

Updatable, Aggregatable, Succinct Mercurial Vector Commitment from Lattice

Hongxiao Wang, Siu-Ming Yiu, Yanmin Zhao, Zoe L. Jiang

April 2024

Vector Commitment

Wee, Hoeteck, and David J. Wu. "Lattice-based functional commitments: Fast verification and cryptanalysis." ASIACRYPT 2023. PowerPoint slides: https://www.cs.utexas.edu/~dwu4/lattice-fc-fast.html

$HCom(crs, x) \rightarrow (C, aux)$

Takes a common reference string and commits to a vector **x** Outputs a hard commitment *C* and auxiliary information *aux*

HCom(crs, x) → (C, aux)HOpen(aux, i) → π_i

Takes the auxiliary information and an index i and outputs a hard opening π_i

HVerify(pp,
$$C$$
, $(i, x_i), \pi_i$) $\rightarrow 0/1$

Checks whether π_i is valid opening of C to value x_i at index i

HCom(crs, x) → (C, aux) SOpen(aux, \mathbb{H} , x_i , i) → τ_i

Takes the auxiliary information, a flag \mathbb{H} , the value x_i at an index iand outputs a soft opening τ_i

SVerify(crs, C, $(i, x_i), \tau_i$) $\rightarrow 0/1$

Checks whether τ_i is valid opening of C to value x_i at index i

Hopen/Sopen + Hverify/Sverify

HCom(crs, x) → (C, aux) HOpen(aux, i) → $π_i$ SOpen(aux, H, x_i , i) → $τ_i$ HVerify(pp, C, (i, x_i), $π_i$) → 0/1 SVerify(crs, C, (i, x_i), $τ_i$) → 0/1

 $\tau_i \subset \pi_i$

For all known constructions, soft opening τ_i is a proper subset of hard opening π_i to the same message, so as SVerify and HVerify. Such MVC are called proper MVC.

$SCom(crs) \rightarrow (C, aux)$

Takes a common reference string Outputs soft commitment *C* and auxiliary information *aux*

SCom(crs) \rightarrow (*C*, *aux*) SOpen(*aux*, S, x, i) $\rightarrow \tau_i$

> Takes the auxiliary information, a flag S, a value x, and an index iand outputs a soft opening τ_i

SVerify(crs, C, (i, x), τ_i) $\rightarrow 0/1$

Checks whether τ_i is valid opening of C to value x at index i

Mercurial Hiding: efficient adversary cannot distinguish between hard commitment C and soft commitment C' with their soft openings

Simulating algorithms

FCom(crs) \rightarrow (*C*, *aux*) EHOpen(*aux*, *tk*, *x*, *i*) \rightarrow π

Takes the auxiliary information, the trapdoor key tk, a value x, and an index i and outputs a hard equivocation π

 $\mathrm{ESOpen}(aux,tk,x,i) \to \tau$

Takes the auxiliary information, the trapdoor key tk, a value x, and an index i and outputs a soft equivocation τ

Mercurial Binding: efficient adversary cannot open a **hard commitment** *C* to two different values at the **same index** *i* **successfully**

$$\pi_{i} \quad (i, x_{i}) \quad \text{HVerify}(\text{crs}, C, i, x_{i}, \pi_{i}) = 1$$

$$\tau_{i} \quad (i, x_{i}') \quad \text{SVerify}(\text{crs}, C, i, x_{i}, \tau_{i}) = 1$$

Succinctness: all commitments and openings should be short

- Short commitment: $|C| = poly(\lambda, \log \ell)$
- Short opening: $|\pi_i| = \text{poly}(\lambda, \log \ell)$

Scheme	AS	UD	AG	crs	C	aux	$ \pi $
[8]	RSA	\checkmark	Х	$\Theta(\lambda\ell)$	$\Theta(\lambda)$	$\Theta(\lambda\ell)$	$\Theta(\lambda)$
[17]	<i>l</i> -DHE	×	\checkmark	$\Theta(\lambda\ell)$	$\Theta(\lambda)$	$\Theta(\lambda\ell)$	$\Theta(\lambda)$
[18]+[28]*	SIS	X	Х	$\ell^2 \operatorname{poly}(\lambda, \log \ell)$	$\Theta(\lambda^2\cdot \mathcal{H})$	$\Theta(\lambda^2\ell\cdot\mathcal{H})$	$\Theta(\lambda^2\cdot \mathcal{H})$
This work	SIS	\checkmark	X	$\ell^2 \operatorname{poly}(\lambda, \log \ell)$	$\Theta(\lambda^2\cdot \mathcal{H})$	$\Theta(\lambda^2\ell\cdot\mathcal{H})$	$\Theta(\lambda^2\cdot \mathcal{H})$
This work	BASIS ⁺	\checkmark	\checkmark	$\ell^2 \operatorname{poly}(\lambda, \log \ell)$	$\Theta(\lambda^2\cdot \mathcal{H})$	$\Theta((\lambda\ell+\lambda^2)\cdot\mathcal{H})$	$\Theta(\lambda^2\cdot \mathcal{H})$

- ℓ is the input length
- $\mathcal{H} = \log^2 \lambda + \log^2 \ell$
- **UD:** scheme supports update both hard and soft commitment
- FV: scheme supports aggregate both hard and soft opening

*A lattice-based MVC can be trivially built by lattice-based components (e.g. [18] and [28]) in the generic framework [8].

⁺A new falsifiable family of basis-augmented SIS assumption (BASIS) proposed by Wee and Wu (EUROCRYPT '23)

Scheme	AS	UD	AG	crs	<i>C</i>	aux	$ \pi $
[8]	RSA	\checkmark	X	$\Theta(\lambda\ell)$	$\Theta(\lambda)$	$\Theta(\lambda\ell)$	$\Theta(\lambda)$
[17]	<i>l</i> -DHE	Х	\checkmark	$\Theta(\lambda\ell)$	$\Theta(\lambda)$	$\Theta(\lambda\ell)$	$\Theta(\lambda)$
[18]+[28]	SIS	X	X	$\ell^2 \operatorname{poly}(\lambda, \log \ell)$	$\Theta(\lambda^2\cdot \mathcal{H})$	$\Theta(\lambda^2\ell\cdot\mathcal{H})$	$\Theta(\lambda^2\cdot \mathcal{H})$
This work	SIS	\checkmark	X	$\ell^2 \operatorname{poly}(\lambda, \log \ell)$	$\Theta(\lambda^2\cdot \mathcal{H})$	$\Theta(\lambda^2\ell\cdot\mathcal{H})$	$\Theta(\lambda^2\cdot \mathcal{H})$
This work	BASIS	\checkmark	\checkmark	$\ell^2 \operatorname{poly}(\lambda, \log \ell)$	$\Theta(\lambda^2\cdot \mathcal{H})$	$\Theta((\lambda\ell+\lambda^2)\cdot\mathcal{H})$	$\Theta(\lambda^2\cdot \mathcal{H})$

The generic framework [8] of MVC including a standard MC and a standard VC

- First, generate ℓ MC C_i to each entry x_i with aux_i
- Second, generate a VC σ to the vector (C_1, \dots, C_ℓ) with aux_σ
- Third, publish σ as the MVC and store $aux = (aux_1, ..., aux_{\ell}, aux_{\ell}, \sigma)$
- To generate an opening, it first opens VC σ at index *i*, then opens MC C_i
- To verify, it first verifies VC and then MC

Due to the generic framework, it cannot support update and aggregate

This Work

Non-black-box mercurial vector commitment based on BASIS framework

- This talk
- Mercurial vector commitments based on BASIS_{struct} with smaller auxiliary information

support both update and aggregate

- Mercurial vector commitment based on SIS support update
- Redefine the property of update in mercurial vector commitment
 - Introduce new properties: stateless/differential update, updatable mercurial hiding
- Application on Zero-Knowledge Set (ZKS) and Zero-Knowledge Elementary Database(ZK-EDB)
 - Lattice-based updatable *l*-ary ZKS (ZK-EDB) with batch verification

Starting Point: the BASIS Vector Commitment

Common reference string (CRS)

gadget matrix

Starting Point: the BASIS Vector Commitment

Commitment relation (for all $i \in [\ell]$) $c = \begin{bmatrix} x_i \\ e_1 \end{bmatrix} \bigoplus \begin{bmatrix} A_i \\ v_i \end{bmatrix}$ Commitment $Basis vector \\ e_1 = (1,0, \dots, 0)^T$ (vector with short entries)

Commitment to ℓ -dimensional vector $x \in \mathbb{Z}_q^{\ell}$

Trapdoor in CRS allows for joint sampling of $(c, v_1, ..., v_\ell)^\top$ by SampPre $(B_\ell, T^\top, -x \otimes e_1, s_1)$

Private opening: the commitment c is statistically close to uniform over \mathbb{Z}_q^n , for all $i \in [\ell]$, the opening v_i is statistically close to $A_i^{-1}(c - x_i e_1)$

Our Approach: Extension to BASIS Framework

Commitment to ℓ -dimensional vectors $x \in \mathbb{Z}_q^{\ell}$

Trapdoor in CRS allow for joint sampling of $(c, v_1, ..., v_\ell)^\top$ by SampPre $(B_\ell, T^\top, -x \otimes e_1, s_1)$

Private opening: the commitment c is statistically close to uniform over \mathbb{Z}_q^n , for all $i \in [\ell]$, the opening v_i is statistically close to $A_i^{-1}(c - x_i e_1)$

Observation 1: The private opening implies **simulating algorithms** that can generate a "fake" commitment c' without any message and its equivocation opening v_i' to x_i with the trapdoor of A_i . The distribution of them is statistically close to the real one.

Our Approach: Extension to BASIS Framework

Observation 2:

If we extend B_{ℓ} to B_{ℓ}' with any (D_1, \ldots, D_{ℓ}) , the trapdoor T' of B_{ℓ}' can be naturally extended and the properties of corretness, binding, and private opening still hold under the BASIS assumption

$$T' = \begin{bmatrix} T_1 \mid 0 & \cdots & T_\ell \mid 0 & T_G \end{bmatrix}$$
$$\begin{bmatrix} B'_\ell (T')^\top = G_\ell, \|T\| = \|T'\| \end{bmatrix}$$

Our Approach: Mercurial Vector Commitment

Mercurial Vector commitment $(c, D = (D_1, ..., D_\ell))$

Commitment relation, for all $i \in [\ell]$, $c = [A_i | D_i] v_i + x_i e_1$

In hard commitment, for all $i \in [\ell]$, $D_i = A_i R_i$, the opening v_i can be joint sampled by SampPre $(B'_{\ell}, (T')^{\top}, -x \otimes e_1, s)$

In soft commitment, for all $i \in [\ell]$, $D_i = G - A_i R_i'$, the opening v_i can be sampled by SampPre($[A_i | D_i], R_i', c - x_i e_1, s$)

- Since R_i , R'_i are randomly sampled over $\{0, 1\}^{m \times m'}$, D_i is indistinguished in hard commitment and soft commitment
- The (soft) opening v_i from both hard and soft commitment is statistically close to $[A_i|D_i]^{-1}(c x_ie_1)$
- R_i as an additional part in **hard opening** to check $D_i = A_i R_i$ in hard commitment

Our Approach: Mercurial Vector Commitment

Mercurial Vector commitment $(c, D = (D_1, ..., D_\ell))$ $|D| = \Theta(\ell)$

Commitment relation, for all $i \in [\ell]$, $c = [A_i | D_i] v_i + x_i e_1$

In hard commitment, for all $i \in [\ell]$, $D_i = A_i R_i$, the opening v_i can be joint sampled by SampPre $(B'_{\ell}, (T')^{\top}, -x \otimes e_1, s)$

In soft commitment, for all $i \in [\ell]$, $D_i = G - A_i R_i'$, the opening v_i can be sampled by SampPre($[A_i | D_i], R_i', c - x_i e_1, s$)

- Since R_i , R'_i are randomly sampled over $\{0, 1\}^{m \times m'}$, D_i is indistinguished in hard commitment and soft commitment
- The (soft) opening v_i from both hard and soft commitment is statistically close to $[A_i|D_i]^{-1}(c x_ie_1)$
- R_i as an additional part in **hard opening** to check $D_i = A_i R_i$ in hard commitment

Our Approach: Instantiation on BASIS_{struct}

Mercurial Vector commitment $(\mathbf{c}, \mathbf{D} = (\mathbf{D}_1, \dots, \mathbf{D}_\ell))$

In hard commitment, for all $i \in [\ell]$, $D_i = A_i R_i$ In s

In soft commitment, for all $i \in [\ell]$, $D_i = G - A_i R_i'$

In BASIS_{struct} assumption, $A_1, ..., A_\ell$ are structured by $A_i = W_i A$, where W_i is a **pubilc** random invertible matrix for all $i \in [\ell]$ and $A \in \mathbb{Z}_q^{n \times m}$ is sampled randomly. So, $(D_1, ..., D_\ell)$ can be structured by $D_i = W_i \hat{D}$ for all $i \in [\ell]$, where $\hat{D} = AR$ or $\hat{D} = G - AR$,

where **R** is randomly sampled over $\{0, 1\}^{m \times m'}$.

Therefore, the commitment can be compressed to (c, \hat{D}) .

Our Approach: Instantiation on SIS

Mercurial Vector commitment $(c, D = (D_1, ..., D_\ell))$

In hard commitment, for all $i \in [\ell]$, $D_i = A_i R_i$ In soft of

In soft commitment, for all $i \in [\ell]$, $D_i = G - A_i R_i'$

Unlike BASIS_{struct} assumption, $A_1, ..., A_\ell$ are randomly sampled independently, so

 $\boldsymbol{D}_1, \ldots, \boldsymbol{D}_\ell$ are **independent** as well.

We solve the problem using a standard vector commitment: we commit

 $(\boldsymbol{D}_1, \dots, \boldsymbol{D}_\ell)$ to σ , and then publish (\boldsymbol{c}, σ) instead of $(\boldsymbol{c}, \boldsymbol{D} = (\boldsymbol{D}_1, \dots, \boldsymbol{D}_\ell))$.

Although this method will cause the **same size of the auxiliary information** as the generic framework, we want to emphasize this it can **support update** due to its *non-black-box* construction

This Work

Non-black-box mercurial vector commitment based on BASIS framework

Mercurial vector commitments based on BASIS_{struct} with smaller auxiliary information

support both update and aggregate

[see paper for details]

This talk

- Mercurial vector commitment based on SIS support update
- Redefine the property of update in mercurial vector commitment
 - Introduce new properties: stateless/differential update, updatable mercurial hiding
- Application on Zero-Knowledge Set (ZKS) and Zero-Knowledge Elementary Database(ZK-EDB)
 - Lattice-based updatable *ℓ*-ary ZKS (ZK-EDB) with batch verification

Sydney

Thank you !