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• Proposed by Chaum in 1982.

• Getting more attention these years because of its application (e-cash (initial 
application), e-voting, anonymous credentials), adding 

• anonymity for cryptocurrency transactions [ASIACCS:YL19]),

• Hiding metadata in secure messaging [CCS:KKP22]

• Privacy-preserving authentication tokens [Google22]

Blind Signature
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Typically, there are two main approaches doing this.

1. Fischlin’s framework [Fis06]:

• This leads to a round-optimal (2-round) scheme but requires a proof system for a 
complex relation. ([PinKat22, BLKS23]). (involving the encrypted commitment and the 
signature verification.) This is naturally immune to the adaptive attacks.

2. From sigma-protocol-based signatures ( -based Blind Signature):

• E.g. [PoiSte96, PoiSte00, AbeOka00]. This typically requires some special properties 
of the underlying scheme, and results in 3-round blind signature.

Σ

How To?
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• There are only 4 -based post-quantum blind signatures: 

• Lattice: 

• HKLN20 (Crypto’20): Hauck, Kiltz, Loss, Nguyen.

• BLAZE+ (FC/ACISP’20): Alkadri, Bansarkhani, Buchmann

• BlindOR (CANS’21): Alkadri, Harasser, Janson

• Isogeny: 

• CSI-Otter (Crypto’23): Katsumata, Lai, LeGrow, Qin

• It worthwhile to remark that along with the development of the lattice-based ZKP, 
[C:dK22,CCS:AKSY22,BLNS23] Fischlin’s method [C:Fis06] can give more 
compact results (20~100KB).

Σ

Post-Quantum Blind Signature
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• We break 3 -based post-quantum blind signatures CSI-Otter, Blaze+ and BlindOR.

• As an independent and theoretical interest, we also propose an abstract parallelROS 
problem and establish the connection to the ROS problem.

Σ

Contributions
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ℓ + 1) 𝑄𝐻

ℓ

• This only guarantees sequentially secure and  concurrently secure.log(𝜆)

• The loss is common in the sigma-protocol-based blind signatures.

• What will happen if we sign concurrently and exceed the bound?
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9 ĲumpIf
stack: [( callval == 0x0 ), 0xe]

const: []

10 IPush([0])

stack: []

const: [( ( callval == 0x0 ) == 0x0 )]

14 ĲumpDest
stack: []

const: [( callval == 0x0 )]

7 IPush([14])

stack: [( callval == 0x0 )]

const: []

18 IPop

stack: [mload(Write256(Init("mem"), 0x40, 0x60), at:0x40)]

const: [( callval == 0x0 )]

12 IDup(0)

stack: [0x0]

const: [( ( callval == 0x0 ) == 0x0 )]

13 IInvalid

stack: [0x0, 0x0]

const: [( ( callval == 0x0 ) == 0x0 )]

17 IMLoad

stack: [0x40]

const: [( callval == 0x0 )]

15 IPush([64])

stack: []

const: [( callval == 0x0 )]

9 ĲumpIf
stack: [( callval == 0x0 ), 0xe]

const: []

10 IPush([0])

stack: []

const: [( ( callval == 0x0 ) == 0x0 )]

14 ĲumpDest
stack: []

const: [( callval == 0x0 )]

7 IPush([14])

stack: [( callval == 0x0 )]

const: []

18 IPop

stack: [mload(Write256(Init("mem"), 0x40, 0x60), at:0x40)]

const: [( callval == 0x0 )]

12 IDup(0)

stack: [0x0]

const: [( ( callval == 0x0 ) == 0x0 )]

13 IInvalid

stack: [0x0, 0x0]

const: [( ( callval == 0x0 ) == 0x0 )]

17 IMLoad

stack: [0x40]

const: [( callval == 0x0 )]

15 IPush([64])

stack: []

const: [( callval == 0x0 )]

H(𝖼𝗈𝗆11, 𝖼𝗈𝗆22, ⋯, 𝖼𝗈𝗆λλ)

(c′ 11, c′ 22, ⋯, c′ λλ) ←
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9 ĲumpIf
stack: [( callval == 0x0 ), 0xe]

const: []

10 IPush([0])

stack: []

const: [( ( callval == 0x0 ) == 0x0 )]

14 ĲumpDest
stack: []

const: [( callval == 0x0 )]

7 IPush([14])

stack: [( callval == 0x0 )]

const: []

18 IPop

stack: [mload(Write256(Init("mem"), 0x40, 0x60), at:0x40)]

const: [( callval == 0x0 )]

12 IDup(0)

stack: [0x0]

const: [( ( callval == 0x0 ) == 0x0 )]

13 IInvalid

stack: [0x0, 0x0]

const: [( ( callval == 0x0 ) == 0x0 )]

17 IMLoad

stack: [0x40]

const: [( callval == 0x0 )]

15 IPush([64])

stack: []

const: [( callval == 0x0 )]

9 ĲumpIf
stack: [( callval == 0x0 ), 0xe]

const: []

10 IPush([0])

stack: []

const: [( ( callval == 0x0 ) == 0x0 )]

14 ĲumpDest
stack: []

const: [( callval == 0x0 )]

7 IPush([14])

stack: [( callval == 0x0 )]

const: []

18 IPop

stack: [mload(Write256(Init("mem"), 0x40, 0x60), at:0x40)]

const: [( callval == 0x0 )]

12 IDup(0)

stack: [0x0]

const: [( ( callval == 0x0 ) == 0x0 )]

13 IInvalid

stack: [0x0, 0x0]

const: [( ( callval == 0x0 ) == 0x0 )]

17 IMLoad

stack: [0x40]

const: [( callval == 0x0 )]

15 IPush([64])

stack: []

const: [( callval == 0x0 )]

Commitment
Space

Challenge
Space

Response
Space
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Challenge space: 
ternary polynomial over  
of Hamming weight 

We can write   where : monomial.

Rq := Zq[x]/⟨xn + 1⟩
ω

c := Σi∈[ω]ci ci

This induces the response decomposition in degree: 

z = Σi∈[ω](sci + ri)

y = Σi∈[ω](eci + e′ i)
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Challenge space: 
ternary polynomial over  
of Hamming weight 

We can write   where : monomial.

Rq := Zq[x]/⟨xn + 1⟩
ω

c := Σi∈[ω]ci ci

This induces the response decomposition in degree: 

z = Σi∈[ω](sci + ri)

y = Σi∈[ω](eci + e′ i)

Note: We are ``aggregating’’ responses through summation.
The resulting response might be invalid due to its length.
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(Concurrent sessions/ # of hashes) Probability

CSI-Otter

Blaze+

BlindOR

Parallel 
Schnorr

(4, 234)

(4, 243) ≈ 100 %

(4, 243)

(256λ, 512λ)

≈ 100 %

≈ 100 %

≈ 7 %



Can we break [HKLN20]? 

We cannot find a nice norm-preserving decomposition wrt the response and 
challenge space.

Can we have post-quantum adaptively/concurrently secure -based blind 
signatures? 

Adaptively secure -based blind signature is possible in the classical world 
[EC:TesZhu22].

Small challenge space is inevitable for some group action related signature 
schemes (e.g. CSIDH, MEDS, LESS, (LIP)).

Σ

Σ

Open Problems
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Thank you for listening!

casa.rub.de


