 𝑨"𝑹"′	

Unlike BASIS;<=>?< assumption, 𝑨@, … , 𝑨ℓ are randomly sampled independently, so

𝑫@, … , 𝑫ℓ are independent as well.

We solve the problem using a standard vector commitment: we commit

(𝑫@, … , 𝑫ℓ) to 𝜎, and then publish 𝒄, 𝜎 instead of (𝒄, 𝑫 = (𝑫@, … , 𝑫ℓ)).

Although this method will cause the same size of the auxiliary information as
the generic framework, we want to emphasize this it can support update due to
its non-black-box construction

This Work

Non-black-box mercurial vector commitment based on BASIS framework

• Mercurial vector commitments based on BASIS;<=>?< with smaller auxiliary information

support both update and aggregate

• Mercurial vector commitment based on SIS support update

• Redefine the property of update in mercurial vector commitment

• Introduce new properties: stateless/differential update, updatable mercurial hiding

• Application on Zero-Knowledge Set (ZKS) and Zero-Knowledge Elementary Database(ZK-EDB)

• Lattice-based updatable ℓ-ary ZKS (ZK-EDB) with batch verification

This talk

[see paper for details]

Thank you !

