
Breaking Parallel ROS: Implication for
Isogeny and Lattice-based Blind Signatures

Ia.cr/2023/1603; PKC2024
Shuichi Katsumata, Yi-Fu Lai, Michael Reichle

CASA / Ruhr-University Bochum
AIST, PQShield, ETH Zurich

2

• Blind Signatures

• The Concurrent Attack

• Open Problems

Content

Blind Signatures

3

Blind Signatures

3

Message: 𝑚 Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signatures

3

Message: 𝑚 Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

Blind Signatures

3

Message: 𝑚 Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

(𝑚, 𝑠𝑖𝑔𝑛𝑠𝑘(𝑚)) ⊥

Notion: Blindness

4

Notion: Blindness

4

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Notion: Blindness

4

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

Notion: Blindness

4

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

 𝑚0, 𝑚1

Notion: Blindness

4

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

 𝑚0, 𝑚1
𝑏 ←$ {0,1}

Notion: Blindness

4

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

 𝑚0, 𝑚1

𝑚𝑏, 𝑚1−𝑏

𝑏 ←$ {0,1}

Notion: Blindness

4

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

 𝑚0, 𝑚1

𝑚𝑏, 𝑚1−𝑏

𝑏 ←$ {0,1}

(𝑚0, 𝑠𝑖𝑔𝑛𝑠𝑘(𝑚0))
(𝑚1, 𝑠𝑖𝑔𝑛𝑠𝑘(𝑚1))

Notion: Blindness

4

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

 𝑚0, 𝑚1

𝑚𝑏, 𝑚1−𝑏

𝑏 ←$ {0,1}

(𝑚0, 𝑠𝑖𝑔𝑛𝑠𝑘(𝑚0))
(𝑚1, 𝑠𝑖𝑔𝑛𝑠𝑘(𝑚1))

𝑏′

Notion: -One-More Unforgeability (OMUF)ℓ

5

𝑚1, …, 𝑚ℓ

Notion: -One-More Unforgeability (OMUF)ℓ

5

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

𝑚1, …, 𝑚ℓ

Notion: -One-More Unforgeability (OMUF)ℓ

5

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

𝑚1, …, 𝑚ℓ

Notion: -One-More Unforgeability (OMUF)ℓ

5

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

⊥

𝑚1, …, 𝑚ℓ

Adaptively/
Concurrently

Notion: -One-More Unforgeability (OMUF)ℓ

5

Public Key:
Signing Key:

𝑣𝑘
𝑠𝑘

Blind Signature
Scheme

⊥

𝑚1, …, 𝑚ℓ

Adaptively/
Concurrently

(𝑚ℓ+1, 𝜎ℓ+1)

(𝑚1, 𝜎1)
(𝑚ℓ, 𝜎ℓ)

⋱

• Proposed by Chaum in 1982.

• Getting more attention these years because of its application (e-cash (initial
application), e-voting, anonymous credentials), adding

• anonymity for cryptocurrency transactions [ASIACCS:YL19]),

• Hiding metadata in secure messaging [CCS:KKP22]

• Privacy-preserving authentication tokens [Google22]

Blind Signature

6

Typically, there are two main approaches doing this.

1. Fischlin’s framework [Fis06]:

• This leads to a round-optimal (2-round) scheme but requires a proof system for a
complex relation. ([PinKat22, BLKS23]). (involving the encrypted commitment and the
signature verification.) This is naturally immune to the adaptive attacks.

2. From sigma-protocol-based signatures (-based Blind Signature):

• E.g. [PoiSte96, PoiSte00, AbeOka00]. This typically requires some special properties
of the underlying scheme, and results in 3-round blind signature.

Σ

How To?

7

• There are only 4 -based post-quantum blind signatures:

• Lattice:

• HKLN20 (Crypto’20): Hauck, Kiltz, Loss, Nguyen.

• BLAZE+ (FC/ACISP’20): Alkadri, Bansarkhani, Buchmann

• BlindOR (CANS’21): Alkadri, Harasser, Janson

• Isogeny:

• CSI-Otter (Crypto’23): Katsumata, Lai, LeGrow, Qin

• It worthwhile to remark that along with the development of the lattice-based ZKP,
[C:dK22,CCS:AKSY22,BLNS23] Fischlin’s method [C:Fis06] can give more
compact results (20~100KB).

Σ

Post-Quantum Blind Signature

8

• We break 3 -based post-quantum blind signatures CSI-Otter, Blaze+ and BlindOR.

• As an independent and theoretical interest, we also propose an abstract parallelROS
problem and establish the connection to the ROS problem.

Σ

Contributions

9

In the OMUF of CSI-Otter,

• The OMUF proof has loss in where is the number of hash

queries and is the number of concurrent signing sessions due to restriction

on the number of hash queries made in CSI-Otter.

(𝑄𝐻

ℓ + 1) 𝑄𝐻

ℓ

Why There can be an Attack?

10

In the OMUF of CSI-Otter,

• The OMUF proof has loss in where is the number of hash

queries and is the number of concurrent signing sessions due to restriction

on the number of hash queries made in CSI-Otter.

(𝑄𝐻

ℓ + 1) 𝑄𝐻

ℓ

• This only guarantees sequentially secure and concurrently secure.log(𝜆)

Why There can be an Attack?

10

In the OMUF of CSI-Otter,

• The OMUF proof has loss in where is the number of hash

queries and is the number of concurrent signing sessions due to restriction

on the number of hash queries made in CSI-Otter.

(𝑄𝐻

ℓ + 1) 𝑄𝐻

ℓ

• This only guarantees sequentially secure and concurrently secure.log(𝜆)

• The loss is common in the sigma-protocol-based blind signatures.

Why There can be an Attack?

10

In the OMUF of CSI-Otter,

• The OMUF proof has loss in where is the number of hash

queries and is the number of concurrent signing sessions due to restriction

on the number of hash queries made in CSI-Otter.

(𝑄𝐻

ℓ + 1) 𝑄𝐻

ℓ

• This only guarantees sequentially secure and concurrently secure.log(𝜆)

• The loss is common in the sigma-protocol-based blind signatures.

Why There can be an Attack?

10

In the OMUF of CSI-Otter,

• The OMUF proof has loss in where is the number of hash

queries and is the number of concurrent signing sessions due to restriction

on the number of hash queries made in CSI-Otter.

(𝑄𝐻

ℓ + 1) 𝑄𝐻

ℓ

• This only guarantees sequentially secure and concurrently secure.log(𝜆)

• The loss is common in the sigma-protocol-based blind signatures.

• What will happen if we sign concurrently and exceed the bound?

Why There can be an Attack?

10

Blind Schnorr and the ROS Attack

11

Blind Schnorr
OMUF with loss .

 secure up to
(Pointcheval, Stern)

𝑸ℓ
𝑯

ℓ 𝟑~𝟐𝟎 .

2000

ROS: Random inhomogeneities in an Overdetermined Solvable system of linear equations.

(Schnorr)
OMUF =ROS+Dlog
Over ROM+GGM

ROS Problem

Blind Schnorr and the ROS Attack

11

Blind Schnorr
OMUF with loss .

 secure up to
(Pointcheval, Stern)

𝑸ℓ
𝑯

ℓ 𝟑~𝟐𝟎 .

2000 2001

ROS: Random inhomogeneities in an Overdetermined Solvable system of linear equations.

(Schnorr)
OMUF =ROS+Dlog
Over ROM+GGM

ROS Problem

Blind Schnorr and the ROS Attack

11

Blind Schnorr
OMUF with loss .

 secure up to
(Pointcheval, Stern)

𝑸ℓ
𝑯

ℓ 𝟑~𝟐𝟎 .

2000 2001 2002

Wagner’s Atk.
Subexponential-time

attack on the ROS
problem

ROS: Random inhomogeneities in an Overdetermined Solvable system of linear equations.

(Schnorr)
OMUF =ROS+Dlog
Over ROM+GGM

ROS Problem

Blind Schnorr and the ROS Attack

11

Blind Schnorr
OMUF with loss .

 secure up to
(Pointcheval, Stern)

𝑸ℓ
𝑯

ℓ 𝟑~𝟐𝟎 .

2000 2001 2002

Wagner’s Atk.
Subexponential-time

attack on the ROS
problem

Is large a problem

for Blind Schnorr?

ℓ

ROS: Random inhomogeneities in an Overdetermined Solvable system of linear equations.

(Schnorr)
OMUF =ROS+Dlog
Over ROM+GGM

ROS Problem

Blind Schnorr and the ROS Attack

11

Blind Schnorr
OMUF with loss .

 secure up to
(Pointcheval, Stern)

𝑸ℓ
𝑯

ℓ 𝟑~𝟐𝟎 .

2000 2001 2002

Wagner’s Atk.
Subexponential-time

attack on the ROS
problem

≈ 2020

Polynomial-time
ROS Atk.

(EC:BLLOR21)
Breaking the ROS problem in

polynomial time.
(Benhamouda, Lepoint, Loss,

Orrù, Raykova)

Is large a problem

for Blind Schnorr?

ℓ

ROS: Random inhomogeneities in an Overdetermined Solvable system of linear equations.

Sigma-Protocol-Based Signature

12

(Commitment)

(Response)

(Challenge)

Signature
(c, 𝗋𝖾𝗌𝗉)

𝖼𝗈𝗆

c = H(𝖼𝗈𝗆, m)

𝗋𝖾𝗌𝗉

Verifier Prover/Signer

Unblinded Blind Signature

13

(Commitment)

(Response)

(Challenge)

Signature
(c, 𝗋𝖾𝗌𝗉)

𝖼𝗈𝗆

c = H(𝖼𝗈𝗆, m)

𝗋𝖾𝗌𝗉

User Signer

Unblinded Blind Signature with Parallel Repetition

14

(Commitment)

(Response)

(Challenge)

Signature
(c, 𝗋𝖾𝗌𝗉)

𝖼𝗈𝗆 = (𝖼𝗈𝗆1, ⋯, 𝖼𝗈𝗆λ)

c = H(𝖼𝗈𝗆, m) = (c1, ⋯, cλ)

𝗋𝖾𝗌𝗉 = (𝗋𝖾𝗌𝗉1, ⋯, 𝗋𝖾𝗌𝗉λ)

User Signer

Attack on CSI-Otter / BlindOR

15

-concurrent sessions.λ

Attack on CSI-Otter / BlindOR

15

𝖼𝗈𝗆1 = (𝖼𝗈𝗆11, 𝖼𝗈𝗆12⋯, 𝖼𝗈𝗆1λ)
𝖼𝗈𝗆2 = (𝖼𝗈𝗆21, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆2λ)

𝖼𝗈𝗆λ = (𝖼𝗈𝗆λ1, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆λλ)
⋮

-concurrent sessions.λ

Attack on CSI-Otter / BlindOR

15

H(𝖼𝗈𝗆11, 𝖼𝗈𝗆22, ⋯, 𝖼𝗈𝗆λλ, m)

(c′ 11, c′ 22, ⋯, c′ λλ) ←

𝖼𝗈𝗆1 = (𝖼𝗈𝗆11, 𝖼𝗈𝗆12⋯, 𝖼𝗈𝗆1λ)
𝖼𝗈𝗆2 = (𝖼𝗈𝗆21, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆2λ)

𝖼𝗈𝗆λ = (𝖼𝗈𝗆λ1, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆λλ)
⋮

-concurrent sessions.λ

Attack on CSI-Otter / BlindOR

15

H(𝖼𝗈𝗆11, 𝖼𝗈𝗆22, ⋯, 𝖼𝗈𝗆λλ, m)

(c′ 11, c′ 22, ⋯, c′ λλ) ←

𝖼𝗈𝗆1 = (𝖼𝗈𝗆11, 𝖼𝗈𝗆12⋯, 𝖼𝗈𝗆1λ)
𝖼𝗈𝗆2 = (𝖼𝗈𝗆21, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆2λ)

𝖼𝗈𝗆λ = (𝖼𝗈𝗆λ1, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆λλ)
⋮

Choose proper
Feasible if challenge
space is small.

𝑚𝑖

(c′ 11, c12, ⋯, c1λ) ← H(𝖼𝗈𝗆1, m1)
(c21, c′ 22, ⋯, c2λ) ← H(𝖼𝗈𝗆2, m2)

(cλ1, cλ2, ⋯, c′ λλ) ← H(𝖼𝗈𝗆λ, mλ)
⋮

-concurrent sessions.λ

Attack on CSI-Otter / BlindOR

15

H(𝖼𝗈𝗆11, 𝖼𝗈𝗆22, ⋯, 𝖼𝗈𝗆λλ, m)

(c′ 11, c′ 22, ⋯, c′ λλ) ←

𝖼𝗈𝗆1 = (𝖼𝗈𝗆11, 𝖼𝗈𝗆12⋯, 𝖼𝗈𝗆1λ)
𝖼𝗈𝗆2 = (𝖼𝗈𝗆21, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆2λ)

𝖼𝗈𝗆λ = (𝖼𝗈𝗆λ1, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆λλ)
⋮

Choose proper
Feasible if challenge
space is small.

𝑚𝑖

(c′ 11, c12, ⋯, c1λ) ← H(𝖼𝗈𝗆1, m1)
(c21, c′ 22, ⋯, c2λ) ← H(𝖼𝗈𝗆2, m2)

(cλ1, cλ2, ⋯, c′ λλ) ← H(𝖼𝗈𝗆λ, mλ)
⋮

(𝗋𝖾𝗌𝗉11, 𝗋𝖾𝗌𝗉12⋯, 𝗋𝖾𝗌𝗉1λ)
(𝗋𝖾𝗌𝗉21, 𝗋𝖾𝗌𝗉22⋯, 𝗋𝖾𝗌𝗉2λ)

(𝗋𝖾𝗌𝗉λ1, 𝗋𝖾𝗌𝗉λ2⋯, 𝗋𝖾𝗌𝗉λλ)
⋮

-concurrent sessions.λ

Optimizing …

16

𝖼𝗈𝗆1 = (𝖼𝗈𝗆11, 𝖼𝗈𝗆12⋯, 𝖼𝗈𝗆1λ)

𝖼𝗈𝗆λ/2 = (𝖼𝗈𝗆λ1, ⋯, 𝖼𝗈𝗆λ/2,λ−1, 𝖼𝗈𝗆λ/2,λ)

⋮

Choose proper 𝑚𝑖

(c′ 11, c12, ⋯, c1λ) ← H(𝖼𝗈𝗆1, m1)

(cλ1, ⋯, c′ λ/2,λ−1, c′ λ/2,λ) ← H(𝖼𝗈𝗆λ, mλ)

⋮

(𝗋𝖾𝗌𝗉11, 𝗋𝖾𝗌𝗉12⋯, 𝗋𝖾𝗌𝗉1λ)

(𝗋𝖾𝗌𝗉λ1, ⋯, 𝗋𝖾𝗌𝗉λ/2,λ−1, 𝗋𝖾𝗌𝗉λ/2,λ)
⋮

Optimizing …

16

𝖼𝗈𝗆1 = (𝖼𝗈𝗆11, 𝖼𝗈𝗆12⋯, 𝖼𝗈𝗆1λ)

𝖼𝗈𝗆λ/2 = (𝖼𝗈𝗆λ1, ⋯, 𝖼𝗈𝗆λ/2,λ−1, 𝖼𝗈𝗆λ/2,λ)

⋮

Choose proper 𝑚𝑖

(c′ 11, c12, ⋯, c1λ) ← H(𝖼𝗈𝗆1, m1)

(cλ1, ⋯, c′ λ/2,λ−1, c′ λ/2,λ) ← H(𝖼𝗈𝗆λ, mλ)

⋮

(𝗋𝖾𝗌𝗉11, 𝗋𝖾𝗌𝗉12⋯, 𝗋𝖾𝗌𝗉1λ)

(𝗋𝖾𝗌𝗉λ1, ⋯, 𝗋𝖾𝗌𝗉λ/2,λ−1, 𝗋𝖾𝗌𝗉λ/2,λ)
⋮

H(𝖼𝗈𝗆11, 𝖼𝗈𝗆12, ⋯, 𝖼𝗈𝗆λ/2,λ, m)

(c′ 11, c′ 12, ⋯, c′ λλ) ←

-concurrent sessions.λ /2

Look Deeper

17

𝖼𝗈𝗆1 = (𝖼𝗈𝗆11, 𝖼𝗈𝗆12⋯, 𝖼𝗈𝗆1λ)
𝖼𝗈𝗆2 = (𝖼𝗈𝗆21, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆2λ)

𝖼𝗈𝗆λ = (𝖼𝗈𝗆λ1, 𝖼𝗈𝗆22⋯, 𝖼𝗈𝗆λλ)
⋮

(c′ 11, c12, ⋯, c1λ) ← H(𝖼𝗈𝗆1, m1)
(c21, c′ 22, ⋯, c2λ) ← H(𝖼𝗈𝗆2, m2)

(cλ1, cλ2, ⋯, c′ λλ) ← H(𝖼𝗈𝗆λ, mλ)
⋮

(𝗋𝖾𝗌𝗉11, 𝗋𝖾𝗌𝗉12⋯, 𝗋𝖾𝗌𝗉1λ)
(𝗋𝖾𝗌𝗉21, 𝗋𝖾𝗌𝗉22⋯, 𝗋𝖾𝗌𝗉2λ)

(𝗋𝖾𝗌𝗉λ1, 𝗋𝖾𝗌𝗉λ2⋯, 𝗋𝖾𝗌𝗉λλ)
⋮

9 ĲumpIf
stack: [(callval == 0x0), 0xe]

const: []

10 IPush([0])

stack: []

const: [((callval == 0x0) == 0x0)]

14 ĲumpDest
stack: []

const: [(callval == 0x0)]

7 IPush([14])

stack: [(callval == 0x0)]

const: []

18 IPop

stack: [mload(Write256(Init("mem"), 0x40, 0x60), at:0x40)]

const: [(callval == 0x0)]

12 IDup(0)

stack: [0x0]

const: [((callval == 0x0) == 0x0)]

13 IInvalid

stack: [0x0, 0x0]

const: [((callval == 0x0) == 0x0)]

17 IMLoad

stack: [0x40]

const: [(callval == 0x0)]

15 IPush([64])

stack: []

const: [(callval == 0x0)]

9 ĲumpIf
stack: [(callval == 0x0), 0xe]

const: []

10 IPush([0])

stack: []

const: [((callval == 0x0) == 0x0)]

14 ĲumpDest
stack: []

const: [(callval == 0x0)]

7 IPush([14])

stack: [(callval == 0x0)]

const: []

18 IPop

stack: [mload(Write256(Init("mem"), 0x40, 0x60), at:0x40)]

const: [(callval == 0x0)]

12 IDup(0)

stack: [0x0]

const: [((callval == 0x0) == 0x0)]

13 IInvalid

stack: [0x0, 0x0]

const: [((callval == 0x0) == 0x0)]

17 IMLoad

stack: [0x40]

const: [(callval == 0x0)]

15 IPush([64])

stack: []

const: [(callval == 0x0)]

H(𝖼𝗈𝗆11, 𝖼𝗈𝗆22, ⋯, 𝖼𝗈𝗆λλ)

(c′ 11, c′ 22, ⋯, c′ λλ) ←

Spirit of Our Attack

18

9 ĲumpIf
stack: [(callval == 0x0), 0xe]

const: []

10 IPush([0])

stack: []

const: [((callval == 0x0) == 0x0)]

14 ĲumpDest
stack: []

const: [(callval == 0x0)]

7 IPush([14])

stack: [(callval == 0x0)]

const: []

18 IPop

stack: [mload(Write256(Init("mem"), 0x40, 0x60), at:0x40)]

const: [(callval == 0x0)]

12 IDup(0)

stack: [0x0]

const: [((callval == 0x0) == 0x0)]

13 IInvalid

stack: [0x0, 0x0]

const: [((callval == 0x0) == 0x0)]

17 IMLoad

stack: [0x40]

const: [(callval == 0x0)]

15 IPush([64])

stack: []

const: [(callval == 0x0)]

9 ĲumpIf
stack: [(callval == 0x0), 0xe]

const: []

10 IPush([0])

stack: []

const: [((callval == 0x0) == 0x0)]

14 ĲumpDest
stack: []

const: [(callval == 0x0)]

7 IPush([14])

stack: [(callval == 0x0)]

const: []

18 IPop

stack: [mload(Write256(Init("mem"), 0x40, 0x60), at:0x40)]

const: [(callval == 0x0)]

12 IDup(0)

stack: [0x0]

const: [((callval == 0x0) == 0x0)]

13 IInvalid

stack: [0x0, 0x0]

const: [((callval == 0x0) == 0x0)]

17 IMLoad

stack: [0x40]

const: [(callval == 0x0)]

15 IPush([64])

stack: []

const: [(callval == 0x0)]

Commitment
Space

Challenge
Space

Response
Space

Attack on Blaze+

19

Challenge space:
ternary polynomial over
of Hamming weight

We can write where : monomial.

Rq := Zq[x]/⟨xn + 1⟩
ω

c := Σi∈[ω]ci ci

This induces the response decomposition in degree:

z = Σi∈[ω](sci + ri)

y = Σi∈[ω](eci + e′ i)

Attack on Blaze+

19

Challenge space:
ternary polynomial over
of Hamming weight

We can write where : monomial.

Rq := Zq[x]/⟨xn + 1⟩
ω

c := Σi∈[ω]ci ci

This induces the response decomposition in degree:

z = Σi∈[ω](sci + ri)

y = Σi∈[ω](eci + e′ i)

Note: We are ``aggregating’’ responses through summation.
The resulting response might be invalid due to its length.

Efficiency

20

(Concurrent sessions/ # of hashes) Probability

CSI-Otter

Blaze+

BlindOR

Parallel
Schnorr

(4, 234)

(4, 243) ≈ 100 %

(4, 243)

(256λ, 512λ)

≈ 100 %

≈ 100 %

≈ 7 %

Can we break [HKLN20]?

We cannot find a nice norm-preserving decomposition wrt the response and
challenge space.

Can we have post-quantum adaptively/concurrently secure -based blind
signatures?

Adaptively secure -based blind signature is possible in the classical world
[EC:TesZhu22].

Small challenge space is inevitable for some group action related signature
schemes (e.g. CSIDH, MEDS, LESS, (LIP)).

Σ

Σ

Open Problems

21

Thank you for listening!

casa.rub.de

