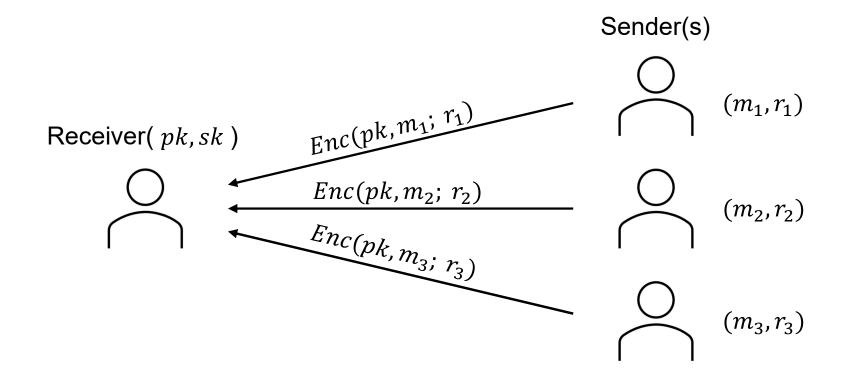
Selective Opening Security in the Quantum Random Oracle Model, Revisited

Jiaxin Pan

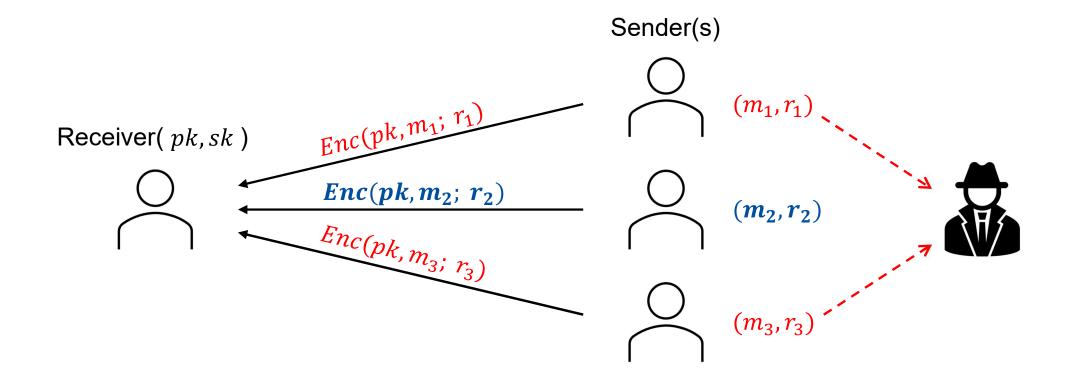
U N I K A S S E L V E R S I T 'A' T

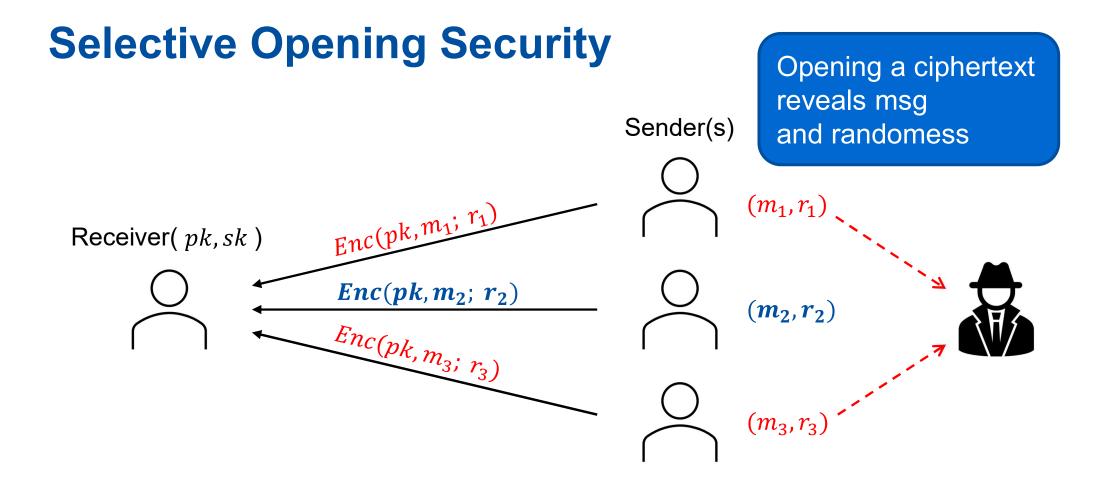
Runzhi Zeng

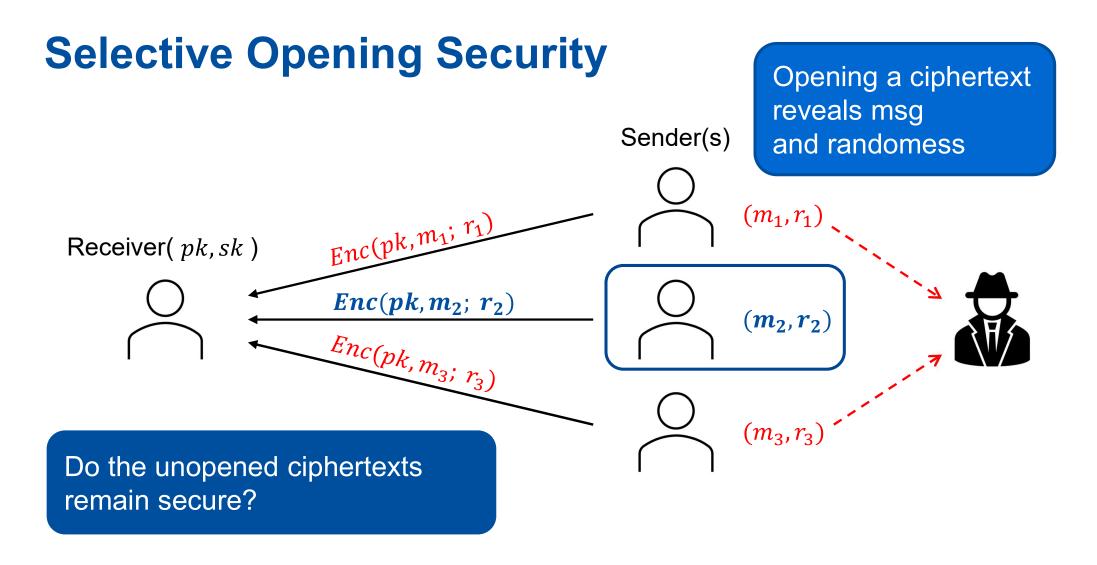
Selective Opening Security



Selective Opening Security







NTNU

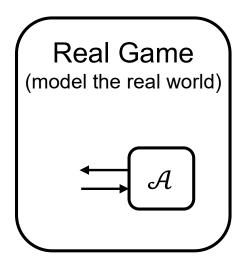
Selective Opening Security

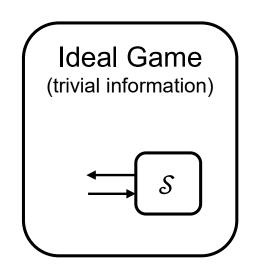
- (Sender) Selective Opening Security
 - Date back to [DNS99]
 - Why SO? Sender corruptions, randomness leakage, ...

Selective Opening Security

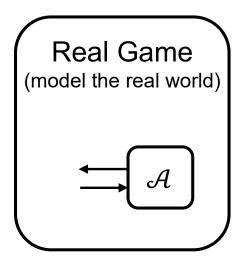
- (Sender) Selective Opening Security
 - Date back to [DNS99]
 - Why SO? Sender corruptions, randomness leakage, ...
- Definitions for SO security [DNRS99, BHY09, HLOV11, BHK12,...]
- Two flavors of SO security
 - Indistinguishability-based SO (IND-SO) [BHY09, BHK12, ...]
 - Simulation-based SO (SIM-SO) [DNRS99, BHY09, ...]
 - SIM-SO => IND-SO [BHK12]

- Real game and Ideal game
 - > Real game models a real-world adversary \mathcal{A} attacks in the real-world scenario
 - \succ Ideal game models a simulator S attacks in an ideal world with all trivial information





- Real game and Ideal game
 - \succ Real game models a real-world adversary \mathcal{A} attacks in the real-world scenario
 - \succ Ideal game models a simulator S attacks in an ideal world with all trivial information



In Real Game, \mathcal{A} is allowed to:

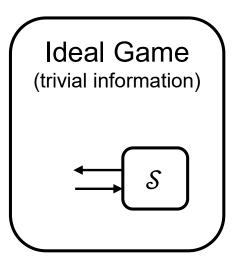
- Choose the message distribution
- Open any challenge ciphertext and get
 - > The **decrypted message**
 - The randomness used for generating the ciphertext
- Decryption Oracle (for CCA security)

Real game and Ideal game

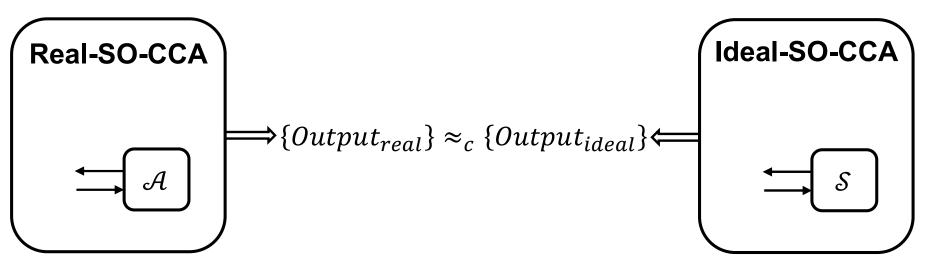
- > Real game models a real-world adversary \mathcal{A} attacks in the real-world scenario
- \succ Ideal game models a simulator S attacks in an ideal world with all trivial information

In Ideal Game, S is allowed to:

- Choose the message distribution
- > Open **dummy** messages
 - No public key, no challenge ciphertexts, no randomness...
- Decryption Oracle (for CCA security)



> SIM-SO-CCA Security: $\forall A$, there exists a simulator S (both are PPT) such that...



> S simulates all "behaviors" of A (e.g., they choose the same messages distribution, open the same ciphertexts, produce the same output)

Why is hard to achieve SIM-SO

SIM-SO-CCA is strictly stronger than (multi-challenge) IND-CCA [BDWY11]

Why is hard to achieve SIM-SO

- > SIM-SO-CCA is strictly stronger than (multi-challenge) IND-CCA [BDWY11]
- > A naïve "hybrid argument + IND-CCA" approach does not work

Cannot open c_i (since the IND-CCA experiment does not provide randomness)...

Why is hard to achieve SIM-SO

- > SIM-SO-CCA is strictly stronger than (multi-challenge) IND-CCA [BDWY11]
- > A naïve "hybrid argument + IND-CCA" approach does not work

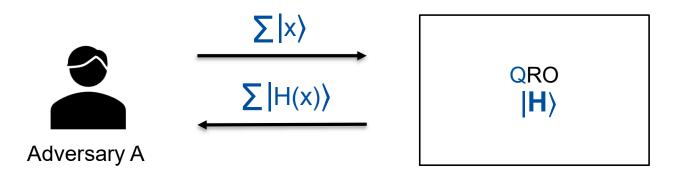
Cannot open c_i (since the IND-CCA experiment does not provide randomness)...

A trivial guessing technique does not work
 (namely, guess which ciphertext will not be opened, security loss 1/2ⁿ)

Random Oracle Model



Quantum Random Oracle Model

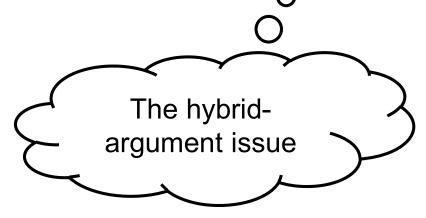


- Constructions with compact ciphertext
 - > |ct| / |pk| = constant, |ct| / |msg| = constant
 - More practical and efficient

- Based on Fujisaki-Okamoto's Transformation (FOT) [HJR16, SS19, PWZ23]
 - > [HJR16]: FOT KEM + OTP and FO PKE, in the classical ROM
 - ➢ [HP16]: (FOT KEM) + DEM, in the classical ROM
 - > [SS19]: FOT KEM + OTP/DEM, in the QROM
 - [PWZ23]: (modified) FOT KEM + OTP, in the classical ROM

Based on Fujisaki-Okamoto's Transformation (FOT) [HJR16, SS19, PWZ23]

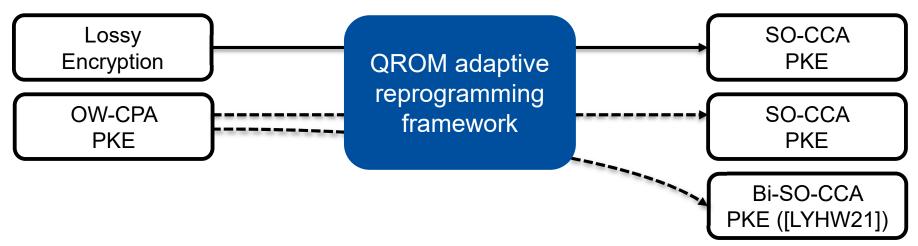
- > [HJR16]: FOT KEM + OTP and FO PKE, in the classical ROM
- ➢ [HP16]: (FOT KEM) + DEM, in the classical ROM
- [SS19]: FOT KEM + OTP/DEM, in the QROM (...a subtle gap in the proof...)
- [PWZ23]: (modified) FOT KEM + OTP, in the classical ROM



- Based on Fujisaki-Okamoto's Transformation (FOT) [HJR16, SS19, PWZ23]
 - ➢ [HJR16]: FOT KEM + OTP and FO PKE, in the classical ROM
 - ➢ [HP16]: (FOT KEM) + DEM, in the classical ROM
 - > [SS19]: FOT KEM + OTP/DEM, in the QROM (...a subtle gap in the proof...)
 - > [PWZ23]: (modified) FOT KEM + OTP, in the classical ROM
- > FOT is widely used in post-quantum KEM/PKE (e.g., Crystal-Kyber...)
- > Analyses in the classical ROM may not be sufficient for full post-quantum security

Goal: SO security of FOT-based constructions in the QROM

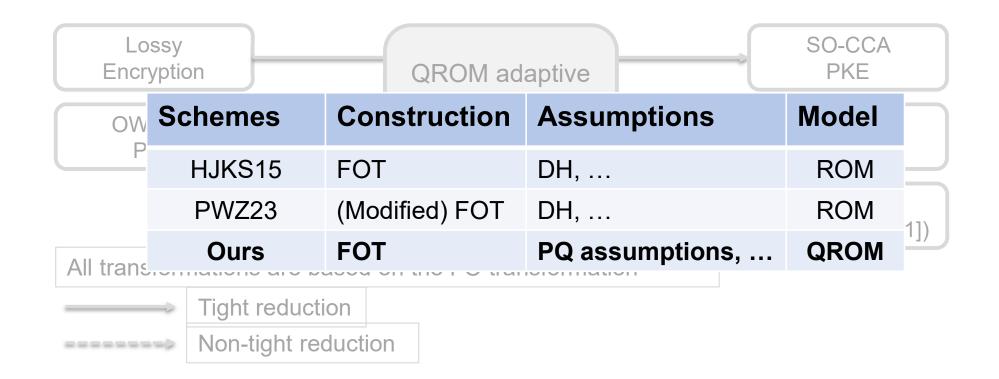
Contribution



All transformations are based on the FO transformation

- Tight reduction
- ----> Non-tight reduction

Contribution



- FO-Enc(pk, m):
 - \succ r ←_{\$} MSP
 - c := OW-Enc(pk, r; G(r)) // FO derandomization
 - (K, K^{mac}) := H(r, c) // Derive two keys
 - $\succ d := K \oplus m \qquad // One-time pad$
 - \succ τ := MAC.Sign(K^{mac}, (c, d)) // One-time MAC
 - > return (c, d, τ)

- > FO-Enc(pk, m):
 - \succ r ←_{\$} MSP
 - c := OW-Enc(pk, r; G(r))
 - ➤ (K, K^{mac}) := H(r, c)
 - ≻ d := K ⊕ m
 - > τ := MAC.Sign(K^{mac}, (c, d))
 - > return (c, d, τ)

In Reduction:

- FO-Enc(pk, m):
 - ≻ r $\leftarrow_{\$}$ MSP
 - > c^* ← OW-CPA.Challenge
 - ≻ K^{mac} ← \$ (K, K^{mac}) := H(m, c)
 - > d ← \$ d := K ⊕ m
 - > τ := MAC.Sign(K^{mac}, (c, d))
 - return (c, d, τ)

In Reduction:

- > FO-Enc(pk, m):
 - ≻ r $\leftarrow_{\$}$ MSP
 - \succ c^{*} \leftarrow OW-CPA.Challenge
 - $\succ \mathsf{K}^{\mathsf{mac}} \leftarrow \$ (\mathsf{K}, \mathsf{K}^{\mathsf{mac}}) := \mathsf{H}(\mathsf{r}, \mathsf{c})$
 - \blacktriangleright d \leftarrow \$ d := K \oplus m
 - > τ := MAC.Sign(K^{mac}, (c, d))
 - return (c, d, τ)

(c_1, d_1, τ_1), ..., (c_i, d_i, τ_i), ..., (c_n, d_n, τ_n)

In Reduction:

- > FO-Enc(pk, m):
 - $r \leftarrow_{\$} MSP$
 - \succ c^{*} \leftarrow OW-CPA.Challenge
 - ≻ K^{mac} ← \$ (K, K^{mac}) := H(r, c)
 - \blacktriangleright **d** \leftarrow **\$** d := K \oplus m
 - > τ := MAC.Sign(K^{mac}, (c, d))

return (c, d, τ)

$$(\mathbf{c}_{1}, \mathbf{d}_{1}, \tau_{1}), \dots, (\mathbf{c}_{i}, \mathbf{d}_{i}, \tau_{i}), \dots, (\mathbf{c}_{n}, \mathbf{d}_{n}, \tau_{n})$$

In Reduction:

- > FO-Enc(pk, m):
 - $r \leftarrow_{\$} MSP$
 - \succ c^{*} \leftarrow OW-CPA.Challenge
 - ≻ K^{mac} ← \$ (K, K^{mac}) := H(r, c)
 - > d ← \$ d := K ⊕ m
 - > τ := MAC.Sign(K^{mac}, (c, d))
 - return (c, d, τ)

$$(c_1, d_1, \tau_1), ..., (c_i, d_i, \tau_i), ..., (c_n, d_n, \tau_n)$$

opens
 \mathcal{A}

Solution: Reprogram ROs [HJKS15]

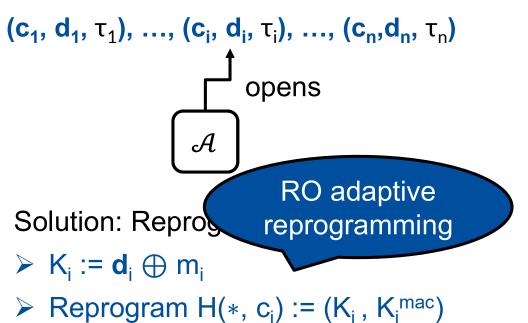
- $\succ \mathsf{K}_i := \boldsymbol{\mathsf{d}}_i \oplus \mathsf{m}_i$
- > Reprogram $H(*, c_i) := (K_i, K_i^{mac})$
- By One-wayness, A detects such reprogramming within a negl probability

NTNU

In Reduction:

- > FO-Enc(pk, m):
 - $r \leftarrow_{\$} MSP$
 - > c^* ← OW-CPA.Challenge
 - ≻ K^{mac} ← \$ (K, K^{mac}) := H(r, c)
 - > d ← \$ d := K ⊕ m
 - > $\tau := MAC.Sign(K^{mac}, (c, d))$
 - return (c, d, τ)

No tools for **computational** QROM adaptive reprogramming



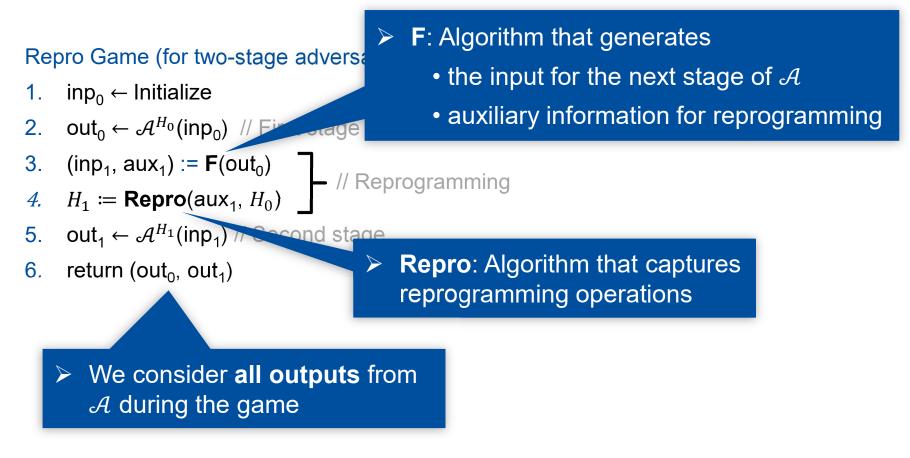
 By One-wayness, A detects such reprogramming within a negl probability

NTNU

Repro Game (for two-stage adversaries)

- 1. $inp_0 \leftarrow Initialize$
- 2. $out_0 \leftarrow \mathcal{A}^{H_0}(inp_0)$ // First stage
- 3. $(inp_1, aux_1) := F(out_0)$ 4. $H_1 := Repro(aux_1, H_0)$ // Reprogramming

- 5. $out_1 \leftarrow \mathcal{A}^{H_1}(inp_1) // Second stage$
- return (out₀, out₁) 6.



Repro Game (for two-stage adversaries)

- 1. $inp_0 \leftarrow Initialize$
- 2. $out_0 \leftarrow \mathcal{A}^{H_0}(inp_0)$
- 3. $(inp_1, aux_1) := F(out_0)$
- 4. $H_1 \coloneqq \operatorname{Repro}(\operatorname{aux}_1, H_0)$
- 5. $\operatorname{out}_1 \leftarrow \mathcal{A}^{H_1}(\operatorname{inp}_1)$
- 6. return (out_0 , out_1)

No-repro Game (for two-stage adversaries)

- 1. $inp_0 \leftarrow Initialize$
- 2. $\operatorname{out}_0 \leftarrow \mathcal{A}^{H_0}(\operatorname{inp}_0)$
- 3. $(inp_1, aux_1) := F(out_0)$
- 4. $H_1 \coloneqq H_0$ // no reprogramming
- 5. $out_1 \leftarrow \mathcal{A}^{H_1}(inp_1)$
- 6. return (out₀, out₁)

Repro Game (for two-stage adversaries)	No-repro Game (for two-stage adversaries)
1. inp ₀ ← Initialize	1. inp₀ ← Initialize
2. $out_0 \leftarrow \mathcal{A}^{H_0}(inp_0)$	2. $out_0 \leftarrow \mathcal{A}^{H_0}(inp_0)$
3. $(inp_1, aux_1) := F(out_0)$	3. $(inp_1, aux_1) := F(out_0)$
4. $H_1 \coloneqq \mathbf{Repro}(\mathrm{aux}_1, H_0)$	4. $H_1 \coloneqq H_0$ // no reprogramming
5. $out_1 \leftarrow \mathcal{A}^{H_1}(inp_1)$	5. $out_1 \leftarrow \mathcal{A}^{H_1}(inp_1)$
6. return (out ₀ , out ₁)	6. return (out ₀ , out ₁)

≻ Let *S* be the differ set of H_0 and H_1 , namely, $\forall x \notin S, H_0(x) = H_1(x)$.

Repro Game (for two-stage adversaries)	No-repro Game (for two-stage adversaries)
1. inp ₀ ← Initialize	 inp₀ ← Initialize
2. $out_0 \leftarrow \mathcal{A}^{H_0}(inp_0)$	2. $out_0 \leftarrow \mathcal{A}^{H_0}(inp_0)$
3. $(inp_1, aux_1) := F(out_0)$	3. (inp₁, aux₁) := F (out₀)
4. $H_1 \coloneqq \mathbf{Repro}(\mathrm{aux}_1, H_0)$	4. $H_1 \coloneqq H_0$ // no reprogramming
5. $out_1 \leftarrow \mathcal{A}^{H_1}(inp_1)$	5. $out_1 \leftarrow \mathcal{A}^{H_1}(inp_1)$
6. return (out ₀ , out ₁)	6. return (out ₀ , out ₁)

- ≻ Let *S* be the differ set of H_0 and H_1 , namely, $\forall x \notin S, H_0(x) = H_1(x)$.
- A cannot distinguish two games unless it ``queries" any points in S
 (Can be bounded by adaptive OW2H [Unr14])

Repro Game

- 1. $(H_0, inp_0) \leftarrow Initialize$
- 2. $\operatorname{out}_0 \leftarrow \mathcal{A}^{H_0}(\operatorname{inp}_0)$
- 3. For i from 1 to n
 - $(inp_i, aux_i) := \mathbf{F}(out_{i-1})$ $H_i \coloneqq \mathbf{Repro}(aux_i, H_{i-1})$
 - $out_i \leftarrow \mathcal{A}^{H_i}(inp_i)$
- 4. return (out_0 , out_1 , ..., out_n)

No-repro Game

- 1. $(H, inp_0) \leftarrow Initialize$
- **2**. out₀ $\leftarrow \mathcal{A}^H(inp_0)$
- 3. For i from 1 to n
 - (inp_i, aux_i) := **F**(out_{i-1})
 - $H \coloneqq H //$ no reprogramming

 $out_i \leftarrow \mathcal{A}^H(inp_i)$

- 4. return (out_0 , out_1 , ..., out_n)
- ≻ Let S_i be the differ sets of H_0 and H_i , namely, $\forall x \notin S_i$, $H(x) = H_i(x)$.

Repro Game

- 1. $(H_0, \text{ inp}_0) \leftarrow \text{Initialize}$
- **2**. $\operatorname{out}_0 \leftarrow \mathcal{A}^{H_0}(\operatorname{inp}_0)$
- 3. For i from 1 to n
 - $(inp_i, aux_i) := \mathbf{F}(out_{i-1})$
 - $H_i \coloneqq \mathbf{Repro}(\mathrm{aux}_{i}, H_{i-1})$
 - $out_i \leftarrow \mathcal{A}^{H_i}(inp_i)$
- 4. return (out_0 , out_1 , ..., out_n)

No-repro Game

- 1. $(H, inp_0) \leftarrow Initialize$
- **2**. out₀ $\leftarrow \mathcal{A}^H(inp_0)$
- 3. For i from 1 to n

(inp_i, aux_i) := **F**(out_{i-1})

 $H \coloneqq H$ // no reprogramming

 $out_i \leftarrow \mathcal{A}^H(inp_i)$

- 4. return (out_0 , out_1 , ..., out_n)
- ▶ Let S_i be the differ sets of H_0 and H_i , namely, $\forall x \notin S_i$, $H(x) = H_i(x)$.
- > A straight-forward "Hybrid argument + adaptive OW2H" proof does not work...
 - \succ ...since S_i's can be co-related, the game consider all outputs from $\mathcal{A},...$

Repro Game

- 1. $(H_0, \text{ inp}_0) \leftarrow \text{Initialize}$
- 2. $out_0 \leftarrow \mathcal{A}^{H_0}(inp_0)$
- 3. For i from 1 to n
 - (inp_i, aux_i) := $\mathbf{F}(\text{out}_{i-1})$ $H_i \coloneqq \mathbf{Repro}(\text{aux}_i, H_{i-1})$ $\text{out}_i \leftarrow \mathcal{A}^{H_i}(\text{inp}_i)$
- 4. return (out_0 , out_1 , ..., out_n)

No-repro Game

- 1. $(H, inp_0) \leftarrow Initialize$
- **2**. $out_0 \leftarrow \mathcal{A}^H(inp_0)$
- 3. For i from 1 to n

(inp_i, aux_i) := **F**(out_{i-1})

 $H \coloneqq H //$ no reprogramming

 $out_i \leftarrow \mathcal{A}^H(inp_i)$

- 4. return (out_0 , out_1 , ..., out_n)
- > Reprogram *n* times, \mathcal{A} queries QRO *q* times
- > $|\Pr{\mathcal{A}'s \text{ "behavior" in Repro Game}} \Pr{\mathcal{A}'s \text{ "behavior" in No-repro Game}}|$

 $\leq O(n^2 q) \cdot \sqrt{\Pr\{\dots \text{ a reduction "extracts" a point in } S_i \dots\}}$

Repro Game

- 1. $(H_0, inp_0) \leftarrow Initialize$
- 2. $\operatorname{out}_0 \leftarrow \mathcal{A}^{H_0}(\operatorname{inp}_0)$
- 3. For i from 1 to n
 - $(inp_i, aux_i) := \mathbf{F}(out_{i-1})$ $H_i \coloneqq \mathbf{Repro}(aux_i, H_{i-1})$
 - $out_i \leftarrow \mathcal{A}^{H_i}(inp_i)$
- 4. return (out_0 , out_1 , ..., out_n)

No-repro Game

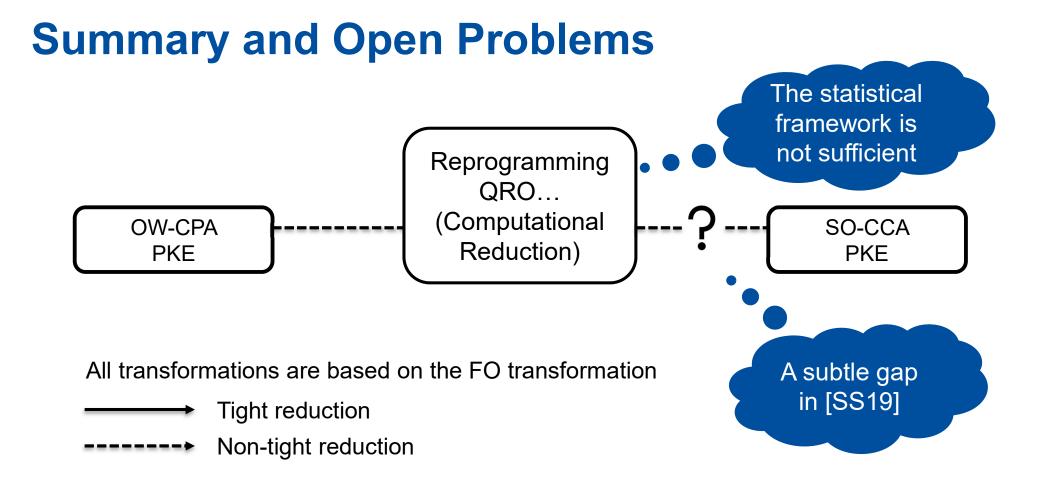
- 1. $(H, inp_0) \leftarrow Initialize$
- **2**. out₀ $\leftarrow \mathcal{A}^H(inp_0)$
- 3. For i from 1 to n

(inp_i, aux_i) := **F**(out_{i-1})

 $H \coloneqq H //$ no reprogramming

 $out_i \leftarrow \mathcal{A}^H(inp_i)$

- 4. return (out_0 , out_1 , ..., out_n)
- > Such reduction has a similar running time with \mathcal{A} ...
 - ...which allows us to construct computational reductions...
 - > ... v.s. the framework in [GHHM21]: Computational (ours) v.s. Statistical



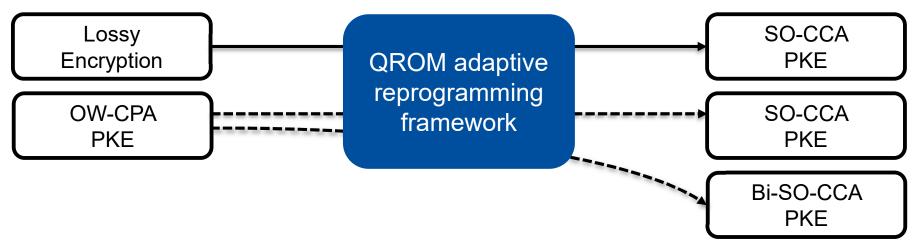
NTNU

Summary and Open Problems

All transformations are based on the FO transformation

- Tight reduction
- ----> Non-tight reduction

Summary and Open Problems



All transformations are based on the FO transformation

- Tight reduction
- ----> Non-tight reduction

NTNU

Summary and Open Problems

